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Abstract

Automated high-stake decision-making, such as medical di-
agnosis, requires models with high interpretability and relia-
bility. We consider the sparse high-order interaction model as
an interpretable and reliable model with a good prediction
ability. However, finding statistically significant high-order
interactions is challenging because of the intrinsically high
dimensionality of the combinatorial effects. Another problem
in data-driven modeling is the effect of “cherry-picking” (i.e.,
selection bias). Our main contribution is extending the re-
cently developed parametric programming approach for se-
lective inference to high-order interaction models. An ex-
haustive search over the cherry tree (all possible interactions)
can be daunting and impractical, even for small-sized prob-
lems. We introduced an efficient pruning strategy and demon-
strated the computational efficiency and statistical power of
the proposed method using both synthetic and real data.

Introduction
Although blackbox models such as deep neural network
models generally have a high predictive performance, they
are difficult to interpret; hence, they are often consid-
ered unreliable. Therefore, for tasks that require high-stake
decision-making, such as medical diagnosis, models with
higher interpretability and reliability are required. We con-
sider the sparse high-order interaction model (SHIM) as an
interpretable and reliable model with a good prediction abil-
ity. Considering a regression problem with a response y and
m original covariates z1, . . . , zm, an example SHIM up to
4th order interactions can be written as

y = β1z3 + β2z5 + β3z2z6 + β4z1z2z5z9, (1)

where β1, β2, β3, β4 are the model parameters (or coeffi-
cients). Such a SHIM (Das et al. 2019; Rendle 2010; Hall
1999) has practical importance, including identifying com-
plex genotypic features for HIV-1 drug resistance (Saigo,
Uno, and Tsuda 2007). HIV-1 evolves in the human body,
and exposure to certain drugs causes mutations that lead to
drug resistance. Structural biological studies show that the
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association of multiple mutations along with some crucial
single mutations can best describe the complex biological
phenomenon of drug resistance (Vivet-Boudou et al. 2006;
Iversen et al. 1996; Rhee et al. 2006).

The goal of this study is to fit a SHIM, such as that in
(1), to the given data and subsequently conduct a statistical
significance test to judge the reliability of the model param-
eters. However, unless the original dimension and the or-
der of interactions are small, fitting a high-order interaction
model can be challenging, requiring some computational
tricks to avoid combinatorial effects. Another challenge of
data-driven modeling is understanding the reliability of the
findings because the model might have cherry-picked the
strong associations given a particular realization of the data.
This is called the “cherry-picking” effect, or selection bias
(Taylor and Tibshirani 2015). A traditional statistical infer-
ence, which assumes that the statistical model and the target
for which inferences are conducted must be fixed a priori,
cannot be used for this problem. Any inference conducted
after model selection suffers from selection bias unless it is
corrected.

Related work: Several approaches have been suggested
in the literature to address the problem of selection bias
(Fithian, Sun, and Taylor 2014; Fithian et al. 2015; Choi,
Taylor, and Tibshirani 2017; Tian and Taylor 2018; Chen
and Bien 2020; Hyun et al. 2018; Loftus and Taylor 2014,
2015; Panigrahi, Taylor, and Weinstein 2016; Tibshirani
et al. 2016; Yang et al. 2016; Liu, Markovic, and Tibshirani
2018). A particularly notable approach is the conditional se-
lective inference (SI) introduced in the seminal study con-
ducted by Lee et al. (2016). The basic idea of conditional
SI is to make inferences on a data-driven hypothesis condi-
tional on the selection event that the hypothesis is selected.
Lee et al. (2016) first proposed conditional SI methods for
the selected features using Lasso. Their basic idea is to char-
acterize the selection event by a polytope, i.e., a set of linear
inequalities, in the sample space. When a selection event can
be characterized by a polytope, the practical computational
methods developed by these authors can be used to make
inferences of the selected hypotheses conditional on the se-
lection events.

However, the conditional SI framework based on a poly-
tope has a serious drawback, called the over-conditioning
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issue. In that case, extra events must be introduced to char-
acterize the selection event by a single polytope, which is
known to be statistically sub-optimal or leads to a loss of
statistical power (Fithian, Sun, and Taylor 2014). For ex-
ample, to characterize the LASSO selection event by a poly-
tope in Lee et al. (2016), the author explained that one needs
to consider conditioning on the sign of the LASSO model
parameters in addition to the selected model. The study by
Suzumura et al. (2017), who first applied polytope-based SI
into a high-order interaction model for which a high-order
interaction feature is sequentially added, also suffers from
this problem. As a solution to the case of LASSO, Lee et al.
(2016) proposed taking the union of all possible signs of
the selected features. However, unless the number of the se-
lected features is small, it is computationally expensive, and
in the case of a SHIM-type problem, it will be impractical
because of the combinatorial effects.

Recently, Le Duy and Takeuchi (2021) introduced a
homotopy method to resolve the over-conditioning issue,
which essentially leads to a minimally conditioned SI for
Lasso. The homotopy method exploits the piecewise linear-
ity of the model coefficients β(τ) as a function of scalar τ .
This enables one to simply use a linear interpolation between
the change points of each piece of piecewise linear paths to
compute the exact solution β(τ), thus avoiding the compu-
tational burden of solving the exact optimization problem
for each and every τ between the change points of every
linear piece. A well-known homotopy algorithm in statis-
tical machine learning is the LARS-LASSO algorithm to
construct the exact regularization paths of LASSO solutions
(Efron et al. 2004). Recently there have been other studies
which also exploited the homotopy method in the context
of conditional SI to improve the statistical efficiency (Duy
and Takeuchi 2021b; Sugiyama, Le Duy, and Takeuchi 2021;
Sugiyama et al. 2021; Duy and Takeuchi 2021a) .

Our basic idea for identifying statistically reliable high-
order interaction features in a sparse modeling framework
is to employ an exact homotopy-based SI method for the
SHIM. Unfortunately, the computational cost of applying
the exact homotopy method to the SHIM increases expo-
nentially and becomes intractable unless the size of the se-
lected features and the maximum order of interactions are
small (Mairal and Yu 2012). Several methods have already
been proposed for fitting the SHIM (Saigo et al. 2009; Tsuda
2007; Nakagawa et al. 2016). These existing approaches
mainly consider a tree of high-order interactions (or pat-
terns) and exploit the tree anti-monotonicity property to de-
rive efficient branch and bound pruning strategies in order to
avoid the combinatorial computation burdens of the SHIM.

Contribution: Our main contribution in this paper is to
introduce a “homotopy mining” method by exploiting the
best of both homotopy and (pattern) mining methods for
the conditional SI of the SHIM. This approach is motivated
by the exact regularization path computation algorithm for
graph data (Tsuda 2007), which is considered as a homo-
topy method with respect to the regularization parameter. In
the algorithm of our proposed method, we use two types of
homotopy mining methods, one for fitting a SHIM to the
observed dataset (which is essentially the same as the ap-

proach in (Tsuda 2007)), and the other for computing the
sampling distribution of the test statistic conditional on the
selection event. Interestingly, these two types of homotopy
mining methods share many common properties such as
branch and bound techniques for pruning a high-order inter-
action tree (see Fig.1(a)). We applied our proposed method
to synthetic and real-world HIV1 drug resistance data and
demonstrated in the results section that we can quantify the
statistical significance of high-order interaction features in
the forms of p-values and confidence intervals without any
computational or statistical approximations. In an experi-
mental study of the inference stage, we showed that a sin-
gle traversal of a search space of more than 109 high-order
interaction terms (sample size = 625) took less than 317 s
(worst case) and 110 s (best case) on average using an In-
tel Xeon Gold 6130 CPU @ 2.10 GHz. We extended this
framework to solve the Elastic Net problem (Zou and Hastie
2005). It was not trivial as we could not follow the com-
monly used practice of data augmentation. The combinato-
rial effects of the SHIM prohibit the stacking of extra rows
as the method of data augmentation. Our implementation is
available at https://github.com/DipteshDas/SI-SHIM.

Problem Statement
Consider a regression problem with a response vector y ∈
Rn and m original covariate vectors z1, . . . , zm, where zj ∈
Rn and j ∈ [m] = {1, ...,m}. A high-order interaction
model up to the dth order is then written as follows:

y =
∑
j1∈[m]

ξj1zj1 +
∑

(j1,j2)∈[m]×[m]
j1 6=j2

ξj1,j2zj1zj2 + · · ·

+
∑

(j1,...,jd)∈[m]d

j1 6=... 6=jd

ξj1,...,jdzj1 · · · zjd ,
(2)

where zj1 · · · zjd is the element-wise product and scalar ξ
represents the coefficient. In this study, we consider each
element of the original covariate vector zj ∈ Rn is defined in
the domain [0, 1]n. To simplify the notation, it is convenient
to write the high-order interaction model in (2) using the
following matrix of concatenated vectors of all high-order
interactions:

X = [z1, . . . , zm︸ ︷︷ ︸
1st order

, · · · , z1 . . . zd, . . . , zm−d+1 . . . zm︸ ︷︷ ︸
dth order

] ∈ Rn×p,

where p :=
∑d
κ=1

(
m
κ

)
. Similarly, the coefficient vector as-

sociated with all possible high-order interaction terms can
be written as follows:

β := [ξ1, . . . , ξm︸ ︷︷ ︸
1st order

, · · · , ξ1,...,d, . . . , ξm−d+1,...,m︸ ︷︷ ︸
dth order

]> ∈ Rp.

The high-order interaction model (2) is then simply writ-
ten as a linear model y = Xβ. Unfortunately, p can be
prohibitively large unless both m and d are fairly small. In
SHIM, we consider a sparse estimation of a high-order in-
teraction model. An example of SHIM is as follows:

y = ξ3z3 + ξ5z5 + ξ2,6z2z6 + ξ1,2,5,9z1z2z5z9. (3)
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Figure 1: (a) A tree of patterns has been constructed by ex-
ploiting the hierarchical structure of high-order interaction
features. (b) The conditional data space y of LASSO is re-
stricted to a line parameterized by a scalar τ .

To quantify the reliability, the goal of this study is to fit a
SHIM such as in (3) and test the statistical significance of
the coefficients of the selected model (in the above example,
ξ3, ξ5, ξ2,6, ξ1,2,5,9). Unfortunately, both the fitting and test-
ing of a SHIM are non-trivial because, unless both m and
d are very small, a high-order interaction model will have a
significantly large number of parameters to be considered.
Several algorithms for fitting a sparse high-order interaction
model have been proposed in the literature (see Introduc-
tion). A common approach adopted in these existing works
is to exploit the hierarchical structure of high-order interac-
tion features. In other words, a tree structure as in Fig. 1(a)
is considered and a branch-and-bound strategy is employed
in order to avoid handling all the exponentially increasing
number of high-order interaction features.

Here, we introduce an algorithm for conditional SI to
quantify the statistical significance of the fitted coefficients
of a SHIM such as ξ3, ξ5, ξ2,6, ξ1,2,5,9 in the forms of p-
values or confidence intervals by applying a homotopy-
based SI. However, owing to the extremely large number
of features in (2), it is difficult to characterize the selection
event for homotopy-based SI. To overcome this challenge,
we develop a homotopy mining method that effectively com-
bines the homotopy method and branch-and-bound strategy
in the cherry tree. Before delving into our proposed method,
we briefly overview the conditional SI.

Selective Inference and Homotopy Method
We present conditional selective inference (SI), which was
introduced in Lee et al. (2016), and then demonstrate that
an optimal (i.e., minimally conditioned) conditional SI can
be conducted with a homotopy method. In the conditional
SI framework, we assume that the design matrix X is fixed;
the response vector y is a realization of the random response
vector Y ∼ N(µ,Σ), where µ ∈ Rn is unknown mean vec-
tor; and Σ ∈ Rn×n is a covariance matrix that is known or
estimated from external data. In this framework, we do not
assume a “true” relationship between X and µ, but consider
a case in which the data analyst adopts the SHIM as a rea-
sonable approximation model to describe the relationship.

Let A be the set of selected features by solving the SHIM
fitting problem. With a slight abuse of notation, we also
write this set of features as A(y) in order to emphasize that
the set of features A is obtained when y is observed. This
notation enables us to consider A(y′) as the set of features
that would be selected when a different response vector y′ is

observed. Furthermore, A(Y ) represents the “random” set
of features selected from the “random” response vector Y .

Given A, we consider the best linear approximation of
µ with the selected features. For j ∈ A, let β∗j :=

e>j (X>AXA)−1X>Aµ be the jth population coefficient of the
best linear approximation model fitted only with the selected
features. Here, ej ∈ R|A| is a vector with 1 at the jth com-
ponent and 0 otherwise. In the conditional SI framework, we
consider the following hypothesis test:

H0 : β∗j = 0 v.s. H1 : β∗j 6= 0, j ∈ A. (4)

By defining η := XA(Y )(X
>
A(Y )XA(Y ))

−1ej , we can write
β∗j = η>µ with Y = y. It is therefore reasonable to use
η>Y as the test statistic for the test (4). The (unconditional)
sampling distribution of η>Y is highly complicated and in-
tractable because η also depends on the random response
vector Y through the selected features A(Y ). The basic
idea of conditional SI is to consider the sampling distribu-
tion of the test statistic conditional on the selection event,
that is, η>Y | {A(Y ) = A}. By further conditioning
on the nuisance component q(Y ) = (In − bη>)Y with
b := Ση(η>Ση)−1 which is independent of the test statistic
η>Y , Lee et al. (2016) showed that the conditional sampling
distribution of η>Y | {A(Y ) = A, q(Y ) = q} follows a
truncated normal distribution

η>Y | {A(Y ) = A, q(Y ) = q} ∼ F TηTµ,ηT ∑
η, (5)

where F Tµ̃,σ̃2 is the c.d.f. of the truncated normal distribu-
tion with mean µ̃, variance σ̃2, and truncation region T ;
and q is the observed nuisance component defined as q =
(In − bη>)y. The reason why we condition on the nuisance
component is that it is considered to be fixed because it is
not of immediate interest. One more important point is that,
under the assumption of Gaussian noise, the nuisance com-
ponent is independent of the test statistic. The q(Y ) in our
paper corresponds to the vector z in the seminal SI (SI) paper
of Lee et al. (2016) (Sec 5, Eq 5.2 and Theorem 5.2 in (Lee
et al. 2016)). Unfortunately, identifying the conditional data
space {A(Y ) = A, q(Y ) = q} is a challenging problem.

In Lee et al. (2016), the authors developed a practical
algorithm to compute the truncated normal distribution by
further conditioning on the signs of the selected features in
A. Although the validity of the inference can be maintained
with this additional conditioning on the signs, it turns out
that the power of the inference is suboptimal with this over-
conditioning (Fithian, Sun, and Taylor 2014). Le Duy and
Takeuchi (2021) recently developed an algorithm to resolve
this issue by using the homotopy method. They showed that
the homotopy method can be efficiently used to fully char-
acterize the conditional data space and does not suffer from
the computational burden of taking the unions of all possible
signs. Their method is statistically more powerful as it does
not over-condition on the signs. In particular, they consid-
ered a parametrized response vector (see Fig. 1 (b))

y(τ) := q + bτ (6)

for a scalar parameter τ ∈ R, and solved the continuum
of optimal solutions when the response vector y is replaced

10001



with y(τ) by using the homotopy method. Basically, they
showed that the LASSO solutions (β(τ)) with a variable re-
sponse (y(τ)) is piecewise linear in τ , and exploited this
property to develop a homotopy algorithm to construct the
exact regularization path τ 7→ β(τ). The details regard-
ing this homotopy method are provided in the proposed
method section. Therefore, we can redefine the conditional
data space in (5) as

T = {τ ∈ R | A(y(τ)) = A(y)}. (7)

This enables us to completely identify the truncation region
of the truncated normal sampling distribution (by exactly
identifying the pieces of the piecewise linear path τ 7→ β(τ),
where A(y(τ)) = A(y)) and compute the selective p-value

P selective
j = 2 min{πj , 1− πj}, πj = 1− F T0,ηT ∑

η(η>y).
(8)

Similarly, one can obtain 1 − α confidence interval Cα for
any α ∈ [0, 1] such that

P(β∗j ∈ Cα
∣∣{A(Y ) = A, q(Y ) = q}) = 1− α.

Unfortunately, in the case of a SHIM, because the num-
ber of high-order interaction features is exponentially large,
we cannot use the same homotopy method. In the follow-
ing section, we present the homotopy mining algorithm by
exploiting the best of both “homotopy” and “pattern min-
ing” methods. This enables us to compute the conditional
sampling distribution (5) of the fitted SHIM coefficients by
effectively combining the homotopy method and the branch-
and-bound method used in pattern mining.

Proposed Method
In this study, we propose a similar “homotopy-mining” ap-
proach for model selection and inference. The homotopy
method refers to an optimization framework for solving a se-
quence of parameterized optimization problems. The basic
idea of our homotopy mining approach is to consider the fol-
lowing optimization problem with a parameterized response
vector y(τ) in (6)

β(λ, τ) = arg min
β∈Rp

Fλ,τ (β) :=
1

2
‖y(τ)−Xβ‖2+λ ‖β‖1 ,

(9)
where τ ∈ R is a scalar parameter, λ is the regularization
parameter for L1-regularization, and the objective function
Fλ,τ (β) is parameterized by both τ and λ. Homotopy min-
ing enables us to solve a sequence of parameterized opti-
mization problems in the form of (9) by effectively combin-
ing the homotopy and mining methods.

To extend the homotopy selective inference framework
for a SHIM, we first need to solve (9) for a fixed τ and target
λ using the observed data and obtain an active set A. Now,
∀j ∈ A, we need to construct the exact solution path charac-
terized by τ and then identify the conditional data space in
(7) by identifying the intervals of τ on the solution path. This
exact solution path can be constructed in a manner similar to
the LARS-LASSO algorithm (Efron et al. 2004; Mairal and
Yu 2012) using an efficient step size calculation. Here, we
define the exact regularization paths λ 7→ β(λ) for a fixed

τ as the “λ-path” and τ 7→ β(τ) for a fixed λ as the “τ -
path”, respectively. Then, these two paths of the SHIM can
be constructed in a similar fashion as stated below:
• A model selection of the SHIM can be achieved using

the exact regularization path algorithm

λ0 > λ1 > · · · > λmin ⇒ {β(λ0), β(λ1), · · · , β(λmin)}.
(10)

• For inference, we can obtain a similar path algorithm

τ0 > τ1 > · · · > τmin ⇒ {β(τ0), β(τ1), · · · , β(τmin)},
(11)

where the sequences of λ and τ represent the breakpoints
of the homotopy method (Efron et al. 2004; Mairal and Yu
2012). Equations (10) and (11) have similar problem struc-
tures, with the only difference being that in (10), we find the
solution path characterized by the regularization parameter
λ, whereas in (11), we find the solution path characterized by
τ . Basically, what we need to characterize the selection event
is finding those breakpoints (e.g., τ0, τ3, τ8) along the τ -line
where the active set remains the same as the observed one,
that is, A(y) = A(y(τ0)) = A(y(τ3)) = A(y(τ8)). How-
ever, computing the exact solution paths for such a SHIM
is a challenging task because of the exponentially expanded
feature space (Le Morvan and Vert 2018; Suzumura et al.
2017). Efficient computational methods are required at both
the selection and inference stages. Hence, we considered a
tree structure (see Fig.1 (a)) of the interaction terms (or pat-
terns) and proposed a tree pruning strategy to make it com-
putationally tractable. In the next section, we present the
main technical details of characterizing the conditional data
space in (7) by using the homotopy-mining method.

Characterization of Truncation Region in SHIM
The optimal condition of (9) can be written as

X>
(
Xβ(λ, τ)− y(τ)

)
+ λs(λ, τ) = 0,

where sj(λ, τ) ∈
{
{−1,+1} if βj(λ, τ) 6= 0,

[−1,+1] if βj(λ, τ) = 0,

(12)

and j ∈ [p]. Let us define the active set of features as
A(y(τ)) = {j ∈ [p] : βj(λ, τ) 6= 0}.

The τ -path (fixed λ). Because λ is fixed, we drop it from
the notation. Now, consider two real values τt and τt+1

(τt+1 > τt) at which the active set does not change and
their signs also remain the same. For notational simplicity,
we denote Aτt = A(y(τt)). Then, one can write from (12)

βAτt (τt+1)− βAτt (τt) = νAτt (τt)× (τt+1 − τt), (13)

λsAcτt (τt+1)− λsAcτt (τt) = γAcτt (τt)× (τt+1 − τt), (14)

where νAτt (τ) = (X>Aτt
XAτt )

−1X>Aτt
b and γAcτt (τ) =

X>Acτt
b−X>AcτtXAτt νAτt (τ) remain constant for all real val-

ues of τ ∈ [τt, τt+1). Therefore, β(τ) and λs(τ) are piece-
wise linear in τ for a fixed λ. If τt+1 > τt is the next
zero crossing point, then either of the following two events
occurs • A zero variable becomes non-zero, that is, ∃j ∈
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Acτt s.t. |x>j (y(τt+1)−XAτtβAτt (τt+1))| = λ or, • A non-
zero variable becomes zero, that is, ∃j ∈ Aτt s.t. βj(τt) 6=
0 and βj(τt+1) = 0 . Overall, the next change in the active
set occurs at τt+1 = τt + ∆j , where

∆j = min(∆1
j ,∆

2
j ) = min

(
min
j∈Aτt

(
− βj(τt)

νj(τt)

)
++
,

min
j∈Acτt

(
λ

sign(γj(τt))− sj(τt)
γj(τt)

)
++

)
. (15)

Here, we use the convention that for any a ∈ R, (a)++ = a
if a > 0 and ∞ otherwise. However, determining the step
size (∆j) of the τ -path can be challenging for SHIM-type
problems. Hence, we need efficient computational methods
to make it practically feasible. In the following section, we
present an efficient tree pruning strategy that considers the
tree structure of the interaction terms. Here, each node of the
tree represents an interaction term. A similar pruning strat-
egy already exists in the literature to solve the λ-path of the
LASSO in the context of graph mining (Tsuda 2007).

Tree Pruning
We first define the following tree anti-monotonicity property
which we will use in the subsequent part of this article.
Property 1. A tree is constructed in such a way that for any
pair of nodes (`, `′), where ` is the ancestor of `′, i.e., ` ⊂ `′,
the following conditions are satisfied

xi`′ = 1 =⇒ xi` = 1 and, xi` = 0 =⇒ xi`′ = 0, ∀i ∈ [n].

Now considering the τ -path of the LASSO, the equicorrela-
tion condition for any active feature k ∈ Aτt+1

at a fixed λ
can be written as∣∣x>k (y(τt+1)−Xβ(τt+1))

∣∣ = λ.

Therefore at a fixed λ, any non-active feature ` ∈ Acτt be-
comes active at τt+1 if∣∣x>` (y(τt+1)−XAτt (βAτt (τt) + ∆`νAτt (τt))

)∣∣ =∣∣x>k (y(τt+1)−XAτt (βAτt (τt) + ∆`νAτt (τt))
)∣∣,

or |ρ`(τt, τt+1)−∆`η`(τt)| = |ρk(τt, τt+1)−∆`ηk(τt)|,
(16)

where the left hand side (l.h.s.) corresponds to ` ∈
Acτt and the right hand side (r.h.s.) corresponds to k ∈
Aτt . Here, we define ρ`(τt, τt+1) = x>`

(
y(τt+1) −

XAτtβAτt (τt)
)

and η`(τt) = x>` XAτt νAτt (τt). The r.h.s.
of (16) has a lower bound, that is,

|ρk(τt, τt+1)−∆`ηk(τt)| ≥ |ρk(τt, τt+1)| −∆`|ηk(τt)|,
and the l.h.s. of (16) has an upper bound, i.e.,

|ρ`(τt, τt+1)−∆`η`(τt)| ≤ |ρ`(τt, τt+1)|+ ∆`|η`(τt)|.
Therefore, for equation (16) to obtain a solution, the follow-
ing condition needs to be satisfied:

|ρ`(τt, τt+1)|+∆`|η`(τt)| ≥ |ρk(τt, τt+1)|−∆`|ηk(τt)|.
(17)

Algorithm 1: τ -path
1: Input: Z, λ, b, q, [τmin, τmax]
2: Initialization: t = 0, τt = τmin, T = {τt}, β(τt) = 0
3: y(τt) = q + bτt, Aτt , βAτt (τt)← λ-path(Z, y(τt), λ)

4: νAτt (τt) = (X>AτtXAτt )
−1X>Aτt b, νAcτt (τt) = 0

5: while (τt < τmax) do
6: Compute step-length ∆j ← Equation (15)
7: If ∆j = ∆1

j , remove j from Aτt
8: If ∆j = ∆2

j , add j into Aτt
9: Update: τt+1 ← τt + ∆j , T = T ∪ {τt+1},
βAτt+1

(τt)← βAτt (τt) + ∆jνAτt (τt),
y(τt+1) = q + bτt+1,
νAτt+1

(τt+1) = (X>Aτt+1
XAτt+1

)−1X>Aτt+1
b,

νAcτt+1
(τt+1) = 0

10: end while
11: Output: T , {Aτt}τt∈T

If the above condition (17) is not satisfied, then equation (16)
does not have any solution, which can be used as a pruning
condition. Therefore, the pruning condition is written as

|ρ`(τt, τt+1)|+ ∆`|η`(τt)| < |ρk(τt, τt+1)| −∆`|ηk(τt)|.
(18)

If ∆∗` = min
t∈{1,2,...,`}

{∆t}, is the current minimum step size,

then we can further simplify (18) as stated in Lemma 1.
Lemma 1 ∀`′ ⊃ `,∆`′ > ∆∗` if

b`,w(τt) + ∆∗`b`,θ + ∆∗`b`,v(τt) < |ρk(τt)| −∆∗` |θk|
−∆∗` |ηk(τt)|, (19)

where, b`,w(τt) := max
{∑

wi(τt)<0|wi(τt)|xi`,∑
wi(τt)>0|wi(τt)|xi`

}
; b`,θ and b`,v(τt) are similarly de-

fined. Here, w(τt) = y(τt) − XAτtβAτt (τt), v(τt) =

XAτt νAτt (τt) and θ` = x>` b.

Therefore, Lemma 1 states that if ∃` s.t. ` ⊂ `′ and the con-
dition in (19) is satisfied then one can safely ignore the sub-
tree with ` as the root node. The complete algorithm for the
τ -path is given in Algorithm 1.

Complexity analysis: If X ∈ Rn×p is full rank and for
a given λ, the τ -path of β(τ), ∀τ ∈ [−∞,+∞] is well de-
fined, then the worst-case complexity of the τ -path is 3p.
Note that the sign s(τ) ∈ {−1, 0,+1}p of the coefficients
β(τ) does not change between any two consecutive kinks of
the piece-wise linear path τ 7→ β(τ). Hence, for p patterns
the number of linear segments in τ -path is bounded by 3p.
For details see Mairal and Yu (2012). However, fortunately,
it has been well-recognized that this worst-case rarely hap-
pens in practice (Le Duy and Takeuchi 2021) and, this is also
evident from our experimental results (Table 2).

Extension for Elastic Net
We extended our proposed method to elastic net and solved
the following optimization problem:

β(λ, τ) ∈ arg min
β∈Rp

1

2
‖y(τ)−Xβ‖22 +

1

2
α ‖β‖22 + λ ‖β‖1 .
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(c)(b)(a)

Figure 2: Demonstration of the statistical power of three se-
lection bias correction methods (ds, data splitting; homo, ho-
motopy; poly, polytope) using synthetic data experiments.
(a) and (b) False positive rates (FPR) and the true positive
rates (TPR) for different sample sizes, and (c) shows the dis-
tribution of the confidence interval lengths (CI length).

Note that here the only change compared to the LASSO is
the addition of an αI|Aτt | term to the expression of the direc-
tion vector, i.e. νAτt (τt) = (X>Aτt

XAτt+αI|Aτt |)
−1X>Aτt

b.
Similar to the LASSO (19), the pruning condition for the τ -
path of ElNet can be written as follows: ∃`, such that ∀`′ ⊃
`,∆`′ > ∆∗` , if
b`,w(τt) + ∆∗`b`,θ + ∆∗`b`,v(τt)

< |ρ̄k(τt)|−∆∗` |θk|−∆∗` |η̄k(τt)|, (20)

where ρ̄k(τt) =
∑n
i=1 wi(τt)xik − αβk, η̄k(τt) =∑n

i=1 vi(τt)xik + ανk.

Experiments
Comparison of Statistical Powers
Synthetic data: We generated random samples (zi, y) ∈
[0, 1]m × R in such a way that 100m(1 − ζ)% of zi ∈ Rm
contain a value of 1 on average. Here, ζ ∈ [0, 1] is the
sparsity controlling parameter. The response yi ∈ R is ran-
domly generated from a normal distribution N(0, σ2). For a
comparison of the false positive rates (FPRs), true positive
rates (TPRs), and confidence intervals (CIs) across differ-
ent methods, we generated a design matrix for a fixed spar-
sity parameter ζ = 0.95. During all experiments, the signif-
icance level was set at 0.05. To compare the TPRs, we con-
sidered a true model of up to third-order interactions, which
is defined as µ(xi) = 0.5z1 − 2z2z3 + 3z4z5z6. The re-
sponse yi is accordingly generated fromN(µ(X), σ2I). For
the comparison of FPRs, we set βj = 0, ∀j ∈ Rp. We com-
pared both FPRs and TPRs across three different methods,
i.e. (ds, data splitting; homo, homotopy; poly, polytope)
for four different sample sizes n ∈ [100, 200, 400, 500]. We
generated TPRs and FPRs over 100 trials for all three meth-
ods and repeated the experiments for 5 times. The results
are shown in Fig. 2(a) and Fig. 2(b), respectively. It can be
seen that all SI methods can properly control the FPRs un-
der 0.05. Regarding the TPR comparison, homotopy has the
highest power, which is obvious because it is minimally con-
ditioned compared to polytope which suffers from the over
conditioning issue. Comparing the TPRs of the data splitting
(ds) and homotopy (homo), it can be seen that the TPRs of
homo are always greater than those of ds. Note that in ds,
only half of the data are used for selection and the remain-
ing half are used for the inference. Therefore, compared to

(b.1) (b.2) (b.3)

DATA_NRTI_AZT_extop30
𝒏 P-value

[# intervals]
CI 

[# intervals]
100 0.60 [5.49] 1.0 [5.49]
200 0.66 [8.59] 1.0 [8.59]
300 0.73 [10.12] 1.0 [10.12]

DATA_NRTI_ABC_extop30
𝒏 P-value

[# intervals]
CI 

[# intervals]
100 0.74 [1.94] 1.0 [1.94]
200 0.80 [2.25] 1.0 [2.25]
300 0.76 [2.81] 1.0 [2.81]

DATA_NRTI_D4T_extop30
𝒏 P-value

[# intervals]
CI 

[# intervals]
100 0.85 [2.25] 1.0 [2.25]
200 0.87 [1.99] 1.0 [1.99]
300 0.82 [2.17] 1.0 [2.17]

(a.1) (a.3)(a.2)

Figure 3: Comparison of statistical powers (homotopy vs
polytope). (a.1-a.3) The percentage of cases where selection
bias corrected p-values and confidence interval lengths of
the proposed method (homotopy) were smaller than those of
the existing method (polytope) in the random sub-sampling
experiments. (b.1-b.3) The distributions of the confidence in-
terval lengths of the same experiments. The numbers inside
the brackets represent the average number of intervals along
the τ -line considered for the homotopy method. Note that in
the case of polytope only one such interval is considered.

homo, ds has a higher risk of failing to identify truly cor-
related features in the selection stage and similarly suffers
from low statistical power in the inference stage. The results
of the CIs are shown in Fig. 2(c). Here, we used the same
true model of the TPR experiments and reported the average
CIs over 100 trials across different methods. The results of
the CIs are consistent with the findings of the TPRs.

Real data: We obtained HIV-1 sequence data from the
Stanford HIV Drug Resistance Database (Rhee et al. 2003).
In our experiment, we used six NRTIs, one NNRTIs and
three PIs drugs. However, because of the space limita-
tions, we reported only the results of three NRTIs drugs.
To demonstrate the statistical efficacy of the proposed ho-
motopy method over the existing polytope method, we gen-
erated random sub-samples of the 10 drug data as follows.
First, we created a dataset consisting of the top 30 mutations
from each of the 10 drug data. Because most of the columns
contain zeros, we sorted them based on the number of 1s
present in each column and selected the top-30 columns as
our starting set. Then, from this starting set, we considered
random sub-samples of five features for three different sam-
ple sizes (n ∈ {100, 200, 300}). Here, we considered ran-
domization without replacement for both sample and fea-
tures selection. We generated 100 samples and repeated the
experiments for five times; hence, we generated 500 sam-
ples in total. Figure 3 demonstrates the percentage of times
homotopy produced smaller p-values and CI lengths than
polytope. This also depicts the distributional difference of
the CI lengths between homotopy and polytope. These re-
sults clearly demonstrate that homotopy is statistically more
powerful than the existing polytope method.

Comparison of Computational Efficiencies
To demonstrate the computational efficiency of the proposed
pruning strategy for the τ -path, we applied our homotopy
mining method with and without pruning on the HIV NRTI
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d
Search space

(# nodes)
With pruning Without pruning

1st 2nd 3rd 1st 2nd 3rd

5 174436 19.53± 7.91 8.69± 2.71 9.45± 3.91 25.29± 2.50 34.80± 1.19 23.34± 1.88
6 768211 49.47± 23.41 20.39± 7.85 22.74± 14.74 126.96± 8.61 125.29± 2.14 127.97± 4.80
7 2804011 92.15± 44.27 39.28± 17.08 43.43± 32.73 450.24± 28.50 447.59± 22.15 447.19± 37.69
8 8656936 151.71± 76.53 57.69± 26.67 64.59± 50.52 > 1 day > 1 day > 1 day
9 22964086 209.23± 101.84 74.58± 36.24 84.83± 62.48 > 1 day > 1 day > 1 day

10 53009101 239.28± 126.02 75.40± 35.09 90.38± 69.36 > 1 day > 1 day > 1 day
11 107636401 289.99± 140.12 98.19± 49.19 116.44± 90.12 > 1 day > 1 day > 1 day
12 194129626 303.73± 149.75 105.11± 52.70 118.91± 92.44 > 1 day > 1 day > 1 day
13 313889476 311.92± 154.93 108.31± 54.27 122.97± 95.32 > 1 day > 1 day > 1 day
14 459312151 317.30± 154.47 98.02± 51.63 114.18± 82.37 > 1 day > 1 day > 1 day
15 614429671 318.91± 155.89 100.52± 53.37 116.06± 84.58 > 1 day > 1 day > 1 day

None 1073741823 317.09± 155.92 110.0± 55.31 126.35± 97.08 > 1 day > 1 day > 1 day

Table 1: Computation time (in s) with and without pruning for first, second and third order interactions. Here, the computation
time is measured against different maximum pattern size (d) constraints. The last row corresponds to the case in which ”d” is
not specified, and the entire search space is used for exploration. All computation times were measured on an Intel Xeon Gold
6230 CPU @ 2.10GHz.

(a.3) 3!" order interaction(a.2) 2#" order interaction(a.1) 1$% order interaction

Figure 4: Distribution of the fraction of total nodes traversed
against different maximum pattern size (d) constraints while
applying the proposed pruning method during the construc-
tion of the τ -path. (a.1) - (a.3) The results for the first, second
and third order interaction terms.

D4T drug resistance data with the same starting set of top-30
mutations (i.e. m = 30) as used to demonstrate the statisti-
cal power. Although we varied the d from 5 tom, high-order
interaction terms up to the third-order appeared in A. We
compared both the number of nodes traversed (Fig.4) and
the time taken (Table 1) against a different maximum inter-
action order d during the construction of the τ -path of each
test statistic direction. Empirically, pruning was found to be
more effective for the τ -path of high-order interaction terms
compared to that of the singleton terms, and the power of
pruning increases as the order of the interaction increases.

Therefore, we reported the average number of nodes and
average time taken separately for first, second and third or-
der interaction terms. It can be observed that the pruning is
more effective at the deeper nodes of the tree and saturates
after a certain depth of the tree. This is evident as the sparsity
of the data increases at the deeper nodes, and the pruning ex-
ploits the anti-monotonicity of high-order interaction terms
constructed as tree of patterns. In the case of the homotopy
method without pruning, we stopped the execution of the
program if the τ -path was not finished in one day. From Ta-
ble 1, it can be observed that without the tree pruning, the
construction of the τ -path is not practical as we progress
to the deeper nodes of the tree because of the generation
of an exponential number of high-order interaction terms.

The τ -path without pruning took more than a day beyond
d = 7, whereas the maximum time taken by the τ -path with
pruning was approximately 317 s on average, even when no
d constraint was imposed. In Table. 2 we demonstrated the
computational advantage of the proposed homotopy mining
method over exiting method on conditioning on model (Lee
et al. 2016). Here, we considered an active set (A) of size
20. The Lee et al. (2016) method needs to consider the union
of all possible signs in the observed active set (A) in order
to condition on the model. However, our homotopy mining
needs to consider only ∼ 120 polytopes (worst case).

High-order interactions
Homotopy
(# kinks)

Polytope
(# polytopes)

1st 104.15± 10.73 220

2nd 101.0± 4.64 220

3rd 78.33± 24.69 220

Table 2: Comparison of computational efficiencies of
the proposed homotopy method against existing polytope
method. The ”# kinks” represents the average number of
kinks encountered in the τ -path for each test statistic direc-
tion, whereas the ”# polytopes” represents the number of all
possible signs needed to condition on the model.

Conclusions
In this paper, we presented an algorithm for testing a sparse
high-order interaction model (SHIM) using the framework
of conditional selective inference (SI). The algorithm was
developed by effectively combining the homotopy and
branch-and-bound tree mining methods to deal with the
combinatorial computational burden of the SHIM and also
to improve the statistical power.
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