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Abstract

It is often natural in planning to specify conditions that should
be avoided, characterizing dangerous or highly undesirable
behavior. PDDL3 supports this with temporal-logic state tra-
jectory constraints. Here we focus on the simpler case where
the constraint is a non-temporal formula ϕ – the avoid condi-
tion – that must be false throughout the plan. We design tech-
niques tackling such avoid conditions effectively. We show
how to learn from search experience which states necessarily
lead into ϕ, and we show how to tailor abstractions to rec-
ognize that avoiding ϕ will not be possible starting from a
given state. We run a large-scale experiment, comparing our
techniques against compilation methods and against simple
state pruning using ϕ. The results show that our techniques
are often superior.

Introduction
It is often natural in planning to specify conditions that
should be avoided. Work along these lines has so far focused
on temporal-logic formulas that must be true in the state se-
quence induced by the plan. One prominent early approach
used such formulas as control knowledge for effective hand-
tailored planning (Bacchus and Kabanza 2000; Doherty and
Kvarnström 2001). The PDDL3 language (Gerevini et al.
2009) features temporal formulas (among others) in the
role of state trajectory constraints. Work since then has
devised compilations back into classical tasks (Edelkamp
2006; Baier and McIlraith 2006; De Giacomo, De Masel-
lis, and Montali 2014; Torres and Baier 2015; Bonassi et al.
2021), compilations into SAT (Mattmüller and Rintanen
2007), and approaches handling soft-goal plan preferences
effectively (Baier, Bacchus, and McIlraith 2007, 2009).

Here we focus on the special case where the state trajec-
tory constraint is a state formula ϕ that must remain false
in all states along the plan. We refer to such constraints as
avoid conditions. This special case is relevant, for example,
to express dangerous or undesirable situations, such as risky
states in a deterministic approximation of a probabilistic
planning application. While the avoidance of such situations
could in principle be enforced via additional action precon-
ditions, it is typically easier and much more natural to model
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them directly as conditions to avoid. Moreover, avoid condi-
tions can be used as a tool to specify domain-specific control
knowledge, e. g., characterizing states the user knows to be
dead ends. The question then becomes how to make use of
the provided knowledge in the best possible way.

A straightforward way to handle avoid conditions is the
compilation into preconditions. However, this incurs a large
overhead and is, as our experiments illustrate, often not ef-
fective. Our contribution consists in advanced algorithmic
methods. Apart from several compilation techniques, we
adapt prior work in classical planning to design a method
learning from the avoid condition during search, and a
method using abstraction, to predict states starting from
which ϕ can no longer be avoided.

Our learning method is based on traps (Lipovetzky,
Muise, and Geffner 2016). Traps are goal-free sets of states
that, once entered, cannot be left again. Represented com-
pactly, traps yield an effective method to recognize dead-end
states during forward search. By initiating trap refinements
from unrecognized dead ends encountered in search, one can
incrementally extend the representation as a form of nogood
learning (Steinmetz and Hoffmann 2017). We extend the
trap definition to take into account ϕ. We show how these
changes fit into the trap learning approach, and introduce an
adaption of Trapper (Lipovetzky, Muise, and Geffner 2016)
as an alternative trap generation method.

Our abstraction method is a form of state abstraction, a
wide-spread method used to design heuristic functions in
planning (Edelkamp 2001; Helmert et al. 2014; Seipp and
Helmert 2018). Abstract state spaces group concrete states
s into block states A. Observe that, given such an abstract
state space, we know that s ∈ A can be pruned if all paths
from A to a goal block traverse a block A′ that implies ϕ,
i.e., where s′ |= ϕ for all s′ ∈ A′. In other words, given an
abstraction, we can predict that every plan for a state s will
necessarily traverse the avoid condition. The question re-
mains how to tailor abstractions for this purpose. To this end,
we leverage so-called Cartesian abstractions and their asso-
ciated counter-example guided abstraction refinement (CE-
GAR) process (Seipp and Helmert 2013, 2018). We show
how one can testA′⇒ϕ for Cartesian states. We modify the
CEGAR process to incorporate ϕ as an additional source of
counter-examples and, therewith, of refinement steps.

We run experiments on satisficing planning, optimal plan-
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ning, and proving unsolvability, evaluating compilations,
traps, and abstraction. We do so on (1) reformulated stan-
dard benchmarks that incorporate aspects (more) naturally
formulated as avoid conditions; and (2) benchmarks involv-
ing road maps, where we systematically impose avoid con-
ditions of the form “do not use particular combinations of
road segments”. The results show that our new methods can
be superior, in particular for proving unsolvability.

Technical details, including full proofs and detailed
benchmark descriptions, are provided in online ap-
pendix (Steinmetz et al. 2022).

Preliminaries

We consider classical planning tasks in FDR nota-
tion (Bäckström and Nebel 1995; Helmert 2006). An FDR
planning task is a tuple Π = 〈V ,A, I,G〉. V is a set of
variables, each v ∈ V has a finite domain Dv . A fact is a
variable assignment p = 〈v, d〉 for v ∈ V and d ∈ Dv . The
initial state I is a complete assignment to V . The goal G
is a partial assignment to V . For a partial variable assign-
ment P , V(P ) ⊆ V denotes the set of variables v for which
P (v) is defined. For two partial variable assignments P1

and P2, we denote by P1[P2] the update of P1 by P2, i.e.,
P1[P2](v) = P2(v) for v ∈ V(P2), and P1[P2](v) = P1(v)
for v ∈ V(P1) \ V(P2). A is the set of actions. Each ac-
tion a ∈ A has a precondition prea and an effect eff a,
both partial variable assignments, and a non-negative cost
ca ∈ R+

0 . The states S of Π are all complete variable as-
signments. A state sG is called goal state if sG(v) = G(v)
for all v ∈ V(G). An action a is applicable in a state s if
s(v) = prea(v) for all v ∈ V(prea). The application results
in the state sJaK = s[eff a]. These definitions are extended
to sequences of actions in a straightforward manner. A se-
quence of actions π is a plan for s if π is applicable in s and
sJπK is a goal state. An optimal plan is a plan with mini-
mal summed up action cost. s is called a dead end if there
is no plan for s. A plan for Π is a plan for I. Π is called
unsolvable if I is a dead end.

We denote Boolean formulae over facts by φ. We consis-
tently use ψ to denote conjunctions of facts. Ψ and Φ denote
negation-free formulae in disjunctive normal form (DNF).
Partial variable assignments, conjunctions of facts, and sets
of facts are used interchangeably. Ψ and Φ are treated like
sets of conjunctions. We denote by s |= φ that state s satis-
fies φ. By [φ] ⊆ S we denote the set of all states that satisfy
φ. For action a, Progress(φ, a) denotes the progression of
φ by a, and states the condition that holds after applying a
to any s ∈ [φ]. The computation of Progress(φ, a) for gen-
eral φ is shown by Rintanen (2008). For a conjunction ψ,
Progress(ψ, a) = (ψ ∪ prea)[eff a] if ψ(v) = prea(v) for
all v ∈ V(ψ)∩V(prea), and Progress(ψ, a) = ⊥ otherwise.

An avoid condition ϕ is an arbitrary Boolean formula.
A plan a1, . . . , an for Π is called ϕ-compliant if I 6∈ [ϕ],
and it holds for all 1 ≤ i ≤ n that IJa1, . . . , aiK 6∈ [ϕ].
An optimal ϕ-compliant plan is a ϕ-compliant plan with
minimal action cost. We say that a state s is ϕ-unsolvable if
there is no ϕ-compliant plan for s.

Compilations
Compiling avoid conditions into the planning task is
straightforward in principle, but the naı̈ve method is not very
effective. Furthermore, compilations for temporal plan con-
straints are well known and we address a special case here.
Hence, we evaluate three compilation methods in our exper-
iments. They all operate at the PDDL input level.

Conditions Compilation The first compilation ensures
ϕ-compliance by conjoining ¬ϕ to the preconditions of
all actions and the goal. We denote by Π¬ϕ the resulting
FDR planning task. Trivially, the plans of Π¬ϕ are the ϕ-
compliant plans of Π.

LTL Compilation Our second method uses existing
tools for compiling temporal formulas into planning
tasks (Edelkamp 2006; Baier and McIlraith 2006). The com-
pilation proceeds in two steps: 1) building an automaton rep-
resentation of the formula, and 2) encoding this automaton
into the planning task via additional variables and actions.
The LTL formula in our case is G¬ϕ (always not ϕ), which
translates into an automaton with exactly two locations. The
initial location is accepting and has a self-loop conditioned
by ¬ϕ. The other location is not accepting, and is reached
from the initial location if ϕ is satisfied. We denote by ΠLTL

the result of encoding this automaton into Π. ΠLTL enforces
an update of the automaton location in between applications
of actions from Π. The automaton “blocks” as soon as it
leaves its accepting state. Discarding the automaton-related
actions, the plans of ΠLTL are exactly the ϕ-compliant plans
of Π. Moreover, plan optimality is not affected provided that
the newly introduced actions have 0 cost.

Axiom Compilation Our last compilation exploits de-
rived predicates, aka axioms (Hoffmann and Edelkamp
2005). Axioms are defined by rules of the form p ← φp.
The fact p must not be affected by any action, i.e., its truth
value must be exclusively determined by the axioms. In the
simple (non-recursive) form of axioms that we need for our
compilation, p is true in a state iff the state satisfies one of its
associated rule conditions φp. To enforce ¬ϕ with axioms,
we introduce a rule (avoid) ← ϕ, and conjoin ¬(avoid) to
the precondition of every action and to the goal. We denote
by ΠX the resulting FDR task with axioms.

Avoid Prediction
In theory, the compilations induce a blow-up that is polyno-
mial in the original task and ϕ. However, PDDL grounding
typically involves formula normalization, which if not done
carefully can actually result in an exponential overhead de-
pending on ϕ. We now turn to our advanced techniques that
handle ϕ without the detour via compilation. The base algo-
rithm is forward search on Π. ϕ-compliance is assured by
pruning all states that satisfy ϕ. We enhance this basic prun-
ing condition by ϕ-predictors, functions u : S 7→ {0,∞}
that may identify ϕ-unsolvable states, u(s) = ∞, where ϕ
is not satisfied directly. Provided that u(s) =∞ indeed only
holds if s is ϕ-unsolvable, these states can be pruned in addi-
tion without affecting the search’s completeness (returning a
ϕ-compliant plan if one exists) and optimality (returning an
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optimal ϕ-compliant plan) properties. In what follows, we
devise two such predictors u from well-known techniques.

Avoid-Prediction via Traps
There is an obvious methodological relation between ϕ-
prediction and dead-end detection. Both methods attempt to
prove the absence of goal-leading paths. Yet, while the lat-
ter requires universal absence, the former makes exceptions
according to ϕ. This section shows how to incorporate this
exception into traps (Lipovetzky, Muise, and Geffner 2016).

Background: Traps
A trap is a set of states T ⊂ S that (T1) does not contain
goal states, and (T2) is closed under transitions. The condi-
tions guarantee that all states in T are dead ends. Lipovet-
zky, Muise, and Geffner (2016) considered DNF formu-
lae Ψ, for which T = [Ψ] satisfies (T1) and (T2) iff it
holds for every ψ ∈ Ψ that (t1) ψ ∧ G⇒⊥, i.e., ψ and
G disagree on some variable; and (t2) for every action a,
Progress(ψ, a)⇒Ψ, i.e., ψ′ ⊆ Progress(ψ, a) for some
ψ′ ∈ Ψ or else Progress(ψ, a) = ⊥. Trapper uses these
syntactic conditions to build Ψ from conjunctions of a fixed
size k, called k-trap. Algorithm 1 sketches the procedure,
which, starting from all size-k conjunctions, iteratively re-
moves conjunctions from Ψ until (t1) and (t2) are satisfied.

Algorithm 1: k-trap computation. Adaptions to ϕ-
traps are highlighted in bold.

1 Ψ← {ψ | |ψ| = k} ∪Φ

2 foreach ψ ∈ Ψ s.t. ψ ∧ G 6⇒⊥
ψ ∧ G 6⇒Φ

do Ψ← Ψ\{ψ}

3 while there are ψ ∈ Ψ and a ∈ A s.t.
Progress(ψ, a) 6⇒Ψ and ψ ∧ prea 6⇒Φ do

4 Ψ← Ψ \ {ψ}

k-traps are limited in practice to small k. Steinmetz and
Hoffmann (2017) presented a method to construct Ψ without
bounding conjunction size. They interleave search’s explo-
ration with Ψ refinements. Search starts with the empty trap,
Ψ := ⊥, and terminates as soon as a goal state is found.
Ψ is updated by learning from dead ends Ŝ that were ex-
plored in search. Such Ŝ is identified whenever all non-Ŝ
successors of the states in Ŝ were pruned due to Ψ. The re-
finement computes a new trap Ψ̂ := Ψ ∨

∨
s∈Ŝ ψs, where

ψs ⊆ s for every s ∈ Ŝ. This is possible because, as per
the identification of Ŝ, Ψ̂ is a trap if ψs = s. Every state
newly represented by Ψ̂ besides those in Ŝ can lead to ad-
ditional pruning in the remainder of the search. To achieve
this generalization, Steinmetz and Hoffmann use the greedy
procedure sketched in Algorithm 2, which adds facts from s
to ψs only as necessary to prevent the violation of (t1) (lines
1 – 3) and (t2) (lines 4 – 5).

Tailoring To Avoid Condition
We call a set of states T ⊆ S a ϕ-trap if (Tϕ1) every goal
state in T satisfies ϕ, and (Tϕ2) every transition that leaves

Algorithm 2: Computation of ψs for the trap update
Ψ̂ as discussed in the text. Adaptions to ϕ in bold.

1 foreach s ∈ Ŝ do
2 select v ∈ V(G) s.t. s(v) 6= G(v)
3 ψs ← 〈v, s(v)〉
4 while there are s ∈ Ŝ and a ∈ A s.t.

Progress(ψs, a) 6⇒ Ψ̂ and ψs ∧ prea 6⇒Φ do
5 ψs ← ψs ∧ 〈v, s(v)〉 for some v 6∈ V(ψs)

T either originates in a state that satisfies ϕ, or goes into
one that does. Every state that satisfies ϕ is ϕ-unsolvable by
definition. (Tϕ2) additionally ensures that leaving T is pos-
sible only by making ϕ true. In summary, it is not possible
to reach the goal from any state in T without satisfying ϕ:

Theorem 1. If T is a ϕ-trap, then every state in T is ϕ-
unsolvable.

To operationalize on this notion, we extend the construc-
tion methods from above. This is possible, in principle, be-
cause deciding whether [Ψ] satisfies (Tϕ1) and (Tϕ2) can
still be decomposed into individual conditions on each ψ:

Theorem 2. Let Ψ be a DNF formula over facts without
negation. [Ψ] is a ϕ-trap if it holds for all ψ ∈ Ψ that
(tϕ1) (ψ ∧ G)⇒ϕ, and (tϕ2) it holds for all a ∈ A that
Progress(ψ ∧ ¬ϕ, a)⇒(Ψ ∨ ϕ).

The proof is straightforward and provided in the ap-
pendix. Unfortunately, the appearance of ϕ significantly in-
creases the complexity of verifying the conditions. Both
conditions involve deciding propositional formula tautology,
which without assumptions on ϕ is coNP-complete.

Testing (tϕ1) and (tϕ2) could be cast into appropriate calls
to an off-the-shelf SAT solver. This is however bound to gen-
erate a large overhead, given the overall number of such tests
required. Instead, we reformulate (tϕ1) and (tϕ2) into simple
trap membership tests. Consider the DNF transformation Φ
of ϕ. Plugging Φ into (tϕ1) gives (ψ ∧ G)⇒Φ, which boils
down to finding a member ψ′ ∈ Φ with ψ′ ⊆ (ψ ∪ G), as
above. To reformulate (tϕ2), we split it into two cases: ϕ
must be true before or it must be true after the application
of a. Formally, (tϕ2a) Progress(ψ, a)⇒(Ψ ∨ ϕ) or (tϕ2b)
(ψ ∧ prea)⇒ϕ. (tϕ2a) is clearly a sufficient condition of
(tϕ2). Moreover, if (tϕ2b) is satisfied, then Progress(ψ ∧
¬ϕ, a) = ⊥, i. e., (tϕ2) is also satisfied. By replacing ϕ by
Φ, both conditions can again be verified via trap membership
tests. We need to insert two remarks. (tϕ2a) and (tϕ2b) are
sufficient but not necessary, as removing ¬ϕ entirely from
the progression comes with a loss of information about a’s
application context that can be necessary to conclude (tϕ2).
Secondly, the DNF transformation may come at the cost of
an exponential blow-up in formula size.

Nevertheless, the Φ approach offers another advantage:
it straightforwardly integrates into the trap construction
methods from before. The bold parts in Algorithm 1
and 2 show the necessary changes. In both methods, we
make sure that Φ is included in Ψ at all times. This is
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possible because [Φ] itself trivially constitutes a ϕ-trap.
Since Progress(ψ, a)⇒(Ψ∨Φ) then becomes equivalent to
Progress(ψ, a)⇒Ψ, (tϕ2a) is readily handled by both al-
gorithms. (tϕ2b) maps into additional loop conditions. (tϕ1)
replaces (t1) in the k-trap construction procedure. This is not
necessary in Algorithm 2, because Ŝ can never contain goal
states, i. e., the initialization of ψs can be done as before.
Consider the adapted Algorithm 1. (tϕ1) and (tϕ2) will be
satisfied upon termination. Given Theorem 2, hence
Theorem 3. If Ψ is is a k-ϕ-trap, then [Ψ] is a ϕ-trap.

Algorithm 2 also guarantees that (tϕ1) and (tϕ2) hold
upon termination. Yet, termination here is guaranteed only
for Ŝ such that ([Ψ] ∪ Ŝ) remains a ϕ-trap. That this is al-
ways the case can be shown via the exact same arguments as
already given by Steinmetz and Hoffmann (2017).
Theorem 4. Every refinement of the ϕ-trap learning proce-
dure terminates with a ϕ-trap Ψ̂.

Abstraction for Avoid-Prediction
We recall Cartesian abstractions and show how to tailor them
to the identification of ϕ-unsolvable states.

Background: Cartesian Abstractions
An abstraction for Π is an equivalence relation ∼ between
the states S . The abstract states S∼ of ∼ are given by its
equivalence classes. For state s, we denote by [s]∼ the equiv-
alence class that contains s, and omit∼ if it is clear from the
context. The abstract state space associated with ∼ is the
transition system Θ∼ = 〈S∼, T ∼, s∼I ,S∼G 〉 with abstract
initial state s∼I = [I] and abstract goal states S∼G = {[s] |
s ∈ S,G ⊆ s}. The abstract transitions are given by
T ∼ = {〈[s], a, [sJaK]〉 | s ∈ S, a ∈ A applicable in s}.

Let the variables of Π be V = {v1, . . . , vN}. Carte-
sian abstractions (Seipp and Helmert 2018) are abstractions
whose abstract states are of the form A1 × A2 × · · · × AN ,
where Ai ⊆ Dvi

for all i.
This structure makes Cartesian abstractions particularly

suitable for a counter-example guided abstraction re-
finement loop (CEGAR): The construction starts with the
trivial abstraction that contains just a single abstract state.
One then iteratively splits an abstract state into two un-
til the abstraction provides enough information, or some
size limit is reached. Each refinement step starts with
the extraction of an abstract solution, i.e., an abstract
path [s0], a1, [s1], . . . , an, [sn] from the abstract initial state
[s0] = s∼I to some abstract goal state [sn] ∈ S∼G . If no
such path exists, then Π must be unsolvable, and the re-
finement terminates. Otherwise, the corresponding concrete
path s0, a1, s1, a2, . . . is computed by applying the actions
successively, starting from s0 = I. The computation is
stopped when one of the following conditions is satisfied:

(C1) Action ai is not applicable in si−1.

(C2) Concrete and abstract state do not match: [si] 6= [si].
(C3) sn does not satisfy the goal.

If not stopped, we have found a plan for Π and the refine-
ment terminates. Otherwise, the violated condition is used to

split an abstract state, guaranteeing that the same error can-
not occur in future iterations (] denotes disjoint set union):
(C1) [si−1] is split into [t1] ] [t2] such that si−1 ∈ [t2] and

[t2] has no abstract transition via ai.
(C2) [si−1] is split into [t1] ] [t2] such that si−1 ∈ [t2] and

[t2] no longer has an abstract transition to [si] via ai.
(C3) [sn] is split into [t1] ] [t2] such that sn ∈ [t2] and [t2]

is no longer an abstract goal state.
The selection of [t1] and [t2] is done via simple syntactic

checks. During the entire construction, a full representation
of the abstract state space is maintained. After each split,
this representation is updated by “rewiring” transitions to
[t1] and [t2]. For full details, we refer to the work by Seipp
and Helmert (2018). Once the abstract state space has been
updated, a new abstract solution is extracted, and the whole
process starts anew.

Tailoring to Avoid Conditions
An abstract state [s] implies ϕ, written [s] ⇒ ϕ, if s′ |=
ϕ holds for all represented concrete states s′ ∈ [s]. Since
the abstract state space is path-preserving, its analysis with
respect to this property yields information for ϕ-prediction:
Theorem 5. Let [t] be any abstract state. If every path from
[t] to any abstract goal state visits some [s] s.t. [s]⇒ϕ, then
every state represented by [t] is ϕ-unsolvable.

Intuitively, the ϕ-unsolvable abstract states are exactly the
abstract dead ends after pruning all [s]⇒ϕ. We next show
how to use this observation in Cartesian abstractions.

Implication Test Unfortunately, deciding whether [s]⇒ϕ
for Cartesian abstractions is coNP-hard in general. Suppose
all variables are Boolean. Then, for the full Cartesian prod-
uct [s] = {>,⊥}N , [s]⇒ϕ holds exactly if ϕ is a tautology,
deciding which is known to be coNP-complete. Yet despite
the worst-case complexity, the implication check was usu-
ally not the bottleneck in our experiments. Our implemen-
tation runs a simple backtracking search for a state t ∈ [s]
such that t |= ¬ϕ, as depicted in Algorithm 3. We assume a
positive DNF representation Φ of ϕ. This allows us to easily
identify situations where branching is not required (line 3).

Algorithm 3: Contains(i,Φ): Tests whether ∃t ∈
[s] = A1 × · · · × AN s.t. t |= ¬Φ. Initially, i = 0.

1 if Φ = ∅ then return true
2 if i = N + 1 then return false
3 if ∃di ∈ Ai: 〈vi, di〉 6∈ ψ for all ψ ∈ Φ then
4 return Contains(i+ 1, {ψ ∈ Φ | vi 6∈ V(ψ)})
5 else
6 foreach di ∈ Ai do
7 if Contains(i+ 1, {ψ ∈ Φ | vi 6∈ V(ψ),

or ψ(vi) = di} then return true
8 return false

CEGAR We propose two CEGAR variants that incorpo-
rate ϕ. Abstract goal paths are generally restricted such that
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[si] 6⇒ϕ holds at all times. If such a path does not exist, then
I must be ϕ-unsolvable, and we can terminate. Otherwise
the refinement proceeds as follows.

Integrated: The first variant introduces an additional error
condition into the original analysis procedure:

(C4) The concrete state si satisfies ϕ.

Assume (C4) is satisfied. Since [si] 6⇒ϕ by assumption,
[si] must hence contain states that satisfy ϕ as well as ones
that do not. We split [si] such that [si]⇒ϕ holds after the
refinement. In line with the previous error conditions, this
is sufficient to ensure that the same concrete path cannot be
subject to any future refinement iteration.

Concretely, [si] is split into abstract states [t1]] · · · ] [tk]
such that [tk]⇒ϕ, and si ∈ [tk]. Contrary to the original
error conditions, a split into exactly two abstract states (k =
2) is not possible in general. To illustrate this, let x and y be
two binary variables, and ϕ = (x = 1∧y = 1), and consider
the abstract state [si] = ({0, 1}×{0, 1}). [tk]⇒ ϕ can only
be satisfied for [tk] = ({1}×{1}). However, every possible
split of [si] into this [tk] requires k ≥ 3 abstract states.

We use the following procedure to find [t1]]· · ·] [tk]. We
start with [t] = [si] and j = 1. We continue to split [t] into
abstract states [tj ] and [t′] with si ∈ [t′] until [t]⇒ϕ is sat-
isfied. [t′] replaces [t] in the next round, j + 1. Let v be any
variable whose value set A in [t] is not a singleton. Such a
variable must exist. Otherwise [t] = {si}, therefore [t]⇒ϕ
as per assumption (C4), and we would have terminated the
refinement already. Given such v, [t] is split by dividing A
into (A \ {si(v)}) and {si(v)} respectively. This method
guarantees that [t] will eventually only contain si. Termi-
nation with the desired result hence follows. Since we kept
splitting abstract states into pairs, the abstract state space can
be updated via the same efficient methods as before.

Detached: To prioritize refinements based on ϕ, our sec-
ond CEGAR variant checks, prior to the original analysis
steps, whether any abstract state [si] along the considered
abstract goal path contains a concrete state s |= ϕ. If so,
then [si] is split following the procedure just described. Af-
terwards, we directly proceed to the next refinement itera-
tion, skipping the original conditions altogether. Since the
ϕ error condition is tested here before constructing the con-
crete path, the state s ∈ [si] with s |= ϕ must be searched
actively. This is computationally more expensive than the
simple check in (C4). To find s, we follow a backtracking
search similar to the one shown in Algorithm 3.

We close this section with the remark that the original
conditions (C1) – (C3) still play a central role for identifying
ϕ-unsolvable states. Consider the example in Figure 1. As
the (spurious) path [s0], a3, [s1] shows, paths in the abstrac-
tion can simply bypass ϕ even if the concrete paths cannot.
Note that this abstract path violates (C1). The correspond-
ing refinement will split [s0] by dividing the values of x into
{0} and {1}. After the refinement, every abstract goal path
from [s0] needs to go through [s2]. Hence, since [s2]⇒ϕ,
via the refinement due to (C1), the abstraction becomes able
to prove that no ϕ-compliant plan exists.

[s0]: {0, 1}×{0}×{0} [s1]: {0, 1}×{0}×{1}

[s2]: {0, 1}×{1}×{0} [s3]: {0, 1}×{1}×{1}

a3

a1

a3

a1

Figure 1: Example abstract state space. The planning task
consists of binary variables x, y, z, initially all 0, goal
z=1, and three actions with pre/eff : (a1) y=0/y=1; (a2)
y=1/x=1; and (a3) x=1/z=1. The abstract states are de-
picted in terms of Ax × Ay × Az . The avoid condition is
ϕ = (y=1). Abstract states that imply ϕ have dashed bor-
ders. Goal states have double borders.

Experiments
We implemented all described methods in Fast Downward
(FD) (Helmert 2006). The avoid condition is specified as an
additional input file in the full PDDL condition syntax. The
compilations and DNF transformations are implemented as
part of FD’s translator component. Source code and bench-
marks are available online1. The experiments were run on
machines with Intel Xeon E5-2660 @ 2.20GHz CPUs, and
30 minutes time and 4 GB memory cutoffs.

We conducted experiments in optimal and satisficing
planning, as well as proving unsolvability. For each cate-
gory, we chose a canonical base planner configuration: op-
timal planning via A∗ search with LM-cut (Helmert and
Domshlak 2009); satisficing planning via greedy best-first
search with two open lists and preferred operators using
hFF (Hoffmann and Nebel 2001); and proving unsolvability
via depth-first search with hmax (Haslum and Geffner 2000)
for dead-end detection. We extended these base configura-
tions by the following ϕ-predictors: “prune-ϕ” no predic-
tion, only prune by ϕ; “k-trap” k-ϕ-traps; “Ŝ-trap” ϕ-trap
learning; “aOri” Cartesian abstraction constructed via the
original CEGAR approach; “aInt” our integrated CEGAR
variant; respectively “aDet” the detached variant. For the
k-ϕ-traps, we experimented with k ∈ {2, 3, 4, 5}. To termi-
nate CEGAR, we enforced an upper limit N on the number
of abstract states,N ∈ {25k, 50k, 100k, 150k, 200k, 300k}.
In addition, we ran a ϕ-trap learning variant “Ŝ-k-trap” that
uses the k-ϕ-trap with k = 2 as kick-start. For the compila-
tions Π¬ϕ and ΠLTL, we also considered traps and Cartesian
abstractions for pruning dead-ends (not for ΠX as neither of
them supports axioms).

Benchmark Design
Benchmarks with avoid conditions already appeared in IPC
2006 (Dimopoulos et al. 2006), encoded via state trajectory
constraints. But hard constraints appeared only in bench-
marks of the temporal track, which makes them unsuited
for our experiments. Instead we created a new benchmark
set, including solvable as well as unsolvable instances. By
synthetically increasing the impact of ϕ, the unsolvable part
pinpoints and evaluates the capabilities of the different pre-
diction methods to generalize from ϕ. We design two cate-

1https://doi.org/10.5281/zenodo.6338021
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COVERAGE SEARCH REDUCTION FACTORS
Compil.

pr
un

e-
ϕ ϕ-Prediction ϕ-Prediction vs. prune-ϕ

¬
ϕ

LT
L

X k-trap Ŝ-trap aOri aInt aDet Ŝ-k-trap aOri aInt
Domain # 2 3 k2 25k 100k 25k 100k 25k 100k k=2 100k 100k

Satisficing
CaveDiving-REDONE 20 0 7 7 7 7 7 6 6 7 7 7 7 0 0 1.4 1.5 1.6 3.1 1.0 1.1
Fridge-REDONE 24 1 6 20 21 21 11 21 21 21 21 21 21 13 11 1 1 1 1 1 1
Miconic-REDONE 178 0 25 20 117 117 117 120 120 117 117 111 111 72 67 2.5 415 1 1 1.3 145
Nurikabe-REDONE 20 0 2 12 11 11 8 11 11 9 9 7 6 4 0 2.1 86.1 1 1 1.0 1.1
Openstacks-REDONE 60 0 4 12 13 13 13 13 13 13 13 13 13 8 7 1 1 1 1 1 1
Trucks-REDONE 30 0 7 8 18 18 18 18 18 18 18 18 18 15 15 1.2 1.7 1.1 2.2 1.0 1.2
Driverlog-ROAD 21 8 4 9 11 11 11 11 11 11 11 11 11 6 5 1.0 1.3 1 1 1.0 1.0
Rovers-ROAD 64 4 2 7 12 14 17 12 14 12 12 12 12 12 12 3.8 310.3 1 1 1.4 75.0
TPP-ROAD 40 4 4 8 9 9 7 10 10 9 8 10 9 9 8 2.4 258.2 1 1 1.3 9.9
Transport-ROAD 116 26 32 49 52 58 64 47 55 50 50 52 52 23 14 3.5 76.0K 1 1 1.3 6.2∑

573 43 93 152 271 279 273 269 279 267 266 262 260 162 139 2.2 76.0K 1.0 3.1 1.2 145
Optimal

CaveDiving-REDONE 20 0 7 7 7 7 7 7 7 7 7 7 0 0 1.0 1.0 1.3 2.0 1.0 1.0
Fridge-REDONE 24 1 6 10 10 10 10 10 10 10 10 10 2 2 1 1 1 1 1.0 1.0
Miconic-REDONE 178 0 25 68 68 68 70 70 62 61 62 62 28 23 1.9 415 1 1 1.3 145
Nurikabe-REDONE 20 0 2 10 10 8 10 10 9 9 7 6 3 0 1.4 2.1 1 1 1.0 1.3
Openstacks-REDONE 60 0 4 25 25 25 25 25 25 24 25 25 20 19 1 1 1 1 1 1
Trucks-REDONE 30 0 10 11 11 11 11 11 11 11 11 11 8 8 1.1 1.2 1.0 1.1 1.0 1.1
Driverlog-ROAD 21 7 12 13 13 13 13 13 13 13 13 13 8 7 1.1 1.5 1 1 1.0 1.0
Rovers-ROAD 64 3 3 3 3 3 3 3 3 3 3 3 3 3 1.5 2.5 1 1 1.2 1.4
TPP-ROAD 40 0 0 0 0 0 0 0 0 0 0 0 0 0
Transport-ROAD 116 23 41 45 49 49 45 49 45 45 46 46 16 7 2.0 1.4K 1 1 1.2 3.2∑

573 34 110 192 196 194 194 198 185 183 184 183 88 69 1.5 1.4K 1.0 2.0 1.2 145
Unsolvability

CaveDiving-REDONE 20 0 4 7 7 20 16 7 20 7 7 7 7 16 16 17.4K 29.5K 1.1 1.2 17.4K 29.5K
Miconic-REDONE 28 0 0 0 18 19 18 16 16 18 18 16 16 16 16 10.0 15.4 1 1 15.0 46.6K
Driverlog-ROAD 22 8 4 8 8 9 12 5 8 8 8 8 8 8 8 0.45M 36.4M 1 1 52.2K 36.4M
Rovers-ROAD 64 0 0 0 0 16 22 14 21 0 0 2 2 1 1
TPP-ROAD 40 4 0 4 4 8 8 6 10 4 4 5 5 4 4 3.2K 0.45M 1 1 0.10M 0.45M
Transport-ROAD 116 25 32 46 46 53 61 59 64 46 45 48 46 55 56 65.7 28.7M 1 1 35.0 46.8K∑

290 37 40 65 83 125 137 107 139 83 82 86 84 100 101 215.9 36.4M 1.0 1.2 154.4 36.4M

Table 1: Left half: coverage results, best in bold. Results for the compilations are shown for the base configurations only. The
configuration names are described in the text. Right half: ratio of states visited by prune-ϕ versus states visited with a ϕ-
predictor on top (K for thousand, M for million). Larger values indicate more pruning. For each method per-domain geometric
mean (left) and maximum values (right) are shown. Values between different configurations are not directly comparable.

gories of benchmarks.

REDONE. Several well-known benchmarks feature avoid
conditions, not modeled explicitly but instead encoded
into complex precondition and/or effect-condition formu-
las. We have identified 6 such domains, and manually
separated the avoid condition from the actions descrip-
tions in an equivalence-preserving manner. In summary, we
use CaveDiving (IPC14), hiring a diver may preclude hir-
ing other divers; Fridge, constraints on fridge components;
Miconic, elevator moves are restricted by constraints on
boarded passengers of numerous kinds; Nurikabe (IPC18),
illegal groupings of board cells; Openstacks (IPC08), pro-
duction and delivery must follow a particular order; Trucks
(IPC06), relationship between the occupancy of and legal
accesses to truck storage areas. An explicit avoid condition
is a natural model for all of these, and partly actually more
natural than the original PDDL. Additionally to the exist-

ing (solvable) instances, we created unsolvable instances for
CaveDiving by introducing a cycle in the divers’ preclude re-
lationships2; and solvable and unsolvable Miconic instances
in which passengers must be served one at a time to not
eventually violate ϕ. In the remaining domains, creating in-
stances unsolvable due to ϕ is either difficult (Nurikabe), or
not possible at all (Fridge, Openstacks, Trucks).

ROAD. Our second category encompasses a set of con-
trolled benchmarks, in which the avoid condition is
generated in a systematic fashion. We adapted stan-
dard transportation-like benchmarks without dead ends:
Driverlog, Rovers, TPP, and Transport. We add avoid con-
ditions that forbid the usage of certain combinations of con-

2The CaveDiving instances of the UIPC instead make restric-
tions to the available resources. Diver preclude relationships are
not used at all.
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nections in the road-map graphs. The avoid conditions are
computed individually per base instance. The computation
is parameterized in the size n of combinations to be added
to ϕ. Given a base instance, ϕ is built by: 1) computing
a ϕ-compliant plan (for the current ϕ), and 2) extending
ϕ by a random selection of n connections from this plan.
This is repeated until no ϕ-compliant plan is left. The re-
sult is added to the unsolvable part. To obtain a solvable
instance, we drop the last entry of ϕ, skipping an instance
if this would make the condition empty. The ϕ-compliant
plans were computed by domain-specific solvers. We con-
sidered n = 2 and n = 3, and aborted the generation of
the conditions for an instance after 10 minutes. Note that the
avoid conditions here are DNF formulas.

Results for Compilations
Consider Table 1. For the compilations, the results in the dif-
ferent categories (satisficing, optimal, and unsolvability) are
qualitatively similar. Using additional dead-end detectors on
top of the compilations turned out to be detrimental in all
cases, so we omit these results.

Both Π¬ϕ and ΠLTL cause a significant overhead in
grounding for almost all domains. This was to be expected
for the ROAD part, as grounding in both compilations re-
quires the conversion of the CNF ¬ϕ back into DNF, which
with the standard FD translator method is exponential in the
size of ϕ. That said, the results are not much better on the
REDONE benchmarks either. This is because, after the elim-
ination of existential quantifiers, the avoid conditions there
turn into big disjunctions too. The results for Π¬ϕ are signif-
icantly worse than for ΠLTL because the former needs to do
the DNF conversion for every action, while the automaton
construction in ΠLTL requires this only once.

The axiom compilation ΠX was designed to avoid these
problems (ΠX is missing in the optimal part since axioms
are not supported by the optimal planner configuration).
Grounding was indeed much less of an issue, with the ex-
ception of Miconic, whose complex avoid condition caused
problems to FD’s axiom normalization. Nevertheless, plan-
ning performance does not benefit from having the avoid
condition encoded directly in the model. ΠX is dominated
almost universally by prune-ϕ.

Results for ϕ-Prediction
For the ϕ-prediction methods, Table 1 also shows search
space size reduction statistics. For space reasons, we in-
cluded a subset of the configurations only. Additional de-
tails are available in the appendix. The k-trap construction
for k ≥ 4 was often too expensive, causing a significant
drop in performance in all domains but Transport. Differ-
ences between the abstraction configurations for N ≥ 150k
diminishes, as the refinements for 150k already exceeded the
resource limits in many cases.

The results in the optimal and satisficing parts are simi-
lar. However, differences between the ϕ-predictors tend to
be larger in the satisficing part, where the base planner con-
figuration is able to solve more instances. In general, the im-
pact of ϕ-prediction varies between the different domains. It
turns out that Fridge, Openstacks, and Trucks actually do not

contain ϕ-unsolvable states besides ones that already satisfy
ϕ. In these domains, ϕ-prediction becomes pointless, while
still adding an overhead. Search could be reduced in Trucks
due to dead ends, which can be identified by the ϕ-predictors
as a byproduct. Overall, the performance of the ϕ-prediction
configurations was worse than the baseline prune-ϕ only if
too many resources were dedicated to the ϕ-predictor con-
struction. In particular, the smallest k-trap configuration per-
formed as well, or better than prune-ϕ in all domains. Of
the remaining three REDONE domains, ϕ-prediction could
increase coverage in just Miconic, yet search reduction can
be observed in all three. By design, reasoning over ϕ is cen-
tral in the ROAD benchmarks and in the unsolvability part.
Here, ϕ-prediction turned out advantageous throughout, and
improvements over the prune-ϕ configuration were largest.

aDet performs significantly worse than the other two ab-
straction variants in the solvable part, but has an edge for
proving unsolvability. aDet is more prone to generating un-
reachable abstract states, which resulted in longer abstrac-
tion construction times. Moreover, in the solvable part, aOri
and aInt sometimes found concrete solutions, and therefore
could terminate the refinement before the state limit was
reached (the former more so than the latter, the former not
checking ϕ-compliance for the refinements). This did not
happen in aDet at all. Vice versa, aDet was slightly better
in proving the initial state ϕ-unsolvable, causing early ter-
mination there. Taking into account ϕ for the refinement has
proved necessary for ϕ-prediction. aOri could identify addi-
tional ϕ-unsolvable states in (almost) no domain, while aInt
achieved notable search reduction in all domains, with the
aforementioned exceptions. The ϕ implication checks can
slow down the abstraction construction though. This was a
particular issue in Miconic and Nurikabe.

In the solvable part, the impact of Ŝ-trap was limited,
only few sets Ŝ could be identified to start trap learning.
k-trap was able to identify additional ϕ-unsolvable states al-
most throughout. Both construction methods showed differ-
ent strengths in different domains. This has been exploited
effectively by Ŝ-k-trap, even surpassing the performance of
the individual methods in some domains. Compared to the
abstractions, the trap configurations offered a better trade-
off between ϕ-prediction and overhead.

Conclusion
State trajectory constraints are a natural modeling construct
in planning, and have so far been considered mostly in tem-
poral form. Here we consider the non-temporal special case
of avoid conditions ϕ that must be false throughout the plan.
We have designed methods predicting states unsolvable due
to ϕ, and our experiments show that they can pay off.

While our benchmarks are mostly designed having in
mind a human modeler who specifies the avoid condition, an
interesting avenue for future research is to instead leverage
this modeling construct to connect to offline domain anal-
yses. Under-approximations of unsafe or dangerous regions
of states naturally form avoid conditions. It may then make
sense to consider non-deterministic or probabilistic plan-
ning, and to directly handle BDD representations of ϕ.
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