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Abstract

Column Generation (CG) is an effective method for solving
large-scale optimization problems. CG starts by solving a sub-
problem with a subset of columns (i.e., variables) and gradu-
ally includes new columns that can improve the solution of the
current subproblem. The new columns are generated as needed
by repeatedly solving a pricing problem, which is often NP-
hard and is a bottleneck of the CG approach. To tackle this, we
propose a Machine-Learning-based Pricing Heuristic (MLPH)
that can generate many high-quality columns efficiently. In
each iteration of CG, our MLPH leverages an ML model to
predict the optimal solution of the pricing problem, which is
then used to guide a sampling method to efficiently generate
multiple high-quality columns. Using the graph coloring prob-
lem, we empirically show that MLPH significantly enhances
CG as compared to six state-of-the-art methods, and the im-
provement in CG can lead to substantially better performance
of the branch-and-price exact method.

Introduction
Branch-and-price is a widely-used exact method for solving
combinatorial optimization problems (Barnhart et al. 1998)
in the general form of Dantzig–Wolfe reformulation (Vander-
beck 2000). This formulation often provides a much stronger
Linear-Programming relaxation (LP) bound than the more
compact formulations of the same problem, which may lead
to a significant reduction in the problem’s search space. How-
ever, solving the LP can be challenging, because it typically
has an exponential number of variables (or columns) that
cannot be considered all at once.

Column Generation (CG) is an iterative method for solving
large-scale LPs. As illustrated in Figure 1, CG starts by solv-
ing a subproblem with a small fraction of the columns in an
LP, commonly referred to as the Restricted Master Problem
(RMP). Then, the optimal dual solution of the RMP is used
to set up a pricing problem to search for the column with the
least reduced cost. If that column has a negative reduced cost,
the column is included in the RMP to further improve its
solution. Otherwise, the RMP has captured all the columns
with non-zero values in the optimal solution of the original
LP. Since an optimal LP solution typically has only a small
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Figure 1: Illustration of column generation.

proportion of columns with non-zero values, CG is expected
to solve the LP to optimality without the need to explicitly
consider all the columns (Lübbecke 2010).

In the CG approach, repeatedly solving the pricing prob-
lem is typically a bottleneck (Lübbecke and Desrosiers 2005),
because the pricing problem is often NP-hard. To attain com-
putational advantage, heuristic methods are often preferred to
trade column quality for computational efficiency. An exact
method is usually used only if a heuristic method failed to
generate any column with a negative reduced cost (Lübbecke
2010). Existing studies have explored a variety of pricing
heuristics, such as greedy search (Mehrotra and Trick 1996;
Mourgaya and Vanderbeck 2007) and metaheuristics (Taillard
1999; Malaguti, Monaci, and Toth 2011; Beheshti and Hejazi
2015). Based on past computational experience, Lübbecke
(2010) notes that including multiple columns to the RMP at
an iteration of CG can often speed up the progress of CG.

In this paper, we propose a novel Machine-Learning-based
Pricing Heuristic (MLPH) for efficiently solving pricing prob-
lems. Specifically, we train an ML model offline using a set
of solved pricing problems with known optimal solutions.
For an unseen pricing problem at an iteration of CG, we use
this ML model to predict the optimal solution of the pricing
problem, which is then used to guide the search method to
generate high-quality columns. To gain efficiency, we em-
ploy a linear Support Vector Machine (Boser, Guyon, and
Vapnik 1992) for prediction and a sampling method for gener-
ating columns. As our method can potentially generate many
columns, we introduce several column-selection strategies to
form the new RMP to start the next iteration of CG.

By harnessing the knowledge learned from historical data,
our MLPH has several advantages over existing pricing meth-
ods: (1) compared to sampling-based methods (Dorigo, Bi-
rattari, and Stützle 2006; Cai and Lin 2016), MLPH can
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effectively generate columns with better reduced costs; (2)
compared to other pricing methods (Jiang et al. 2018; Wang,
Cai, and Yin 2016), MLPH can efficiently generate many
more columns with negative reduced costs. As our MLPH
can efficiently generate many high-quality columns, it can
help CG capture the columns in an optimal LP solution with
a fewer number of iterations.

We demonstrate the efficacy of our proposed MLPH on the
graph coloring problem. Our experimental study shows that
MLPH can significantly accelerate the progress of CG and
substantially enhance the branch-and-price exact method.

Background
In this section, we first introduce different formulations of
the Graph Coloring Problem (GCP). Then, we use GCP to
illustrate the solving process of CG.

Graph Coloring Problem
GCP aims to assign a minimum number of colors to ver-
tices in a graph, such that every pair of the adjacent vertices
does not share the same color (Malaguti and Toth 2010). Let
G(V, E) denote a graph, where V is the set of vertices and E
is the set of edges. GCP can be formulated as:

min
x,z

∑
c∈C

zc, (GCP-compact) (1)

s.t.
∑
c∈C

xi,c = 1, i ∈ V , (2)

xi,c + xj,c ≤ zc, (i, j) ∈ E ; c ∈ C, (3)
xi,c ∈ {0, 1}, i ∈ V ; c ∈ C, (4)
zc ∈ {0, 1}, c ∈ C. (5)

The binary variable zc denotes whether a color c ∈ C is
used to color the graph vertices; and xi,c denotes whether
a certain color c is used to color the vertex indexed at i.
Since this formulation has a polynomial number of variables
and constraints, it is commonly referred to as the compact
formulation of the GCP, i.e., GCP-compact.

Given that vertices with the same color must be part of
an independent set, GCP-compact can be expressed as using
a minimum number of Maximal Independent Sets (MISs)
to cover all the vertices in a graph such that every vertex
is covered at least once (Mehrotra and Trick 1996), which
can be done systematically using Dantzig–Wolfe decomposi-
tion (Vanderbeck 2000; Vanderbeck and Savelsbergh 2006).
The reformulated problem is commonly referred to as the Set
Covering formulation of the GCP (GCP-SC), defined as:

min
x

∑
s∈S

xs, (GCP-SC) (6)

s.t.
∑

s∈S,i∈s
xs ≥ 1, i ∈ V , (7)

xs ∈ {0, 1}, s ∈ S. (8)

The binary variable xs indicates whether a MIS s is used to
cover a graph, and S is the set of all the possible MISs in
that graph. While GCP-SC provides a much stronger LP than

GCP-compact (Mehrotra and Trick 1996), it can contain an
exponential number of variables (or columns) to represent
all the MISs in a graph. Hence, solving the LP of such a
large-scale problem is challenging.

Column Generation
Given the LP of GCP-SC, CG aims to capture the columns
with non-zero values in the optimal LP solution, starting from
a RMP with a tiny fraction of the columns in the original LP:

min
xs

∑
s∈S

xs, (RMP) (9)

s.t.
∑

s∈S,i∈s

xs ≥ 1, i ∈ V , (10)

0 ≤ xs ≤ 1, s ∈ S. (11)

Note that the integer constraints on xs are relaxed, and only
a small number of MISs is considered initially, i.e., S ⊂ S .

The RMP can be efficiently solved using the simplex
method or the interior point method (Dantzig 2016), and
its optimal dual solution π = [π1, · · · , π|V |] associated to
vertices (i.e., Constraint (10)) can be used to set up a pricing
problem, to search for new MISs with the least reduced cost:

min
v

1−
∑
i∈V

πi · vi, (MWISP) (12)

s.t. vi + vj ≤ 1, (i, j) ∈ E (13)
vi ∈ {0, 1}, i ∈ V . (14)

The binary variable vi denotes whether the vertex i is a part
of the solution, i.e., a MIS according to constraints (13) and
(14). Note that the pricing problem for GCP-SC is the NP-
hard Maximum Weight Independent Set Problem (MWISP),
where the weight of a vertex i is its dual solution πi to RMP.

To tackle MWISP, related studies (Mehrotra and Trick
1996; Malaguti, Monaci, and Toth 2011) employ efficient
heuristic methods. Only when a heuristic method fails to find
any MIS with a Negative Reduced Cost (NRC), an exact
method is used to solve the MWISP to optimality and so gen-
erate the MIS with the least reduced cost. If there exist NRC
MISs, they are selectively included in the RMP to further im-
prove its solution, according to a pricing scheme (Lübbecke
and Desrosiers 2005). Otherwise, the RMP has captured all
the columns in the optimal solution of the original LP, and
hence the original LP is optimally solved.

Machine Learning Based Pricing Heuristic
Given the MWISP at a CG iteration, we employ an ML
model to predict which vertices belong to the optimal MIS.
This prediction is then used to guide a sampling method to
generate high-quality MISs efficiently. Having many MISs,
we introduce several strategies to select a subset of these to
form the new RMP at the next CG iteration.

Optimal Solution Prediction
We train an ML model to predict the optimal MIS of the
MWISP by solving a binary classification task. In our train-
ing data, a training example (f , y) corresponds to a vertex
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in an optimally solved MWISP instance, where f denotes
the feature vector that summarizes the property of the cor-
responding vertex and y holds a binary value of 1 (or 0)
indicating whether that vertex is in the optimal MIS (or not).

We make use of several features that characterize a vertex
of the MWISP, including vertex weight, vertex degree, and
the upper bound of a vertex (defined by the sum of weights
of that vertex and the vertices that are not adjacent to it). In
addition, we adopt two statistical features (Sun, Li, and Ernst
2021) to further enhance the expressiveness of the feature
representation for vertices. Given a sample of randomly gen-
erated MISs (s ∈ S), the first statistical feature measures
the correlation between the presence of a vertex i and the
objective values of the sample MISs,

fc(i) =

∑K
k=1(s

k
i − si)(ok − o)∑K

k=1

√
(ski − si)2

√∑K
k=1(o

k − o)2
, (15)

where ski is a binary value, indicating whether the vertex i is a
part of the kth sample; ok denotes the objective value of that
sample; si and o respectively denote, the frequency of the
vertex i being in a sample and the mean objective value across
all samples. A vertex with a high correlation score indicates
that this vertex is likely to appear in the high-quality MISs.

The second statistical measure uses the rank r of the sam-
ple MISs with respect to their objective values,

fr(i) =

K∑
k=1

ski
rk
. (16)

A vertex with a high ranking score indicates that this vertex
appears frequently in the high-quality MISs.

To gain computational efficiency, we adopt Support Vector
Machine with linear kernel (linear-SVM) (Boser, Guyon, and
Vapnik 1992) to best separate the positive examples (i.e.,
vertices in the optimal MIS) and negative ones (i.e., vertices
not in the optimal MIS) in the training data. For a vertex i
in an unseen MWISP instance, the prediction di ∈ R of the
trained linear-SVM is the distance of this vertex, in the feature
space, from the optimal decision boundary. This indicates
how confidently the linear-SVM classifies this vertex as either
in the optimal solution or not according to the signed distance.

Generating Columns via Sampling
Based on the ML prediction, we can build a probabilistic
model to sample multiple high-quality MISs. To generate
a MIS, we start with a set containing a randomly selected
vertex from the graph, and then iteratively add new vertices
into the set until no new vertex can be added. We compute the
probability of selecting a vertex via the ML prediction di, i ∼

σ(di)∑
j∈C σ(dj)

; i ∈ C, where σ(di) denotes a logistic function to

re-scale the prediction of a vertex into the range of [0, 1], and
C denotes the set of candidate vertices not already adjacent
to any vertex selected. The normalized value σ(di) can be
interpreted as the ‘likelihood’ that vertex is in the optimal
MIS. Note that we sample MISs starting from a random
vertex, so as to increase the diversity of the generated MISs,
which has an impact on the solving time of CG.

Columns Selection
MLPH can potentially generate a large number of NRC
columns for unseen MWISPs, and adding all of these to
the RMP at early iterations of CG can slow down the solving
process of the RMP in the successive CG iterations. However,
selectively adding NRC columns may increase the chances of
missing out the optimal columns. Therefore, we empirically
investigate several strategies to form the RMP at the next
CG iteration: 1) add-all. Add all the newly generated NRC
columns to the RMP. 2) add-partial. From the newly gener-
ated NRC columns, select a proportion of them to add to the
RMP in increasing order of their reduced cost. 3) replace-
existing. From all the columns, sequentially select columns
for the next RMP in the increasing order of their reduced
costs, while maintaining the diversity of the set of selected
columns by skipping columns too similar to those already
added. The algorithm is outlined in the Appendix.

At one end of the spectrum, the strategy (1) adds all the
columns to the RMP, resulting in the fastest growth of the
size of the RMP. On the other hand, the strategy (3) replaces
some of the columns in the current RMP with newly gener-
ated columns, and it can maintain a fixed number of columns
in the RMP. Due to this restriction, CG may require more iter-
ations to capture all the optimal LP columns. The strategy (2)
is somewhere in between these two extremes, resulting in
relatively slow growth of the size of the RMP.

Experiment Settings
Graph benchmarks and problem instance generation.
We use standard Graph Coloring Benchmarks1. Given a graph
with n vertices, the goal is to find the columns with non-zero
values in the optimal LP solution of GCP-SC, starting from a
RMP initialized with 10n randomly generated columns. We
note that reducing the number of samples can affect the per-
formance of CG negatively. Among 136 benchmark graphs,
we remove those whose initial RMPs already contain all the
optimal columns and whose initial RMPs cannot be solved
by an LP solver within a reasonable time. For the remain-
ing 89 graphs, we label 81 of them as ‘small’ and 8 of them
as ‘large’, according to the computational time for solving
their initial RMPs. For a graph, we can generate multiple
RMPs by seeding the initial set of random columns, and
these RMPs can be viewed as individual problem instances
because solving them can result in different optimal dual so-
lutions and hence different subsequent MWISPs. For training,
we generate 10 instances on 10 small graphs with random
seed s = 1314. For testing, we generate 24 instances on each
graph using random seeds s ∈ {1, 2, · · · , 24}, resulting in a
total number of 1944 small instances and 192 large instances.

Data collection and training. For each training instance,
we run CG using an exact, specialized solver TSM (Jiang et al.
2018) to solve MWISPs to optimality. The MWISPs with op-
timal solutions are recorded every five CG iterations up to the
25th iteration of CG. In the training data, the statistical fea-
tures are computed from a set of n MISs, randomly sampled
uniformly, with all features normalized instance-wise (Khalil

1https://sites.google.com/site/graphcoloring/files
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et al. 2016). The parameters for training SVM are set to the
default values of (Chang and Lin 2011), except that the regu-
larization term for misclassifying positive training examples
is raised to the ratio between the negative training examples
and the positive ones. For tuning the parameters in the logis-
tic function, we employ Bayesian Optimization (BO) (Snoek,
Larochelle, and Adams 2012; Nogueira 2014). Specifically,
BO treats the MLPH as a black-box and attempts 300 runs of
MLPH using different sets of parameters in the logistic func-
tion to minimize the reduced cost of the best-found solution
of the MWISP at the first CG iteration.

Compared pricing methods.
• Gurobi, a state-of-the-art commercial Mixed-Integer-

Programming (MIP) solver (Gurobi Optimization 2018).
Such a MIP solver is used as the pricing method for GCP
by related work (Malaguti, Monaci, and Toth 2011). By
default, Gurobi aims to solve a MWISP to optimality,
hence it spends most of its computational time on improv-
ing the duality bound. In addition to this default configura-
tion, we include another setting, Gurobi-heur, that focuses
on finding feasible solutions. This is done by setting the
parameters ‘PoolSearchMode’ to 2, ‘PoolSolutions’ to
108, and ‘Heuristics’ to 95%.

• Ant Colony Optimization (ACO), an efficient meta-
heuristic that has been investigated for many combinato-
rial optimization problems (Dorigo, Birattari, and Stützle
2006). ACO maintains a probabilistic distribution during
the solving process and constructs solutions by sampling
from that distribution. We adopt the ACO variant as de-
scribed in (Xu, Ma, and Lei 2007).

• Specialized methods. Since the optimal solution of a
MWISP is the same as that of solving the Maximum
Weight Clique Problem (MWCP) in its complementary
graph, we also include three state-of-the-art MWCP
solvers: 1) TSM (Jiang et al. 2018), an exact solver
based on the branch-and-bound framework with domain-
specific knowledge for tightening the dual bounds; 2)
LSCC (Wang, Cai, and Yin 2016), a heuristic method
based on Local Search; 3) Fastwclq (Cai and Lin 2016),
a heuristic method that constructs solutions in a greedy
fashion with respect to a benefit-estimation function.

Computational budgets, evaluation criteria, and other
specifications. Table 1 shows the computational budgets
for solving small and large problem instances, respectively. In
addition to an overall cutoff time for CG, we also set a cutoff
time for solving the MWISP (i.e., pricing) at every CG itera-
tion. In particular, the exact methods are also subject to the
time limit and are evaluated as heuristics. Moreover, we set
for each of the pricing methods an individual termination con-
dition. For LSCC based on Local Search (LS), we terminate
LSCC if it cannot find better solutions for 50n LS iterations.
This is because, empirically, LSCC can find high-quality solu-
tions efficiently, and providing excessive computational time
can hardly improve these solutions. For MLPH, ACO, and
Fastwclq, we set the number of constructed solutions to 50n.
For TSM and Gurobi, they may terminate early when solving
a MWISP instance to optimality. We use ‘add-partial’ as the

Label # instances Cutoff time
(overall / pricing)

# CPUs
(paralleled)

small 1944 1800s / 30s 1
large 192 8000s / 150s 4

Table 1: Test instances and computational budgets.
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Figure 2: Results for CG with different pricing methods for
small problem instances. Left: the number of solved instances.
Right: the objective values of RMP (the lower the better), av-
eraged over all problem instances using the geometric mean.

default column-selection method with the column limit n.
When a pricing method fails to find any NRC column, TSM
is used to solve the MWISP to optimality and the optimal
column is added to the RMP to start the next iteration.

We evaluate the performance of CG using a certain pricing
heuristic based on two criteria, the computational time of CG
for solved problem instances and the objective value of the
RMP (the lower the better) for unsolved problem instances.
The latter measures how close the solution of the RMP is to
the optimal LP solution and so reflects the progress that CG
has made. When reporting the results, we will address CG
using a certain pricing method in short, e.g., CG-MLPH.

During CG the RMPs are solved by the default LP solver
of Gurobi. The experiment is conducted on a cluster with
8 nodes. Each node has 32 CPUs (AMD EPYC Processor,
2245 MHz) and 128 GB RAM. Our code is written in C/C++
and is available online2.

Results & Analysis
Results for CG using different pricing methods. Fig-
ure 2 shows the solving statistics for small graphs. The left
sub-figure shows that CG-MLPH can solve many more prob-
lem instances than CG using other pricing methods (with
a given computational budget). The right sub-figure shows
that CG-MLPH can make more substantial progress than
the comparison methods over all test instances. Noticeably,
CG-Fastwclq and CG-ACO have comparable performances,
and they are better than the remaining methods we consider.
To better understand the CG using different pricing methods
with respect to graph characteristics, we report in Figure 3

2https://github.com/Joey-Shen/MLPH.git
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Figure 3: 81 small graphs labeled by CG with the winning
pricing method. MLPH is the best method for 52 graphs,
followed by TSM for 12 graphs, ACO for 8 graphs, Fastwclq
for 7 graphs, Gurobi for 1 graph, and LCSS for 1 graph.

the best method on individual graphs. It can be observed that
MLPH is particularly suitable for CG on relatively larger
and/or denser graphs.

Table 2 shows the results on large graphs for CG. Note
that the cutoff time is extended to 8, 000 seconds, and the
compared pricing methods are parallelized on 4 CPUs. It can
be seen that CG-MLPH achieves the best performance on
every individual graph, and it outperforms the other methods
substantially in most cases. In contrast, the other methods
are only competitive for certain graphs. Moreover, it can be
also noted that CG-MSSP solves to optimality all problem
instances for ‘wap01a’ and three instances for ‘wap02a’,
while other methods do not solve any instance to optimality.

MLPH as a competitive pricing method. For the set of 8
large graphs, Table 3 compares the performances of different
pricing methods for solving the pricing problems in the initial
CG iteration (to ensure the results used for compared meth-
ods are from solving the same set of MWISPs). Comparing
MLPH with other pricing methods, MLPH can find many
more NRC columns. Furthermore, the quality of the best-
found column by MLPH is highly competitive. Subsequently,
CG-MLPH achieves the best performance overall (Table 2).
In addition, it can be noted that CG-MLPH solves all prob-
lem instances on the graph ‘wap01a’ to optimality using
an average number of 36.5 iterations, while CG methods
based on other pricing methods cannot optimally solve any
of these, having at a minimum, an average number of 43.7 it-
erations. For other pricing methods, we can also observe that
the good performance of CG with a certain pricing method
is often accompanied by finding many high-quality columns
by that pricing method, such as ACO for dense graphs (e.g.,
‘C4000.5’) and Fastwclq for sparse graphs (e.g., 4-FullIns 5).
Similar observations can be also made from the results on
small graphs as shown in the Appendix.

The results indicate that finding a large number of high-
quality columns can accelerate the progress of CG. In partic-
ular, our proposed MLPH can find a large number of high-
quality NRC columns, thereby helping CG obtain much better
LP objective values for unsolved problem instances or spend-
ing many fewer CG iterations for solved problem instances.
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Figure 4: CG-MLPH using different strategies for column
selection on large problem instances (on the left, the x-axis is
CG’s iteration number; on the right, it is the wall clock time).

Efficiency and effectiveness trade-off in column selection.
As shown in the left of Figure 4, adding all the NRC columns
generated at every CG iteration (i.e., ‘add-all’) results in the
faster convergence of the LP objective. On the other hand
keeping a fixed number of columns in the RMP, by replac-
ing the existing columns already in the RMP with newly
generated NRC columns (i.e., ‘replace-existing’), tends to
slow down the progress of CG. This shows that adding more
columns can increase the chance of capturing the optimal LP
columns. When measuring the progress of CG in wall-clock
time as shown on the right, we observe that ‘add-all’ and
‘replace-existing’ are comparable because ‘add-all’ increases
the computational burden for solving the fast-growing RMP.
Compared to these two methods, adding a proportion (n
in our case) of the best NRC columns (‘add-partial’) better
balances the trade-off between efficiency and effectiveness.

Branch-and-price with MLPH
In this part, we use CG-MLPH to enhance Branch-and-
Price (B&P), an exact method that solves a GCP to optimality
by recursively decomposing the original problem (root node)
into subproblems (child nodes). During the solving process,
CG is used at every node to compute their LP bounds (lower
bounds), and a node can be safely pruned without further
expansion if its lower bound is no better than the current
best-found solution.

Setup
We use the B&P code from an open-source MIP solver,
SCIP (Gamrath et al. 2020). In the computational process of
CG, an efficient greedy search is used as the pricing heuristic
for tackling MWISPs. Only when it fails to generate any
NRC column, an exact method called t-clique is used to find
the optimal column to either certify the optimality of the LP
or start the next CG iteration with the optimal column added
to RMP. Once the LP at the current node is solved, the node
is branched into child nodes, and the columns generated at
this node are passed into the child nodes.

We refer to the default setup of B&P as B&P-def, and
compare it with B&P-MLPH that replaces the greedy search
in B&P-def with the MLPH for solving MWISPs. Although
the greedy search has negligible computational cost, it is
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Graph # nodes Density CG-MLPH CG-ACO CG-Gurobi CG-Gurobi-heur CG-Fastwclq

wap04a 5231 0.022 44.45 75.07 56.00 55.46 81.13
wap03a 4730 0.026 44.87 70.09 54.09 54.50 76.04
4-FullIns 5 4146 0.009 6.68 12.32 9.60 7.67 7.91
C4000.5 4000 0.500 263.47 264.55 304.80 304.89 286.65
wap02a 2464 0.037 40.02 58.57 42.69 43.49 64.52
wap01a 2368 0.040 41.00 56.21 42.71 43.34 62.13
C2000.5 2000 0.500 137.91 140.78 164.60 164.62 141.98
ash958GPIA 1916 0.007 3.37 3.37 3.45 3.42 3.41

Geometric mean - - 37.09 49.20 43.08 42.15 49.49

Table 2: The mean LP objective values (the lower the better) for CG with different pricing methods for large graphs. The results
are averaged over the 24 problem instances generated using the same graph.

Graph # columns with negative reduced costs Minimum reduced cost
MLPH ACO Gurobi Gurobi-heur Fastwclq MLPH ACO Gurobi Gurobi-heur Fastwclq

wap04a 191494.5 277.8 5.5 23.0 0.0 -2.48 -0.37 -3.11 -2.94 N/A
wap03a 234610.1 277.8 5.8 42.1 0.0 -2.44 -0.35 -3.05 -3.04 N/A
4-FullIns 5 28273.2 26.3 3.0 4820.1 676.8 -4.37 -0.55 -4.37 -4.38 -3.93
C4000.5 185611.9 140979.4 2.4 1.1 89.8 -0.49 -0.39 -0.24 -0.15 -0.30
wap02a 123309.2 202.7 10.8 1064.8 0.0 -1.76 -0.33 -2.30 -2.29 N/A
wap01a 118508.7 243.0 10.6 1132.1 0.0 -1.79 -0.36 -2.32 -2.33 N/A
C2000.5 89512.1 91193.0 1.9 1.7 253.5 -0.50 -0.42 -0.23 -0.23 -0.38
ash958GPIA 95888.6 1962.9 29.1 1507.0 58.0 -0.12 -0.05 -0.20 -0.20 -0.06

Table 3: Results for different pricing methods solving the MWISP at the initial CG iteration for large problem instances. Both
statistics are averaged over 24 problem instances generated using the same graph.

less effective as it can only construct a single column at a
CG iteration. In contrast, our MLPH can sample many high-
quality columns effectively. Empirically, we examine the
sample size λ of MLPH in {10n, n, 0.1n}, and observe that
no single sample size can fit all graph benchmarks. To best
contrast our B&P-MLPH with B&P-def, we report the results
when λ = 10n. From newly generated NRC columns, we
add at most θ columns into the RMP in the increasing order
of their reduced costs, θ = n for the root node and θ = 0.1n
for child nodes. We observe that setting a smaller θ in column
selection for child nodes can reduce the memory required
for storing the columns without sacrificing the performance
of CG. This is because child nodes often have a sufficient
number of quality columns inherited from their parents and
their initial RMPs are already close to the optimum.

For each method, a total number of 1584 seeded runs
are performed to solve the GCPs on a set of 66 graphs
in the Graph Coloring Benchmarks. The excluded graphs
are either too easy (both methods can solve them within
10 seconds) or too hard to solve (both methods cannot
solve the LP at the root node) under the cutoff time of
8000 seconds. When the LP at the root node is solved to
optimality, we report optimality gap, defined as Gap =

100% × upper bound−dglobal lower bounde
upper bound . The upper bound

is the objective value of the best-found solution and the
global lower bound is determined by the smallest lower bound
amongst the remaining open tree nodes.

0 25 50

500

1,000

1,500

Optimality gap (%)

#
ru

ns B&P-MLPH
B&P-def

Figure 5: The number of runs where a GCP instance can be
solved within a certain optimality gap threshold.

Results
Figure 5 shows the number of runs for which B&P-def
and B&P-MLPH can obtain optimality gap within a certain
threshold value. We can observe that 1) B&P-MLPH (red)
solves GCP within a certain optimality gap in more runs than
B&P-def (blue); 2) B&P-MLPH solves GCP to optimality
(Gap = 0%) in 482 runs, better than 444 runs by B&P-def;
3) B&P-MLPH obtains optimality gap (i.e., the LP at the
root node is solved) on GCPs in 1524 runs, whereas B&P-def
obtains optimality gap in 1325 runs.

Next, we report the numerical results on 36 benchmark
graphs where the performance of the two compared methods
are significantly different (according to the student’s t-test
with a significance level of 0.05). The results are grouped into
Tables 4-6 based on their comparative performances. Table 4
shows the results for graphs that can be optimally solved by
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Instance # nodes Density Solving time in seconds
B&P-MLPH B&P-def

r125.5 109 0.565 12 13
le450 25b 294 0.290 14 16
school1 355 0.603 51 1966
ash331GPIA 661 0.038 53 307
qg.order30 900 0.129 58 60
will199GPIA 660 0.054 70 128
flat300 20 0 300 0.953 84 343
DSJR500.1c 311 0.972 99 109
flat300 26 0 300 0.965 223 1910

le450 25a 264 0.336 14 13
DSJC125.9 125 0.898 32 29
qg.order100 10000 0.040 6259 6127

Table 4: Results for graphs solved by both B&P methods in
all runs.

Instance # nodes Density Gap (# root solved)
B&P-MLPH B&P-def

queen16 16 256 0.387 11.1 (24) N/A (0)
queen15 15 225 0.411 11.8 (24) N/A (0)
le450 25d 433 0.366 10.7 (24) N/A (0)
le450 15b 410 0.187 6.2 (24) N/A (0)
le450 25c 435 0.362 10.7 (24) N/A (0)
le450 15a 407 0.189 6.2 (24) N/A (0)
DSJC250.9 250 0.896 2.3 (24) 4.1 (24)
wap06a 703 0.288 4.8 (24) N/A (0)
DSJC1000.9 1000 0.900 11.5 (24) 11.5 (17)
myciel6 95 0.338 31.0 (24) 42.9 (24)
qg.order40 1600 0.098 2.4 (24) N/A (0)
myciel5 47 0.437 22.9 (24) 32.6 (24)

1-Insertions 5 202 0.121 43.8 (24) 33.3 (24)
2-Insertions 5 597 0.044 50.0 (1) 50.0 (24)
3-Insertions 5 1406 0.020 N/A (0) 50.0 (24)
4-Insertions 4 475 0.032 40.0 (15) 40.0 (24)
r1000.5 966 0.989 7.8 (24) 1.2 (24)

Table 5: Results for graphs not solved in any run by either of
the two methods.

Instance # nodes Density # optimally solved runs
B&P-MLPH B&P-def

le450 5d 450 0.193 21 10
le450 5c 450 0.194 21 1
ash608GPIA 1215 0.021 24 0
2-Insertions 3 37 0.216 17 9
DSJR500.5 486 0.972 17 15

1-FullIns 4 38 0.364 18 23
queen9 9 81 0.652 0 2

Table 6: Results for graphs solved by the two methods in
some runs.

both methods in all runs. Here, B&P-MLPH uses less solving
time than B&P-def on 9 graphs, and the speed-up is substan-
tial on graphs such as ‘school1’ (38×) and ‘flat300 26 0’
(8×). In contrast, B&P-def performs slightly better than

B&P-MLPH only on 3 graphs. Table 5 shows the results
for hard graphs not solved by any method. B&P-MLPH can
still solve the LP at the root node for most graphs and runs.
However, B&P-def fails to solve the LP at the root node for
many graphs, resulting in no optimality gap for those graphs.
Table 6 shows the results for the remaining graphs. B&P-
MLPH can solve GCP to optimality on more graphs and
in more runs, compared to B&P-def. Overall, B&P-MLPH
significantly outperforms B&P-def on 26 out of 36 graphs.
Apart from these promising results, our studies also show
that MLPH can be better integrated with B&P based on some
conditions, and the details can be found in the Appendix.

Related Work
ML for combinatorial optimization has received a lot of at-
tention in recent years (Bengio, Lodi, and Prouvost 2021).
Existing studies have applied ML in a variety of ways, such
as learning variable selection methods (Khalil et al. 2016;
Gasse et al. 2019; Liu et al. 2020) or node selection meth-
ods (He, III, and Eisner 2014; Furian et al. 2021) for exact
branch-and-bound solvers; learning to select the best algo-
rithm among its alternatives based on the problem character-
istics (Liberto et al. 2016; Khalil et al. 2017b); learning to
determine whether to perform problem reformulation (Kru-
ber, Lübbecke, and Parmentier 2017; Bonami, Lodi, and
Zarpellon 2018) or problem reduction (Sun, Li, and Ernst
2021; Ding et al. 2020); learning primal heuristics aiming to
construct an optimal solution directly (Khalil et al. 2017a;
Kool, van Hoof, and Welling 2019); and learning to select
columns for column generation (Morabit, Desaulniers, and
Lodi 2021).

Our work is in line with the recent studies in predicting op-
timal solutions for combinatorial optimization problems (Li,
Chen, and Koltun 2018; Sun, Li, and Ernst 2021; Ding et al.
2020; Sun et al. 2021). However, we are the first to leverage
machine learning to develop a pricing heuristic for CG. More
specifically, the existing ML-based heuristic methods focus
on effectively finding a single best solution (hopefully an
optimal one) for a single problem instance, while our pric-
ing heuristic aims to efficiently generate many high-quality
solutions by solving a series of pricing problems.

Conclusion
This paper presents a Machine-Learning-based Pricing
Heuristic (MLPH) for tackling NP-hard pricing problems
repeatedly encountered in the process of Column Gener-
ation (CG). Specifically, we employ Support Vector Ma-
chine with linear kernel to fast predict ‘the optimal solution’
for an NP-hard pricing problem, which is then adopted by
a sampling-based method to construct many high-quality
columns efficiently.

On the graph coloring problem, we demonstrate the effi-
cacy of MLPH for solving its pricing problem - the maximum
weight independent set problem. We show that MLPH can
generate many more high-quality columns efficiently than
existing state-of-the-art exact and heuristic methods. As a re-
sult, MLPH can significantly reduce the CG’s computational
time and enhance the branch-and-price exact method.
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