
A Distributional Framework for Risk-Sensitive End-to-End Planning
in Continuous MDPs

Noah Patton*1, Jihwan Jeong*1, Michael Gimelfarb*2, Scott Sanner2

1Department of Mechanical and Industrial Engineering,
University of Toronto, 5 King’s College Rd, Toronto, ON M5S 3G8

2Vector Institute, Toronto, Canada.
noah.patton@mail.utoronto.ca, jhjeong@mie.utoronto.ca, mike.gimelfarb@mail.utoronto.ca, ssanner@mie.utoronto.ca

Abstract

Recent advances in efficient planning in deterministic or
stochastic high-dimensional domains with continuous action
spaces leverage backpropagation through a model of the en-
vironment to directly optimize action sequences. However,
existing methods typically do not take risk into account when
optimizing in stochastic domains, which can be incorporated
efficiently in MDPs by optimizing a nonlinear utility function
of the return distribution. We bridge this gap by introduc-
ing Risk-Aware Planning using PyTorch (RAPTOR), a novel
unified framework for risk-sensitive planning through end-to-
end optimization of commonly-studied risk-sensitive utility
functions such as entropic utility, mean-variance optimiza-
tion and CVaR. A key technical difficulty of our approach is
that direct optimization of general risk-sensitive utility func-
tions by backpropagation is impossible due to the presence
of environment stochasticity. The novelty of RAPTOR lies in
leveraging reparameterization of the state distribution, leading
to a unique distributional perspective of end-to-end planning
where the return distribution is utilized for sampling as well
as optimizing risk-aware objectives by backpropagation in a
unified framework. We evaluate and compare RAPTOR on
three highly stochastic MDPs, including nonlinear navigation,
HVAC control, and linear reservoir control, demonstrating the
ability of RAPTOR to manage risk in complex continuous
domains according to different notions of risk-sensitive utility.

Introduction
As machine learning models are more frequently deployed
in the real world, the concern over ensuring their safety is
ever-increasing (Faria 2018; Pereira and Thomas 2020). In
sequential stochastic decision-making problems, it has been
shown that optimizing the expected cumulative reward can
lead to undesirable outcomes such as excessive risk-taking,
since low-probability catastrophic outcomes with negative
reward, or risk, can be underrepresented (Moldovan 2014).
The risk-averse MDP framework addresses this problem by
optimizing utility functions or risk measures with favorable
mathematical properties (Ruszczyński 2010).

On the other hand, planning optimizes decisions or ac-
tions given a mathematical description of the environment,
thus minimizing the need to do dangerous exploration in the

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

real world. However, despite recent advances in scalable end-
to-end planning, existing approaches do not take risk into
account. For instance, BackpropPlan (Wu, Say, and Sanner
2017) utilizes recent advances in deep learning and is highly
scalable in continuous-state-action MDPs (CSA-MDPs). Its
main limitation is that it cannot be applied to stochastic mod-
els, which could be addressed by learning reactive policies
(Bueno et al. 2019). However, existing approaches do not take
the distribution of the return into account and only optimize
for risk-neutral policies that maximize expected return.

Utility theory offers a powerful way of modeling and evalu-
ating preferences towards payoffs or returns of heterogeneous
decision-makers (Stigler 1950; Fishburn 1970), by evaluating
risk as a function of the return distribution. A variety of util-
ity functions and risk measures have been proposed to mea-
sure risk in MDPs, including exponential/entropic utilities
(Osogami 2012; Bäuerle and Rieder 2014), mean-variance
approaches (Tamar, Di Castro, and Mannor 2012, 2016) and
conditional value-at-risk (CVaR) (Chow et al. 2015). How-
ever, existing utility functions have different mathematical
properties and assumptions, making them suitable for mea-
suring different types of exogenous risk. For example, mean-
variance approaches and entropic utilties are particularly well-
suited for problems with high variance, while CVaR is more
suitable for assessing tail risk. This makes a unified treat-
ment of different utility functions particularly advantageous.
End-to-end planning can be particularly advantageous since
it does not rely on the Bellman principle that can present com-
putational challenges when considering general risk-sensitive
utility functions (Defourny, Ernst, and Wehenkel 2008; Man-
nor and Tsitsiklis 2011).

To this end, we propose RAPTOR (Risk-Aware Planning
using pyTORch) for scalable risk-aware end-to-end planning
in CSA-MDPs by backpropagation through a general differ-
entiable utility function. To achieve this, we begin by leverag-
ing an extension of BackpropPlan to accommodate stochastic
transitions (Bueno et al. 2019), by representing the plan-
ning domain as a stochastic computation graph (Figure 2).
While we cannot directly formalize a distributionally-defined
utility function in closed-form for end-to-end planning, for
many classes of problems we can reparameterize the objec-
tive and apply stochastic backpropagation, allowing us to
leverage automatic differentiation tools (Paszke et al. 2019)
for gradient-based optimization. This leads to a compact yet

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

9894

(a) Risk Neutral (b) Mean-Variance

(c) Entropic (d) CVaR

Figure 1: The evolution of trajectories navigated by the agents (SLP agents are shown in orange, and DRP agents are shown in
blue) in a two-dimensional Navigation domain subject to stochastic dynamics (note: multiple sample trajectories are shown
simultaneously in each time step). The green bounding box at the center is a high-variance zone. The more an agent traverses
into the box, the higher the variability in the next position at which the agent lands. The blue square on the bottom left is the
starting position, while the red box at the upper right corner shows the goal region. By time step 20, we clearly see that the
mean-variance, entropic and CVaR agents are able to get to the goal region by avoiding the box and thus failure. In contrast, the
risk-neutral agents opt for the high variance but highest reward shortest path as reflected in their much noisier trajectories.

exact representation of the return distribution, which allows
both efficient sampling and policy/plan optimization that we
refer to as the distributional perspective of planning. This,
in turn, allows us to optimize a variety of symbolic nonlin-
ear utility functions of the return distribution directly from
forward-sampled state trajectories in a plug-and-play manner.
We then leverage this computational framework to propose
two approaches for optimizing risk-aware decisions. The first
derives a risk-sensitive straight-line plan (SLP) that commits
to a sequence of actions in advance, while the second learns a
risk-sensitive deep reactive policy (DRP) that is particularly
suited for highly stochastic domains. Both approaches inte-
grate seamlessly into our optimization framework and can be
computed efficiently in an end-to-end manner by reparame-
terization and backpropagation.

Indeed, as evidenced by Figure 1, RAPTOR is effective at
converging toward risk-averse behaviors in highly stochastic
environments in a computationally efficient manner. Overall,
empirical evaluations on three highly stochastic domains
involving continuous action parameters — navigation, HVAC
control, and reservoir control — demonstrate that RAPTOR
is a reliable and efficient end-to-end method for risk-aware
planning in complex nonlinear continuous MDPs.

Preliminaries
Continuous State-Action MDPs (CSA-MDPs)
Sequential decision-making problems in this work are mod-
eled as continuous state-action Markov decision processes
(CSA-MDPs), defined as tuples 〈S,A, r, p, s0〉: S ⊆ Rn is
the state space, A ⊆ Rm is the action space, r : S ×A → R
is a bounded differentiable reward function, p : S×A×S →
[0,∞) describes the nonlinear dynamics of the system, and
s0 is the initial state. Note that CSA-MDPs are naturally
factored (Boutilier, Dean, and Hanks 1999), such that the

components of st+1 are mutually independent given the cur-
rent state st and action at.

In the risk-neutral setting, the objective function is to max-
imize the expected cumulative reward,

V (a0:H) := Es1:H∼p

[
H∑
t=0

r(st,at)

]
, (1)

where state trajectories s1:H = s1, s2, . . . sH are sequentially
forward-sampled according to p, and actions can either be
computed from a closed-loop policy π : S → A or an open-
loop plan a0:H = a0,a1, . . . aH .

Risk-Awareness in CSA-MDPs
In the risk-aware setting, the expectation operator Es1:H [·] in
(1) is typically replaced by a real-valued utility function U(·)
of the return random variable Z(a0:H) :=

∑H
t=0 r(st,at).

The general risk-averse planning problem requires finding a
sequence of actions a0:H (either open- or closed-loop) that
maximizes the cumulative utility from a given initial state s0

U(a0:H) := Us1:H∼p(Z(a0:H)) , (2)
where it is understood that the state trajectories s1:H evolve
under p and are thus also dependent on a0:H .

When the utility functions are composed of differentiable
mathematical operators, we show how they can provide an
extension of end-to-end planning methods (Wu, Say, and
Sanner 2017; Bueno et al. 2019) for handling environment
risk in an intelligent and computationally efficient manner.

Distributional Risk-Aware Planning
We first provide a straightforward motivating example that
illustrates the difficulties of optimizing (2) symbolically, and
foreshadows the general approach we take to overcome them
in general stochastic CSA-MDPs.

9895

Example 1. Consider a simple stochastic navigation domain
with 2-D continuous state st = (st,x, st,y) and continuous 2-
D impulse at = (at,x, at,y), where st+1 ∼ N (st + at, σ

2I)
for some constant σ2 > 0. The goal is to get as close as
possible to a fixed position g = (gx, gy) in space, so the
reward at time t can be chosen as r(st,at) = −‖st−g‖2. For
a single-stage problem, the return random variable can now
be concretely written as Z(a0) = −‖s0 − g‖2 − ‖s1 − g‖2,
and (2) becomes

Us1∼N (s0+a0,σ2I)(−‖s0 − g‖2 − ‖s1 − g‖2) .

However, the utility is difficult to optimize directly, but mak-
ing use of the natural reparameterization of world dynamics

s1 = s0 + a0 + σξ0, ξ0 ∼ N (0, I2×2),

the utility can now be easily optimized

Uξ0∼N (0,I)(−‖s0 − g‖2 − ‖s0 + a0 + σξ0 − g‖2) .

More concretely, we can simulate from Z(a0) for any a0 by
sampling ξ(1)0 , . . . ξ

(N)
0 and computing

v̂(i)(a0) = −‖s0 − g‖2 − ‖s0 + a0 + σξ
(i)
0 − g‖2

for i = 1 . . . N , whose gradients with respect to a0 are
now trivial to compute. More importantly, a variety of
risk-informed statistics can be computed by aggregating
v̂(1), . . . v̂(N), such as variances and quantiles, forming an
empirical estimate of the utility Û(a0:H) ≈ U(a0:H) and
then optimizing it by gradient descent. �

Risk-Aware Planning by Backpropagation
Based on the previous example, there are two fundamental
challenges to overcome in establishing risk-aware planning
with (2) in general CSA-MDPs. The first problem is how to
generate samples v̂(i) from the return distribution Z(a0:H)
that facilitate back-propagation through action sequences
in stochastic domains. The second problem is how to use
this empirical return distribution to incorporate differentiable
risk-sensitive objectives Û(a0:H) for end-to-end planning.

Utility Functions as Differentiable Graphs Since (2)
cannot be computed exactly for nontrivial domains and ar-
bitrary utility functions, we focus on utility functions that
can be approximated using sample estimators Û(a0:H) ≈
U(a0:H) based on finite sets of sampled returns. Specif-
ically, we consider estimators of the form Û(a0:H) =
g(v̂(1), . . . v̂(N)), where v̂(1), . . . v̂(N) ∼ Z(a0:H) is a finite
set of i.i.d. samples from the return distribution and g is a dif-
ferentiable aggregation function. We require that g be asymp-
totically unbiased, e.g. E

[
g(v̂(1), . . . v̂(N))

]
→ U(a0:H) as

N → ∞, so that the bias becomes negligible for large N .
Furthermore, it is also desirable that g be exchangeable, since
obtaining the same return samples in a different order should
not change the overall utility. We shall see later that these as-
sumptions cover a wide variety of commonly-studied utility
functions, while being compatible with end-to-end planners.

Reparameterization Trick for CSA-MDPs The first
problem is how to obtain samples v̂(i)(a0:H) ∼ Z(a0:H)
whose gradients can be computed with respect to the action
sequence. The difficulty here lies in the fact that the state
st – which is stochastic by nature – depends on the previ-
ous actions through p. Thus, the gradient of v̂(i)(a0:H) is
not well-defined since v̂(i) is a random variable. Instead, we
employ the widely-used reparameterization trick (Kingma
and Welling 2014; Blundell et al. 2015; Schulman et al. 2015;
Figurnov, Mohamed, and Mnih 2018), by rewriting a sample
from the distribution st+1 ∼ p(· | st,at) as the output of a
deterministic differentiable function φ : S ×A× Ξ→ S:

st+1 = φ(st,at, ξt), ξ0, ξ1, . . . ξH−1 ∼ fξ, (3)

where ξ0:H−1 = ξ0, ξ1, . . . ξH−1 is a sequence of i.i.d. distur-
bances drawn from some distribution fξ on Ξ, which we call
a scenario. For practical illustration, if p(· | st,at) belongs
to a location-scale family, then φ(st,at, ξt) = m(st,at) +
ξt � v(st,at) for some differentiable Rn-valued functions
m and v. In fact, the 2-D navigation domain discussed ear-
lier is a special case with normally-distributed dynamics, but
our approach extends beyond location-scale families as well
(Ruiz, Titsias, and Blei 2016). Now (3) allows us to rewrite
the state transition model explicitly as1:

st = φ(st−1,at−1, ξt−1)

= φ(φ(st−2,at−2, ξt−2),at−1, ξt−1)

= . . . := Φt(s0,a0:t−1, ξ0:t−1). (4)

A Distributional Perspective on End-to-End Planning
The distribution of the return Z(a0:H) =

∑H
t=0 r(st,at)

can now be reparameterized using (4), leading to

Zξ(a0:H) =
H∑
t=0

r(Φt(s0,a0:t−1, ξ0:t−1),at). (5)

Since the reparameterization is exact, Zξ(a0:H) remains an
exact distribution of the return since Z(a0:H) = Zξ(a0:H) in
distribution, but it can now be written explicitly as a trainable
function of the noise generator fξ . This provides a unique dis-
tributional perspective (Bellemare, Dabney, and Munos 2017)
on planning. Furthermore, since φ and r are differentiable
in at, the gradient of v̂(i) ∼ Zξ(a0:H) is easily computable
by forward-sampling ξ(i)0:H−1 and backpropagating. Namely,
given U(a0:H) ≈ g(v̂(1), . . . v̂(N)), we have:

∂U(a0:H)

∂at
=

∂

∂at
Us1:H∼p(Z(a0:H))

=
∂

∂at
Uξ0:H−1∼fξ(Zξ(a0:H)) ≈ ∂

∂at
g(v̂(1), . . . v̂(N))

=
N∑
i=1

∂g

∂v̂(i)
∂v̂(i)

∂at
:=

N∑
i=1

wi
∂v̂(i)

∂at
. (6)

Based on (6), we can now interpret utility functions as (non-
uniform) weightings wi of the gradients of the return samples

1For t = 0 we simply define Φ0(s0,a0:t−1, ξ0:t−1) := s0 to be
consistent with the derivations that follow. We also do the same for
Ψ0 defined in the later section.

9896

(a) RAPTOR-SLP
(b) RAPTOR-DRP

Figure 2: The stochastic computation graph of RAPTOR for three decision epochs. Following Schulman et al. (2015), square and
rounded nodes show deterministic and stochastic nodes, respectively. The input nodes are drawn without borders. Note that all
states s1, s2 . . . are deterministic after reparameterization via ξt. During the forward pass, depicted with black arrows, the inputs
of the model along with a batch of samples ξ(1)t , . . . ξ

(N)
t ∼ fξ induce an empirical distribution over Z(a0:H) =

∑H
t=0 r(st,at).

From this, we approximate the utility objective U by its finite-sample estimator g, which is a symbolic function of the samples
v̂(1), . . . v̂(N) ∼ Z(a0:H). We then backpropagate through g, depicting the flow of gradients as red dotted lines.

v̂(i), where the weights are determined based on the severity
of the loss or return realizations. Another property of (6) is
that the specific structure of Û(a0:H), combined with the use
of the chain rule for total derivatives, reduces to a Monte-carlo
sample-based approximation of the gradient. For example, for
the risk-neutral utility g(v̂(1), . . . v̂(N)) = 1

N

∑N
i=1 v̂

(i), the
sample return gradients are weighted uniformly, e.g. wi = 1

N .
However, for strictly nonlinear g, the corresponding return
gradients will not be weighted equally.

Finally, given a positive learning rate η, the risk-aware plan
can be updated by gradient ascent

at = at + η
N∑
i=1

wi
∂v̂(i)

∂at
, t = 0, 1 . . . H.

We have now also addressed the second problem above, since
the aggregation function g allows the gradients of v̂(i) to flow
through in an end-to-end manner. This makes our approach
easy to implement using modern deep learning libraries such
as PyTorch. Thus, we refer to our overall approach as RAP-
TOR (Risk-Aware Planning using PyTORch).

Examples using Common Utility Functions
We now show how the distributional perspective (5), together
with judicious choices for g, allows for scalable risk-aware
planning using a variety of utilities.

Risk-Aware Planning with Entropic Utility The entropic
utility is defined as U(X;β) = − 1

β log E
[
e−βX

]
, where

β ∈ R is a fixed parameter that controls the level of risk
aversion (Bäuerle and Rieder 2014). Applying (5):

∂

∂at
Us1:H∼p(Z(a0:H);β) ∝ ∂

∂at
Es1:H∼p

[
e−βZ(a0:H)

]

=
∂

∂at
Eξ0:H−1∼fξ

[
e−βZξ(a0:H)

]
= Eξ0:H−1∼fξ

[
∂

∂at
e−βZξ(a0:H)

]
≈ 1

N

N∑
i=1

∂

∂at
e−βv̂

(i)

.

This corresponds to an estimator g : (v̂(1), . . . v̂(N)) 7→
− 1
β log 1

N

∑N
i=1 e

−βv̂(i) . Referring back to (6), wi ∝
e−βv̂

(i)

assigns more importance to negative returns for
β < 0, and less for β > 0.

Risk-Aware Planning with Mean-Variance Approx-
imation The calculation of the entropic utility is
susceptible to overflow (Gosavi, Das, and Murray 2014).
The mean-variance objective, U(X;β) ≈ E[X] + β

2 Var[X],
which can be derived directly from the Taylor ex-
pansion of the entropic utility, offers a numerically
stable alternative. RAPTOR can be easily applied by
backpropagating through the moments of the return:

∂

∂at
Es1:H∼p[Z(a0:H)] ≈ 1

N

N∑
i=1

∂

∂at
v̂(i)

∂

∂at
Vars1:H∼p[Z(a0:H)] ≈ 1

N − 1

N∑
i=1

∂

∂at

v̂(i) − 1

N

N∑
j=1

v̂(j)

2

.

Thus, g has an obvious representation in terms of the
sample mean and variance of the return distribution, and
wi ∝ 1 + β(v̂(i) − 1

N

∑N
j=1 v̂

(j)) assigns more weight to
returns that lie further away from the empirical mean.

Risk-Aware Planning with CVaR CVaR is defined as the
expectation over the lower α-percentile of the return distribu-
tion, CVaRα[X] = E[X|X ≤ VaRα[X]] where VaRα[X]
is the α-percentile of the distribution ofX (Chow et al. 2015).

9897

Unfortunately, VaRα[X] is not differentiable, so we apply
the straight-through gradient trick (Bengio, Léonard, and
Courville 2013; Courbariaux et al. 2016). Specifically, RAP-
TOR sorts v̂(1), . . . v̂(N) to obtain order statistics v̂(i1) ≤
v̂(i2) ≤ · · · ≤ v̂(iN), uses them to estimate VaRα as
v̂(ibN(1−α)c), and then backpropagates through the smallest
bN(1 − α)c samples without passing the gradient through
v̂(ibN(1−α)c) (Kolla et al. 2019):

∂

∂at
CVaRα[Z(a0:H)]

≈ 1

N(1− α)

∂

∂at

N∑
i=1

v̂(i)1
[
v̂(i) ≤ v̂(ibN(1−α)c)

]

≈ 1

N(1− α)

bN(1−α)c∑
j=1

∂

∂at
v̂(ij).

This corresponds to g : (v̂(1), . . . v̂(N)) 7→
1

N(1−α)
∑N
i=1 v̂

(i)1
[
v̂(i) ≤ v̂(ibN(1−α)c)

]
with the ap-

proximated gradient above. We also have wi = 0 for those
samples v̂(i) that lie above VaRα, and wi ∝ 1 is distributed
equally among the rest of the samples that lie in the tail of
the empirical return distribution.

Other utility functions based on differentiable statistics of
the samples v̂(i), such as quadratic utility (Luenberger et al.
1997), (mean-)semideviation/semivariance (Ogryczak and
Ruszczyński 1999), and optimized certainty equivalents (Ben-
Tal and Teboulle 2007) have also been studied in the literature,
and could be handled quite easily within our framework.

Risk-Aware Planning for Closed-Loop Policies
The optimization of U(a0:H) provides a maximizing plan
a∗0:H , that commits to a fixed sequence of actions starting
from s0 for the entirety of the planning horizon. For this
reason, we call this the risk-aware straight-line plan (SLP).

Limitations of Risk-Aware Straight-Line Planning The
limitation of an SLP is that it cannot respond to significant
deviations in the state trajectory from its “anticipated” path
without online replanning. This is a particular challenge in
highly stochastic domains with risky states and fast compu-
tation requirements. For instance, a planner that controls a
helicopter could crash if it is unable to correct for the he-
licopter’s accumulated fluctuations in position due to wind.
On the other hand, in the case of maximizing the entropic
utility objective, we can prove that U(a∗0:H) provides a (po-
tentially tight) lower bound to the maximum entropic utility
of a closed-loop policy (Mercier and Van Hentenryck 2008),
which has been used extensively in risk-neutral planning
(Burns et al. 2012; Issakkimuthu et al. 2015; Raghavan et al.
2017). A proof can be found in the Appendix.
Theorem 1. The entropic utility of an optimal risk-aware
SLP is a lower bound of the entropic utility of the correspond-
ing optimal risk-aware closed-loop policy.

A Distributional Perspective on Learning Closed-Loop
Policies Fortunately, it is possible to compute optimal risk-
aware closed-loop policies efficiently in CSA-MDPs by learn-

ing a parameterized risk-aware deep reactive policy (DRP)
πθ : S → A (Bueno et al. 2019) by maximizing

U(θ) = Us1:H∼p

(
H∑
t=0

r(st, πθ(st))

)
over θ. The difficulty here lies in that the DRP depends on the
state, that in turn depends implicitly on the previous action,
that depends on the previous state, and so on. Thus, the re-
turn distribution Z(θ) :=

∑H
t=0 r(st, πθ(st)) has a complex

dependence on θ. However, the distributional perspective of
SLPs also extends to DRPs. In particular:

st = φ(st−1, πθ(st−1), ξt−1)

= φ
(
φ(st−2, πθ(st−2), ξt−1),

πθ (φ(st−2, πθ(st−2), ξt−1)) , ξt−1
)

= . . . := Ψt(s0, θ, ξ0:t−1),

and the return distribution can now be written concisely as

Zξ(θ) =

H∑
t=0

r(Ψt(s0, θ, ξ0:t−1), πθ(Ψt(s0, θ, ξ0:t−1))).

Therefore, the gradient of the sample v̂(i)(θ) ∼ Z(θ) is now
easy to compute, and the DRP can be readily optimized for
all utility functions introduced in the previous section.

Based on the results in this section, we define two pos-
sible instantiations of RAPTOR. The first approach com-
putes an optimal risk-aware straight-line plan by back-
propagating through the approximated utility Û(a0:H) =
g(v̂(1), . . . v̂(N)), which we refer to as RAPTOR-SLP. The
second approach approximates an optimal deep reactive pol-
icy, which we refer to as RAPTOR-DRP. The computation
graph defining both instances of RAPTOR is depicted in
Figure 2, where edge dependencies are drawn as solid black
arrows and gradients are drawn as dashed red arrows.

Experiments
This section describes three domains which are used to ana-
lyze the performance of RAPTOR-SLP and RAPTOR-DRP
for entropic (ENT), mean-variance (MV), and CVaR utili-
ties along with comparison to the risk-neutral (RN) baseline.
In all experiments, we used Adam as the optimizer and se-
lected the learning rates according to a grid search for all
compared methods based on their utility (see Appendix for
further experimental details). SLP does not use re-planning.

Domain Descriptions
Navigation As briefly introduced in Example 1, an agent
has to find a shortest path from a fixed starting point to a fixed
goal region in a two-dimensional space (Faulwasser and Find-
eisen 2009). While states, actions, and rewards are defined
the same way as described in Example 1, we further assume
that the next state transitions are subject to high variability
when the agent passes through a high-variance zone in be-
tween the starting point and the goal region (see Figure 1). In
particular, let crossingt denote the length of a sub-trajectory

9898

that crosses the zone when moving from st to st + at. Then,
a normally distributed noiseN (0, (crossingt ·σh)2) is added
to the next state. On the other hand, when crossingt = 0, a
small noiseN (0, σ2

l) with variance σ2
l � σ2

h is added. Thus,
the transition function can be reparameterized as:

φ(st,at, ξt) = st + at + crossingtσhξt
+ 1[crossingt = 0]σlξt, ξt ∼ N (0, I2×2).

Reservoir Control The reservoir control domain (Yeh
1985) involves controlling the flow of water between N = 5
interconnected reservoirs. The water level of each reservoir
i at time t is represented by st,i ∈ R+. The action at,ij =
[at]ij is the amount of water discharged from reservoir i to j
for j ∈ D(i), where D(i) is the set of downstream reservoirs
of i (similarly, U(i) is the set of upstream reservoirs). The ac-
tion is constrained such that at,ik = 0, ∀k /∈ D(i). Also, the
total outflow of a reservoir cannot exceed the reservoir’s cur-
rent water level, i.e.,

∑
j at,ij ≤ st,i. The goal of the agent is

to keep the water level within safe limits [li, ui], so we define
the reward function as r(st,at) =

∑N
i=1Ri, where

Ri :=

−Pu(st,i − ui), if st,i ≥ ui
−Pl(li − st,i), if st,i ≤ li
0, otherwise

,

and where Pu (Pl) is the penalty for water levels above (be-
low) the upper (lower) bound. Note that Pu is weighted more
heavily than Pl, since overflows can lead to costly flooding
and damages, whereas shortages can more easily be resolved
by supplementing water from secondary sources. The amount
of rainfall at each time step is modelled as an exponentially-
distributed random variable ξt with rate λ. Thus, switching
to a component-wise view of φi for notational clarity, the
transition function for each reservoir i becomes

φi(st,at, ξt) = st,i −
∑
j∈D(i)

at,ij +
∑
j∈U(i)

at,ji + ξt.

HVAC Control In the HVAC control domain, an agent
modulates the volume of heated air flow into each of theN =
5 rooms in a house. The state consists of the temperature in
each room i given by st,i ∈ R. The air volume, at, into each
room is non negative (at,i ≥ 0) with constant temperature Tc.
The objective is to keep the rooms at their set temperature
and to avoid them getting too cold, so the reward function
can be defined as r(st,at) =

∑N
i=1Ri, where

Ri :=

{
−|st,i − Ti| − at,i − Pu, if st,i ≤ Tl
−|st,i − Ti| − at,i, otherwise

and where Ti is the target temperature for room i, Tl is the
lowest acceptable temperature, and Pu is a penalty applied
when the temperature drops below Tl. As a cost-saving mea-
sure, Ti is set near Tl to reduce heating expenses. Stochastic-
ity is added in three ways for HVAC: (1) outdoor temperature
is modeled as N (To, σ

2
o); (2) the volume of air applied to

each room is N (0, σ2
a); and (3) the heat dispersion between

rooms i and j is also N (0, σ2
ij). Combining this, the repa-

rameterized dynamics for room i are

φi(st,at, ξt) = st,i + at,i(Tc − st,i) + σaξt

+
∑
j∈A(i)

(st,j − st,i)3

ρij
+ σijξt + To + σoξt,

where ξt ∼ N (0, 1), ρij is the thermal resistance between
rooms i and j and A(i) is the set of rooms adjacent to i.

Performance of Risk-Aware Planning
We analyze and compare the empirical performance of
RAPTOR-SLP against a risk-neutral SLP planner as a base-
line (Wu, Say, and Sanner 2017). We also conducted these
evaluations for RAPTOR-DRP and risk-neutral DRP (with
β = 0) (Bueno et al. 2019), but due to space limitations we
defer most of the associated figures and detailed discussion
to the Appendix. In short, RAPTOR-DRP and DRP generally
show similar patterns as their SLP counterparts. However,
DRPs sometimes underperform SLPs since they introduce
additional training parameters and must learn to generalize
across the entire state space. Overall, we observe that despite
being a lower bound (Theorem 1), RAPTOR-SLP is very
effective at optimizing nonlinear utility functions.

Figure 3 plots the distributions of returns obtained by RN
and RAPTOR-SLP using the three different utility functions
discussed previously. Specifically, we have varied the risk
aversion parameters (β for MV and ENT, α for CVaR) to see
the effects of increasing risk-aversion. Indeed, as the magni-
tude of β and α increases, the variances of the cumulative
reward tend to shrink in all domains. Although RN often
obtains higher expected cumulative reward, it does so only
at the cost of highly variable returns. Also, RAPTOR is ex-
tremely efficient and can solve each of the three domains in
less than 3 minutes on a consumer-grade PC.

Navigation Results Figure 3b-3c compare RN and
RAPTOR-SLP on the Navigation domain. For RN, a large
portion of the trajectories achieve greater cumulative rewards
than those obtained by RAPTOR-SLP. However, the vari-
ability of the return of RN is generally high, such that more
often than not the trajectories end up failing to reach the goal
region (also see Figure 1a). In general, we can clearly observe
the trade-off between risk and return by increasing the risk
aversion parameter: smaller return variance at the expense
of reductions in the expected return. Interestingly, RAPTOR-
SLP with CVaR achieves higher expected returns than RN,
while also reducing the variance significantly. One possible
explanation is that the early stopping rule – necessary to
avoid the problem of exploding gradients during optimiza-
tion (Bueno et al. 2019) – is more difficult to implement
for the risk-neutral agent with volatile returns, which CVaR
mitigates by providing smoother and more stable returns.

Reservoir Results In Reservoir (Figure 3e-3f), we still see
the similar pattern as above, i.e., reduced variances when
increasing the risk aversion parameters. Specifically, when
we compare the worst-case outcomes, we observe the clear
benefit of incorporating risk into planning. Furthermore,
RAPTOR-SLP with CVaR is particularly adept at control-
ling the tail distribution and the worst-case outcomes, as can

9899

(a) Navigation ENT (b) Navigation MV (c) Navigation CVaR

(d) Reservoir ENT (e) Reservoir MV (f) Reservoir CVaR

(g) HVAC ENT (h) HVAC MV (i) HVAC CVaR

Figure 3: The cumulative reward distributions obtained by risk-neutral (RN) and RAPTOR-SLP agents with three different risk
utilities (ENT, MV, and CVaR) in Navigation (3a-3c), Reservoir (3d-3f), and HVAC (3g-3i) domains.

be expected from its definition presented earlier in the text.
The evolution of water levels over time, presented in the
Appendix, shows that RAPTOR-SLP maintains lower water
levels than its risk-neutral counterpart in order to prevent the
large negative reward incurred by unexpected overflows.

HVAC Results In Figure 3g-3i, not only the worst-case
outcomes but also the variances stand out when we compare
RN with RAPTOR-SLP. Similarly as in Reservoir, since the
large negative reward is incurred when the temperature drops
below Tl, RAPTOR-SLP tries to keep the room temperatures
high enough at the cost of slightly larger heating expenses
(cf. room temperatures in Appendix). On the other hand, RN
simply ignores the variability in the temperature, so it often
suffers a large penalty when temperature stochastically drops
below Tl. For RAPTOR-SLP with CVaR, we observe that it
is harder to optimize compared to the other two utilities when
α is small, potentially because low α discards many samples
(recall that CVaR sets wi = 0 for samples v̂(i) above VaRα).

Conclusion and Future Work
We proposed RAPTOR, a scalable end-to-end risk-aware
planner based on gradient descent applied to a risk-sensitive
utility function. In order to do this, we extended Backprop-

Plan to accommodate stochastic transitions, by representing
the planning problem as a stochastic computation graph and
applying the reparameterization trick to the dynamics. This
leads to a distributional perspective on differentiable end-
to-end planning. We then showed that risk-aware planning
using common utility functions – such as entropic utility,
mean-variance objective and CVaR – can be interpreted as
gradient-based planning where the gradients of the return are
weighted (possibly non-uniformly) depending on the choice
of utility function. We applied RAPTOR to learn a straight-
line plan as well as deep reactive policies. Experiments on
three highly stochastic domains — Navigation, Reservoir,
and HVAC — demonstrated the ability of RAPTOR to plan
and learn a meaningful range of risk-sensitive solutions in
nonlinear continuous state-action MDPs.

As future work, we note that extending RAPTOR to handle
hybrid (mixed continuous and discrete) MDPs will need to
workaround the non-differentiability of discrete transition
models. Also, choosing the correct utility function for each
task is a complex problem in sequential decision making
and applying our framework to other classes of utility func-
tions not mentioned here could be beneficial. Further afield,
we could integrate model uncertainty for robust risk-aware
planning under Bayesian models of misspecification.

9900

References
Bäuerle, N.; and Rieder, U. 2014. More risk-sensitive Markov
decision processes. Mathematics of Operations Research,
39(1): 105–120.
Bellemare, M. G.; Dabney, W.; and Munos, R. 2017. A dis-
tributional perspective on reinforcement learning. In ICML,
449–458. PMLR.
Ben-Tal, A.; and Teboulle, M. 2007. An old-new concept
of convex risk measures: The optimized certainty equivalent.
Mathematical Finance, 17(3): 449–476.
Bengio, Y.; Léonard, N.; and Courville, A. 2013. Estimat-
ing or propagating gradients through stochastic neurons for
conditional computation. arXiv preprint arXiv:1308.3432.
Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; and Wierstra,
D. 2015. Weight Uncertainty in Neural Network. In ICML,
volume 37 of PMLR, 1613–1622. PMLR.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
Theoretic Planning: Structural Assumptions and Computa-
tional Leverage. J. Artif. Int. Res., 11(1): 1–94.
Bueno, T. P.; de Barros, L. N.; Mauá, D. D.; and Sanner,
S. 2019. Deep reactive policies for planning in stochastic
nonlinear domains. In AAAI, volume 33, 7530–7537.
Burns, E.; Benton, J.; Ruml, W.; Yoon, S.; and Do, M. 2012.
Anticipatory on-line planning. In ICAPS, volume 22.
Chow, Y.; Tamar, A.; Mannor, S.; and Pavone, M. 2015. Risk-
Sensitive and Robust Decision-Making: a CVaR Optimiza-
tion Approach. In NeurIPS.
Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; and
Bengio, Y. 2016. Binarized neural networks: Training deep
neural networks with weights and activations constrained to+
1 or-1. arXiv preprint arXiv:1602.02830.
Defourny, B.; Ernst, D.; and Wehenkel, L. 2008. Risk-aware
decision making and dynamic programming. In NeurIPS
2008 Workshop on Model Uncertainty and Risk in RL.
Faria, J. 2018. Machine Learning Safety: An Overview.
Safety-critical Systems Symposium 2018 (SSS’18).
Faulwasser, T.; and Findeisen, R. 2009. Nonlinear Model Pre-
dictive Path-Following Control. Nonlinear Model Predictive
Control - Towards New Challenging Applications, 335–343.
Figurnov, M.; Mohamed, S.; and Mnih, A. 2018. Implicit
Reparameterization Gradients. In NeurIPS, volume 31.
Fishburn, P. C. 1970. Utility theory for decision making.
Technical report, Research analysis corp McLean VA.
Gosavi, A. A.; Das, S. K.; and Murray, S. L. 2014. Beyond
exponential utility functions: A variance-adjusted approach
for risk-averse reinforcement learning. In 2014 IEEE Sympo-
sium on Adaptive Dynamic Programming and Reinforcement
Learning, 1–8. IEEE.
Issakkimuthu, M.; Fern, A.; Khardon, R.; Tadepalli, P.; and
Xue, S. 2015. Hindsight optimization for probabilistic plan-
ning with factored actions. In ICAPS, volume 25.
Kingma, D. P.; and Welling, M. 2014. Auto-Encoding Varia-
tional Bayes. In ICLR.

Kolla, R. K.; Prashanth, L.; Bhat, S. P.; and Jagannathan, K.
2019. Concentration bounds for empirical conditional value-
at-risk: The unbounded case. Operations Research Letters,
47(1): 16–20.
Luenberger, D. G.; et al. 1997. Investment science. OUP
Catalogue.
Mannor, S.; and Tsitsiklis, J. N. 2011. Mean-variance opti-
mization in Markov decision processes. In ICML, 177–184.
Mercier, L.; and Van Hentenryck, P. 2008. Amsaa: A multi-
step anticipatory algorithm for online stochastic combinato-
rial optimization. In International Conference on Integration
of Artificial Intelligence (AI) and Operations Research (OR)
Techniques in Constraint Programming, 173–187. Springer.
Moldovan, T. M. 2014. Safety, risk awareness and explo-
ration in reinforcement learning. Ph.D. thesis, University of
California, Berkeley.
Ogryczak, W.; and Ruszczyński, A. 1999. From stochas-
tic dominance to mean-risk models: Semideviations as risk
measures. European journal of operational research, 116(1):
33–50.
Osogami, T. 2012. Robustness and risk-sensitivity in Markov
decision processes. NeurIPS, 25: 233–241.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga,
L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison,
M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai,
J.; and Chintala, S. 2019. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In NeurIPS, 8024–
8035.
Pereira, A.; and Thomas, C. 2020. Challenges of Machine
Learning Applied to Safety-Critical Cyber-Physical Systems.
Machine Learning and Knowledge Extraction, 2.
Raghavan, A.; Sanner, S.; Khardon, R.; Tadepalli, P.; and
Fern, A. 2017. Hindsight optimization for hybrid state and
action MDPs. In AAAI, volume 31.
Ruiz, F.; Titsias, M.; and Blei, D. 2016. The generalized
reparameterization gradient. NeurIPS, 460–468.
Ruszczyński, A. 2010. Risk-averse dynamic programming
for Markov decision processes. Mathematical programming,
125(2): 235–261.
Schulman, J.; Heess, N.; Weber, T.; and Abbeel, P. 2015.
Gradient Estimation Using Stochastic Computation Graphs.
In NeurIPS, 3528–3536.
Stigler, G. J. 1950. The development of utility theory. I.
Journal of political economy, 58(4): 307–327.
Tamar, A.; Di Castro, D.; and Mannor, S. 2012. Policy gradi-
ents with variance related risk criteria. In ICML, 1651–1658.
Tamar, A.; Di Castro, D.; and Mannor, S. 2016. Learning
the variance of the reward-to-go. The Journal of Machine
Learning Research, 17(1): 361–396.
Wu, G.; Say, B.; and Sanner, S. 2017. Scalable Planning with
Tensorflow for Hybrid Nonlinear Domains. In NeurIPS.
Yeh, W. W.-G. 1985. Reservoir management and operations
models: A state-of-the-art review. Water resources research,
21(12): 1797–1818.

9901

