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Abstract

We treat the problem of risk-aware control for stochastic
shortest path (SSP) on Markov decision processes (MDP).
Typically, expectation is considered for SSP, which however
is oblivious to the incurred risk. We present an alternative
view, instead optimizing conditional value-at-risk (CVaR), an
established risk measure. We treat both Markov chains as well
as MDP and introduce, through novel insights, two algorithms,
based on linear programming and value iteration, respectively.
Both algorithms offer precise and provably correct solutions.
Evaluation of our prototype implementation shows that risk-
aware control is feasible on several moderately sized models.

Introduction
Markov decision processes (MDP) are a standard model for
sequential decision making in uncertain environments, ap-
plied in, for example, robot motion planning; see e.g. (White
1993, 1985) for a variety of further examples. Usually, one
aims to control such a system optimally with respect to a
“performance rating”, called objective. In this work, we con-
sider the stochastic shortest path (SSP) objective (Bertsekas
and Tsitsiklis 1991), where the goal is to minimize the accu-
mulated cost until a given set of target states is reached.

Traditionally, one seeks a policy minimizing the expecta-
tion of this accumulated cost. However, this policy willingly
accepts arbitrary risks to achieve a minimal increase in ex-
pected profit. This may be undesirable, especially when the
system in question, for example, models a situation which
takes a long time to unfold or is only executed once, such
as a retirement savings plan or Mars rover path planning. In
particular, the law of large numbers is not applicable, and ex-
pectation alone provides little insight in the actual dynamics.

To remedy this issue, risk-aware control proposes several
ideas. A popular approach is to quantify the risk incurred
by a policy and then optimizing this risk measure instead of
expectation. We briefly discuss some relevant measures: Vari-
ance does not focus on bad cases and may even incentivize
intentionally performing suboptimally in unexpectedly good
situations. Worst case analysis often is too pessimistic in prob-
abilistic environments, considering events with probability
0 such as a fair coin toss never yielding heads. Value-at-risk
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Figure 1: Example distribution over costs to showcase VaR
and CVaR with threshold t = 40%. The bars represent the
respective probabilities, while the grey area depicts the part
considered by CVaR: The sum of the grey area equals the
specified threshold of 40%, the expectation over it is 7.875.

(VaR) is the worst p-quantile for a given threshold t ∈ [0, 1].
It approximates the notion of a “reasonably likely” bad case.
However, VaR ignores the magnitude of worse cases, and
has been characterized “seductive, but dangerous” and “not
sufficient to control risk” (Beder 1995). Conditional value-at-
risk (CVaR) (average value-at-risk, expected shortfall) yields
the expectation over all outcomes worse than the VaR, i.e.
the “tail loss”; see Fig. 1 for a sketch. As such, it consid-
ers outliers, weighted accordingly. It is an established and
“more consistent measure of risk” (Artzner et al. 1999; Rock-
afellar, Uryasev et al. 2000), gaining popularity in various
fields. We direct the interested reader to (Sarykalin, Serraino,
and Uryasev 2008) for detailed comparison between VaR
and CVaR, (Filippi, Guastaroba, and Speranza 2020) for a
survey of CVaR applications, and (Shapiro, Dentcheva, and
Ruszczynski 2014) for further risk measures.

Motivated by these observations, our primary goal in this
work is to provide risk-aware control for SSP objectives
through the optimization of its CVaR.

Related Work Firstly, (Křetı́nský and Meggendorfer 2018)
also considers CVaR, however for mean payoff instead of
SSP and only provides an linear programming based solu-
tion, while we additionally present a value iteration approach.
Secondly, (Chow et al. 2015) treats the discounted variant of
the problem, fundamentally relying on the discounting factor
to bound the error of the approximation. Moreover, (Carpin,
Chow, and Pavone 2016) considers two variants of the prob-
lem. For the first, much more restricted variant, they present
an approximative formulation together with an algorithm.
For the second variant, which is more general and closer to
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our problem, they present an approximation of the previous
approximative formulation, without any guaranteed bounds.
In contrast to the former two, our approach yields a provably
correct, precise result for the infinite horizon problem on
MDP, only using standard assumptions.

Many other works dealing with CVaR on MDP, e.g.
(Borkar and Jain 2014; Keramati et al. 2020; Bäuerle and Ott
2011), often consider finite horizon and/or discounted costs,
but not the undiscounted infinite horizon variant. A broad
spectrum of research focusses on risk-aware reinforcement
learning, typically aiming at best-effort solutions converging
to the optimal value in the limit at most and without any guar-
antees. Note that especially when considering risk, providing
reliable guarantees may be considered vital. Often, these
best-effort solutions also introduce additional constraints,
such as restricting to a suboptimal class of policies. A dif-
ferent perspective considers time consistent risk measures
(Ruszczynski 2010), where risk effectively “accumulates”
along the run; see (Tamar et al. 2017) for a CVaR-variant.

Contributions & Novelty We treat, to our knowledge for
the first time, the problem of optimizing the global, infinite
horizon risk of SSP on MDP through CVaR, providing prov-
ably correct results. We first discuss the problem on Markov
chains, derive a central characterization of CVaR for SSP,
and provide a tailored algorithm. Then, we present two novel
solution approaches for MDP, based on this characterization.
One is based on linear programming and one on value it-
eration (both exponential). While the primary focus of this
work is the theoretical contribution, we also evaluate a proto-
type implementation, showing that risk-aware control with
guarantees is practical even for infinite horizon problems.

Due to space constraints, most proofs have been moved to
the technical report (Meggendorfer 2022).

Preliminaries
A (finite, discrete time, time-homogeneous) Markov deci-
sion process (MDP) (Puterman 1994; Bertsekas 2005) is
a tuple M = (S,A, ŝ,∆, C), where S is a finite set of
states, A is a finite set of actions, ŝ ∈ S is the initial state,
∆(s, a, s′) = Pr[s′|s, a] is the Markovian transition function,
and C(s, a) ∈ N0 is the non-negative, integer cost associated
with taking action a in state s. We choose integer costs for
simplicity, however our methods are also applicable to ratio-
nal costs (by rescaling). An action a is available in state s
if
∑

s′∈S ∆(s, a, s′) = 1 (the sum is 0 otherwise). We write
A(s) ⊆ A for the set of all actions available in state s.

A Markov chain (MC) is an MDP where |A(s)| = 1 for
all states s ∈ S, i.e. the system is fully probabilistic.

The non-determinism in MDP is resolved by policies, map-
pings from finite paths to distributions over actions. The set
of all policies is denoted by Π. A policy is called (i) deter-
ministic if it always yields a unique action, (ii) memoryless
(or stationary) if it only depends on the current state, and
(iii) Markovian if it only depends on the number of steps al-
ready performed. Technically, an MDP with a policy induces
a Markov chain, which allows to reason about the now fully
probabilistic system. See e.g. (Puterman 1994, Chp. 2) or
(Baier and Katoen 2008, Sec. 10.6) for formal details.

Stochastic Shortest Path (SSP) (Bertsekas and Tsitsiklis
1991) is a common objective on MDP, specified by an MDP
and a set of goal states G ⊆ S. We are interested in the total
accumulated cost until a goal state is reached. We writeRs,π

to denote the distribution over total costs achieved by policy
π starting in state s. Typically, one optimizes the expected
total cost, i.e. given a state s, find a policy π ∈ Π such that

V π(s) := E
[∑∞

t=0
C(st, at) | s, π

]
= E[Rs,π].

is minimal. As already suggested, instead of expectation, we
however are interested in optimizing a risk measure ofRs,π .

Conditional Value-at-Risk (CVaR) (also known as Av-
erage Value-at-Risk (AVaR)) is our proposed alternative to
expectation. To introduce CVaR, we first need to define the
notion of value-at-risk (VaR). Intuitively, VaR tries to answer
the question “what is a reasonable bad outcome?” VaR is
parametrized by a threshold t ∈ [0, 1] and yields the worst
t-quantile, i.e. a value v such that an outcome is worse than
v with probability t. For example, the 50%-VaR effectively
is the median. Formally, given a distribution over natural
numbers X : N0 → [0, 1] and t < 1 we define

VaRt(X) := min{v ∈ N0 |
∑∞

x=v+1
X(x) ≤ t}.

(As we are considering costs, larger values are worse.) For
consistency, let VaR1(X) := min{v ∈ N0 | X(v) > 0}.
Note that for t = 0 we may have VaR0(X) =∞.
Example 1. Consider the distribution from Fig. 1, i.e. X =
{2 7→ 20%, 5 7→ 35%, 7 7→ 25%, 8 7→ 5%, 9 7→ 15%}. We
see that VaR40%(X) = 7. Maybe unexpectedly, we have
VaR45%(X) = 5 instead of 7, as Pr[X > 5] is exactly 45%.
It is a matter of preference how to define this boundary case,
and either works in our setting. In particular, it does not
influence the definition of CVaR.

CVaR, also parametrized by a threshold t ∈ [0, 1], aims to
answers the question “what can we expect from an average
bad case?” Formally, CVaR equals the expectation of X
conditional on only considering the worst t outcomes. Similar
to Example 1, we need to apply special care when working
with discrete distributions: Again recall the example from
Fig. 1 with t = 40%. There, only 20% of the X(7) = 25%
should be considered. Thus, CVaR is defined as follow. For
a distribution X and threshold t > 0, define v := VaRt(X)
and V := X > v the event of an outcome being strictly
worse than the VaR. Then

CVaRt(X) := 1
t

(
Pr[V] ·E[X | V]+ (t−Pr[V]) ·v

)
. (1)

For the degenerate case of t = 0, we define CVaR0(X) :=
limt→0 CVaRt(X) = VaR0(X).
Remark 1. Observe that CVaR0(X) is the worst-case of
X and CVaR1(X) = E[X] the expectation of X; changing
t thus smoothly interpolates between these extremes. As
both of these extremal cases are already solved for SSP, we
exclude them, i.e. assume 0 < t < 1.

See e.g. (Křetı́nský and Meggendorfer 2018, Sec. 3) for a
more detailed discussion of CVaR on discrete distributions.
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Problem Statement Together, the central question consid-
ered in this work is:

Given an SSP problem, what is the optimal CVaR?
Formally, given an MDPM, cost function C, and threshold
0 < t < 1, we want to determine

CVaR∗
t := infπ∈Π CVaRt(Rŝ,π).

We refer to this problem as CVaR-SSP.

Linear Programming (LP) (see e.g. (Schrijver 1999)) is
an established problem solving technique with strong connec-
tions to MDP; many popular objectives allow for a natural
LP formulation. An LP is characterized by a linear objective
function f and a set of linear inequality constraints on its vari-
ables. The task then is to find the maximal (or minimal) value
of f subject to the imposed constraints. This value can be
computed in polynomial time (Khachiyan 1979; Karmarkar
1984). As such, LP is a popular tool to prove complexity
bounds of many problems.

Value Iteration (VI) (Bellman 1966) is a popular practical
approach to solve various questions related to MC and MDP,
among others. As the name suggests, one repeatedly applies
an iteration operator to a value vector vi (typically one real
value per state). For example, the canonical value iteration
for SSP starts with v0(s) = 0 for all s ∈ S and then iterates

vi+1(s) = mina∈A(s)C(s, a) +
∑

s′∈S
∆(s, a, s′) · vi(s′).

Under the mentioned assumptions, this iteration converges
to the true value in the limit, with an exponential worst-case
bound to reach a given precision. In practice, VI typically per-
forms very well, quite often outperforming LP approaches by
a large margin. A similar trend emerges for our approaches.

Assumptions Finally, we introduce several standard as-
sumptions for CVaR-SSP. First, we assume that ŝ /∈ G
(otherwise the problem would be trivial) and that all goal
states are absorbing. Next follow two standard assumptions
for SSP (Bertsekas and Tsitsiklis 1996). A policy is proper
if the probability of eventually reaching the goal from every
state is 1. We assume that (i) there exists a proper policy and
(ii) for every improper policy π, V π(s) is infinite for at least
one state s. Finally, we assume that the cost of an action is
0 if and only if the corresponding state is a goal state. This
assumption, also used in e.g. (Bonet 2007; Carpin, Chow, and
Pavone 2016), is mainly introduced for simplicity, we briefly
discuss later on how it can be lifted. Note that (ii) follows
from (i) and the latter assumption.

Reachability & Uniform Costs
We restrict to a simpler setting to explain central insights
more clearly. Namely, we assume that costs are uniform, i.e.
C(s, a) = 1 for all non-goal states. The total costRs,π now
can be interpreted as “starting from state s with policy π,
how many steps are needed to reach the goal?” The VaR
corresponds to the first step after which a fraction of at least
1− t of all executions (abbreviated by “1− t executions” in
the following) have reached a goal state; CVaR is the overall
expected number of steps to reach the goal for the remaining
t executions. We discuss the general case afterwards.

Markov Chains
To get started, we first consider Markov chains. Since MC
are purely stochastic, our problem changes from optimization
to computation. For readability, we thus omit policies from
superscripts such asRs,π and writeRs instead.

Recall that VaR is the first time step after which 1 − t
executions have reached the goal. We can compute this step
by iterating the transition relation of the MC, i.e. computing
where the system is after n steps. This naturally also gives us
the distribution of the remaining executions which have not
yet reached the goal. To obtain the CVaR, we then need to
consider the expected cost to reach the goal for this remainder,
i.e. the classical SSP value.

Formally, fix an MC M and goal states G. Let pn(s) :=
Pr[sn = s | ŝ] the probability that the system is in state
s after n steps and e(s) := E[Rs] the expected number of
steps to reach a goal state starting in s. We define Nn :=
1 −

∑
s∈G pn(s) the probability of not having reached the

goal state after n steps. Then, VaRt(Rŝ) is the unique value
n such that Nn+1 < t ≤ Nn. By our assumptions, we have
that Nn → 0 for n→∞, consequently such an n exists for
every t > 0. Finally, let En :=

∑
s∈Spn(s)·e(s) the expected

time to reach the goal after n steps. Note that we can include
goal states in the sum as e(s) = 0 for all goal states and they
are absorbing. Moreover, E[Rs | Rs > n] = n + 1

Nn
En:

We deliberately define En independent of the fraction of runs
which already have reached the goal, thus the conditioning
of CVaR requires re-weighting.

Together, we obtain an intuitive characterization of CVaR
for SSP, which is the foundation for our solution approaches.

Theorem 1. For VaRt(Rŝ) = n, we have

CVaRt(Rŝ) = n+ 1
t En.

Proof. Inserting the above definitions in Eq. (1) yields

CVaRt(Rŝ) = 1
t

(
Nn · (n+ 1

Nn
· En) + (t−Nn) · n

)
= n+ 1

t En.

This already yields an effective algorithm for MC: We
compute e using standard methods, iteratively compute
pn for increasing n to obtain VaRt(Rŝ), and together get
CVaRt(Rŝ). Unfortunately, VaR may be of exponential size.

Lemma 1. For every Markov chain M we have that
VaRt(Rŝ) ∈ O(− log t · |S| · p−|S|

min ), where pmin is the min-
imal transition probability in M. This bound is tight.

Thus, our algorithm is exponential. However, for polyno-
mial VaR the overall algorithm is polynomial, too, since e can
be computed in polynomial time. For practical purposes, we
can additionally exploit thatNn is monotone in n and employ
binary search together with exponentiation by squaring.

Lemma 2. On Markov chains, CVaR-SSP can be solved
using polynomially many arithmetic operations.

Note that the overall runtime of this algorithm still is ex-
ponential, since multiplication itself is not a constant time
operation. In practice, our algorithm can benefit from efficient
matrix-multiplication methods and fixed-point arithmetic.
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Figure 2: Exponential memory may be required. The upper
part ensures that after n+1 steps, a fraction of pn executions
are in sn and the remaining 1− pn are in s0. The lower part
then comprises a choice between a safe option (action a) and
a more risky but slightly more efficient option (action b).

Markov Decision Processes
Now, we move our focus from MC to MDP. We can re-use
some of the observations from the previous section, however
the addition of non-determinism complicates the problem
significantly. In particular, there is no unique distribution
pn, it rather depends on the chosen policy π, which we de-
note by pπn. Analogously, we write N π

n and Eπn for the re-
spective values achieved by a given policy π and abbreviate
CVaRt(π) := CVaRt(Rŝ,π) (analogous for VaRt(π)). Fi-
nally, we write e(s) for the optimal expected cost to reach
the target starting in s, i.e. the classical SSP value.

Note that we may have VaRt(π) = CVaRt(π) = ∞ for
some π. However, under every proper policy πp the goal is
reached within finite time with probability 1. Thus VaRt(π

p)
is bounded, Theorem 1 remains applicable (by considering
the induced MC), and CVaRt(π

p) = n + 1
t E

πp

n < ∞ for
n = VaRt(π

p). Consequently, the optimal value is finite.
Before diving deeper into the solution concepts, we first

prove that an optimal policy always exists.
Theorem 2. We have CVaR∗

t = minπ∈Π CVaRt(π).
As a naive approach, one thus could try to enumerate all

possible policies and apply the reasoning of the previous
section. However, even when only considering memoryless
deterministic policies, there may be exponentially many dis-
tributions pπn. Even worse, the following example shows that
optimal policies may require exponential memory. This sug-
gests that enumeration approaches such as policy iteration
(another popular approach to solve problems on MDP), or a
simple value iteration likely are bound to fail, since both of
them typically work with local, “memoryless” values.
Example 2. Consider the MDP in Fig. 2 for any n > 2k+1.
In this case, every i ·(n+1) steps, a “packet” of (1−pn)i ·pn
executions arrives at d. The optimal choice in d depends on
the fraction of executions which are still in the upper part.
If more than 1 − t are still “on top”, the choice does not
matter, since the current execution will surely reach the goal
before the VaR, i.e. the packet is composed completely of
“good” outcomes and not considered for CVaR. If more than
1− t executions already are in the lower part beyond d, the

s0

k states

sb

2k states

goal

a

b

0.9

0.1

Figure 3: VaR optimization is suboptimal.

optimal choice is b, since the current packet only contains
“bad” outcomes; only the expectation counts. However, for
some i∗, the current packet contains exactly those executions
which are at the 1− t boundary, i.e. containing both good and
bad ones. Then (for appropriate n and p) the optimal choice
is action a. For example, if the current packet is composed of
exactly 50% good and 50% bad, the expected performance of
the bad fraction under a is k + 2 compared to 2k + 1 under
b. One can directly show that the step corresponding to i∗ is
exponential and thus the policy requires as much memory.

Remark 2. The example above shows that exponential mem-
ory is required. However, it does not prove that randomiza-
tion is needed, and we have not found an example where this
would be the case. We conjecture that deterministic policies
actually are sufficient and leave this question for future work.

Despite the exponential memory requirement, we are able
to derive two practical solution techniques, which we explain
in the following. First, we again observe that once the VaR
is reached, i.e. the system has performed VaRt(π) = n
steps, we are only interested in the expectation: Exactly those
executions which have not reached the goal after n steps are
considered in the expectation computation of CVaR.

Lemma 3. Fix a policy π and let n = VaRt(π). Then,
there exists a policy π′ which is stationary after n steps
and CVaRt(π

′) ≤ CVaRt(π).

So, intuitively, as before in the Markov chain case, after
n steps we are only interested in the optimal expected time
e(s). We can use standard methods to compute this value
(and a witness policy) in polynomial time (Puterman 1994,
Chp. 7). This suggests that our task decomposes into two
sub-problems, namely (i) reaching the goal quickly, resulting
in a small VaR, and (ii) optimally distributing the remaining
executions, i.e. states with a small expected time to reach
the goal e(s). One might feel tempted to first minimize the
VaR and then, among “VaR-optimal” policies, choose one
with optimal expected value on the remaining t executions.
However, trying to achieve a VaR as small as possible at all
costs may actually come with a significantly larger “tail” of
the distribution – which is one of the main reasons why VaR
is “seductive, but dangerous”.

Example 3. Consider the MDP in Fig. 3 with t = 0.15.
Action b is strictly preferred both for expectation as well as
VaR optimization, while action a is CVaR-optimal.

More strikingly, observe that action b in the example is VaR
optimal even if instead of 2k states there would be arbitrarily
many. So, in a sense, VaR does not consider the t worst
outcomes but rather the 1 − t best. By optimizing the first
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min
∑

s∈S
ps,n · e(s) subject to

All variables non-negative

pŝ,0 = 1 ps,0 = 0 ∀s ∈ S, s ̸= ŝ

ps,i =
∑

a∈A(s)
ps,a,i ∀s ∈ S, i < n

ps′,i+1 =
∑

s∈S,a∈A(s)
ps,a,i ·∆(s, a, s′) ∀s′ ∈ S, i < n∑

s∈G
ps,n−1 ≤ 1− t ≤

∑
s∈G

ps,n

Figure 4: LP to compute CVaRt given VaR guess n.

1 − t executions, the remaining portion may be positioned
disproportionately bad. Instead, we have to balance between
issues (i) and (ii), and search for a trade-off between a small
VaR and the distribution of the remaining executions. We
present two different approaches to find this trade-off, based
on linear programming and value iteration, respectively.

Linear Programming
For our linear programming approach, first assume that we
are magically given the optimal VaR n, i.e. the VaR which
allows us to obtain the optimal CVaR. Inspired by (Chatterjee,
Kretı́nská, and Kretı́nský 2017, Fig. 3), we can construct an
LP of size linear in n, where the set of solutions corresponds
to all policies achieving this VaR, shown in Fig. 4. This
LP then computes the minimal CVaR over these policies.
Intuitively, the LP is obtained by unrolling the MDP until
step n and building reachability constraints on that MDP.

Theorem 3. If there exists a policy π such that VaRt(π) = n
and CVaRt(π) = C, the LP in Fig. 4 has a solution with
value at most t · (C − n). If the LP in Fig. 4 has a solution
for some n with value E, there exists a policy achieving
CVaRt(π) = n+ 1

tE.

Prook sketch (see report). First part: We construct an assign-
ment to the LP’s variables: Set ps,i = pπi (s) and ps,a,i =
Pr[si = s, ai = a | ŝ, π]. This assignment satisfies the first
three constraints of the LP. For the fourth constraint, observe
that by VaRt(π) = n, we have that

∑
s∈G pπn−1(s) < 1−t ≤∑

s∈G pπn(s). By Theorem 1, we have that C = n + 1
t E

π
n .

Since Eπn =
∑

s∈S pπn(s) · e(s) =
∑

s∈S ps,n · e(s), we get
that Eπn = t · (c− n), proving the claim.

Second part: We construct the policy π as follows. For
the first n steps, at step i in state s, choose action a with
probability ps,a,i. Afterwards, i.e. starting from step n, in
state s follow a policy achieving the optimal expected cost
e(s) (note the similarity to Lemma 3). Clearly, pπi (s) =
ps,i and thus v = Eπn . We have VaRt(π) = n − 1 if∑

s∈G ps,n−1 = 1 − t and VaRt(π) = n otherwise. In
both cases, we can prove Eπn−1 = t + Eπn . Inserting yields
CVaRt(π) = (n− 1) + 1

t E
π
n−1 = n+ 1

t E
π
n = n+ 1

t v.

This directly suggests an algorithm: We simply try each
possible VaR value and solve the associated LP. Unfortu-
nately, as suggested by Lemma 1, the VaR obtained by CVaR
optimal policies may be at least exponential. We prove a
matching upper bound in the following.
Lemma 4. Fix a policy π and let π∗ be an optimal policy.
Then VaRt(π

∗) ≤ CVaRt(π).
Note that the VaR of CVaR optimal policies may not be op-

timal, i.e. potentially VaRt(π
∗) > VaRt(π), see Example 3.

Furthermore, by employing our assumption that a proper
policy exists and combining it with Lemma 1, we can find a
policy with CVaR of bounded size.
Lemma 5. There is a policy with at most exponential CVaR.

Lemmas 4 and 5 together then yield the desired result.
Corollary 1. VaRt(π

∗) is at most exponential.
This implies that our LP algorithm is EXPTIME: We solve

exponentially many linear programs of exponential size. How-
ever, Lemma 4 also yields a dynamic “stopping criterion” for
our algorithm: We do not always need to try out all exponen-
tially many possible values for VaR. Instead, once we found
a solution, we can use the CVaR obtained by this solution as
new upper bound for the VaR guesses. Thus, the exponential
time solely depends on the magnitude of CVaRt(π

∗). In par-
ticular, if CVaRt(π

∗) is of polynomial size, our algorithm is
PTIME, since we can stop after polynomially many steps.

We conclude this section with a series of remarks, putting
our results into context.
Remark 3. We conjecture that these results are optimal, i.e.
that CVaR-SSP is EXPTIME-complete. However, a proof of
hardness seems surprisingly difficult: Only recently, (Bal-
aji et al. 2019) proved that the (conceptually much sim-
pler) problem of finite-horizon reachability is EXPTIME-
complete; a question open for several decades, posed already
by (Papadimitriou and Tsitsiklis 1987). Observe that decid-
ing whether a policy π exists such that VaRt(π) ≤ n is a
special case of finite-horizon reachability. Unfortunately, the
techniques of (Balaji et al. 2019) are not applicable to our
case, since we assumed the existence of proper policies. We
conjecture that the associated VaR problem nevertheless is
EXPTIME-complete, too. Yet, even proving hardness of the
VaR problem does not immediately prove that CVaR-SSP
itself is EXPTIME-complete: There might be an algorithm
which can determine the CVaR without explicitly determin-
ing the VaR. It however seems unlikely that CVaR can be
accurately computed without knowledge of VaR.
Remark 4. In (Křetı́nský and Meggendorfer 2018), the au-
thors also employed a “VaR-guessing” approach for a similar
problem. In their setting however, only linearly many possi-
ble value for VaR exist, thus yielding a polynomial algorithm.
See (Piribauer 2021, Thm. 3.33) for a translation of our case
to the scenario of (Křetı́nský and Meggendorfer 2018) and
an alternative proof for the exponential upper bound.
Remark 5. Our LP approach can be adapted to the con-
strained variant, i.e. answer the question “given that CVaR
should be at least x, what is the maximal expectation?”, by
changing the CVaR objective to an appropriate constraint and
adding expectation maximization as objective.
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Value Iteration
While LP is appealing in theory due to its polynomial com-
plexity, in practice it often is outperformed by approaches
such as VI, despite worse theoretical complexity. We now dis-
cuss several insights which ultimately lead to a VI algorithm
for our problem, yielding precise results. This is particularly
intriguing since a VI approach for the similar scenario of
(Křetı́nský and Meggendorfer 2018) remains elusive.

To derive a VI approach, we require an iteration opera-
tion which yields a value for each state based on the values
of their respective successors. So, suppose we naively want
to compute CVaRt of a state s based on the CVaRt of its
successors. Unfortunately, we cannot simply combine the
CVaRt of the successors: For example, it might be the case
that all “bad” outcomes (i.e. those worse than the VaRt) are
all those which move to one particular successor. Hence, we
would need CVaR1 for that successor and CVaR0 for all oth-
ers. Consequently, we need to employ a different approach.

By definition of CVaRt, precisely a fraction of t execu-
tions starting in s are bad ones, and these have to distribute
somehow over the successors. Thus, there is a weighting of
successors, reflecting how the bad executions distribute.

Lemma 6. Let s be a state, a ∈ A(s) an available action,
and π a policy. There exist weights w : S → [0, 1] such that∑

s′∈S ∆(s, a, s′) · w(s′) = t and

CVaRt(Rs,π) =

1 +
∑

a∈A(s),s′∈S

π((s), a)∆(s, a, s′) CVaRw(s′)(Rs′,πa

),

where (s) denotes a path comprising only s and πa denotes
the policy π after taking action a.

Proof. Follows directly from the above discussion.

Note the similarity of the above equation to a Bellman up-
date: For known/fixed weights w, we would obtain a regular
value iteration. Unfortunately, these weights globally depend
on the policy; even the decision in a state s′ which is not
reachable from state s influences the weight distribution in s.
Nevertheless, we can use the underlying insights to derive a
value iteration approach.

Characterization through Pareto Sets
In light of Lemma 6, we do not want to compute the CVaR
for a single threshold t, but for all thresholds 0 < t ≤ 1. So,
essentially, we aim to answer the question “given a threshold
of t, what is the best achievable CVaR?” for all thresholds
and all states. We approach this question with a new, novel
perspective. In particular, we propose to answer a different
question, namely, “for an arbitrary step-bound n, given that
at least 1 − t executions have to reach the goal within n
steps, what is the best expected time to reach the goal after n
steps?”, a trade-off which can be described by a Pareto set.
Quite surprisingly, we can both (i) derive CVaR from such a
set and (ii) compute these sets for increasing n using VI.

Definition 1. Let s ∈ S a state and n ∈ N a step bound.
We define the SSP Pareto set Ps

n ⊆ [0, 1] × R≥0 where

(p,E) ∈ Ps
n iff there exists a policy π such thatN π

n ≤ 1− p
and Eπn ≤ E, i.e. (i) the probability to reach a goal state
within n steps starting in s is at least p, and (ii) after n steps,
the expected time to reach goal states is at most E.
Lemma 7. For every (1− t, E) ∈ Pŝ

n with witness policy π,
we have CVaRt(π) ≤ n+ 1

tE. For every policy π, we have
(1− t, t · (CVaRt(π)− n)) ∈ Pŝ

n where n = VaRt(π).
To obtain an algorithm based on this idea, we need an

effective procedure to compute Ps
n. To this end, we show

that Ps
n is a convex polygon where vertices correspond to

deterministic policies, and show how Ps
n can be computed

using a Bellman-style iteration.
Lemma 8. The set Ps

n is an upward and leftward closed,
convex polygon where all vertices correspond to Markovian
deterministic policies.

Proof sketch (see report). Closure and Convexity follow di-
rectly. We prove the polygon-claim by induction on n.

For n = 0, we either have that Ps
0 = [0, 1]×R≥0 if s ∈ G,

or, if s /∈ G, Ps
0 = {0} × [e(s),∞), both by definition. In

both cases, Ps
0 is a polygon with the extremal points (1, 0)

and (0, e(s)), respectively, obtained by stationary policies.
For the induction step, fix n and a state s. We prove that

(p,E) ∈ Ps
n+1 iff there exist a distribution w : A(s)→ [0, 1]

and achievable points (pa,s′ , Ea,s′) ∈ Ps′

n such that

(p,E) =
∑

a∈A(s),s′∈S
w(a) ·∆(s, a, s′) · (pa,s′ , Ea,s′)

This equality follows from the interpretation of the Pareto set:
For all actions a and successors s′ there exists a policy πa,s′

such that after n steps at least a fraction of pa,s′ executions
have reached the goal and the expected time to reach the goal
is at most Ea,s′ . So, we can take one step and then simply
follow these respective policies to achieve the values in the
equation. Dually, if there is a policy π for (p,E) ∈ Ps

n+1, we
immediately get policies achieving the respective values in
the successors (note the similarity to regular value iteration).
The claim follows by the hypothesis.

This proof also yields an effective way of computing Ps
n.

Corollary 2. We have that

Ps
n+1 = conv

(⋃
a∈A(s)

⊕
s′∈S

∆(s, a, s′) ·Ps′

n

)
,

where ⊕ is the Minkowski sum and conv the convex hull.
With these results, we are ready to present our value itera-

tion approach in Algorithm 1. As expected, it computes Ps
n

for increasing n using Corollary 2 and derives the optimal
obtainable CVaR assuming that the VaR is at most n using
Lemma 7. On top, the algorithm uses Lemma 4 as stopping
criterion, ultimately yielding the optimal CVaR. Note that the
algorithm can compute the optimal CVaR for several thresh-
olds t simultaneously at essentially no additional cost: While
computing the CVaR for the smallest threshold, the CVaR
corresponding to the other thresholds can be obtained as an
intermediate result.
Theorem 4. Algorithm 1 is correct, i.e. always terminates
and returns the optimal CVaR. Moreover, it is EXPTIME.
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Algorithm 1: Value Iteration to compute CVaR

Input: MDPM, threshold t
Output: Optimal CVaRt

c←∞, n← 0
while n ≤ c do

Compute Ps
n for all s ∈ S

cn ← n+ 1
t ·

(
min{E | (1− t, E) ∈ Pŝ

n} ∪ {∞}
)

c← min(c, cn), n← n+ 1
return c

Total Cost
To extend our approach to the general scenario of total cost,
only minor adjustments are necessary. We omit the com-
pletely analogous proofs of correctness. Note that both cases
show that instead of Markovian policies, we now require
policies which (only) depend on the total incurred cost.

Linear Programming Recall that in order to obtain the LP
approach we effectively “unrolled” the MDP, augmenting the
state space with a step counter. We change this counter to
track the accumulated cost, i.e. require

ps′,i =
∑

s∈S,a∈A(s)
ps,a,i−C(s,a) ·∆(s, a, s′)

for i < n, adapting appropriately at the boundary. Informally,
ps,a,i now corresponds to the probability of taking action a
in state s when the total accumulated cost so far is i.

Around the VaR-guess n, additional care is needed: For
example, suppose we are at state s with an accumulated
cost of n− 1 and take action a with cost C(s, a). In the LP,
we would thus consider the variable ps′,n−1+C(s,a). Now,
for C(s, a) > 1, we need to modify the objective to also
consider this part of the flow. In particular, we change the
objective function to

∑
s∈S,0≤c<Cmax

ps,n+c · (e(s) + c),
where Cmax = maxC(s, a) is the maximal cost.

Value Iteration The Pareto set describes a trade-off be-
tween probability of reaching and expected remaining steps
at n steps. We again change the interpretation of n to a cost
bound. This means that a point (p,E) is in Ps

n iff the goal
can be reached with probability at least p while incurring a
cost of at most n and at the same time have an expected cost
of at most E to reach the goal afterwards. All statements can
be replicated analogously, in particular we arrive at

Ps
n = conv

(⋃
a∈A(s)

⊕
s′∈S

∆(s, a, s′) ·Ps′

n−C(s,a)

)
,

where Ps
n = ∅ for n < 0. Consequently, we need to store the

last Cmax Pareto sets for each state in the VI algorithm.

Zero Cost States We assumed that there are no zero-cost
actions for simplicity. This assumption is implicitly applied
in the above arguments. We can however “inline” such states
through additional pre-computation: Intuitively, for a zero-
cost action a, we can compute all possible ways the system
could evolve after choosing a while restricted to using only
zero-cost actions, and then replace the outcome of a with
these options. The technical details of this procedure however
are quite involved and beyond the scope of this work.
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Figure 5: Visual representation of Grid for size 4x4. The
robot currently is at (1, 1), while the janitor is at (3, 2).

Evaluation
We implemented prototypes of our algorithms in Java (Oracle
JVM 17.0.1), delegating LP calls to Gurobi 9.1.2, running
on consumer-grade hardware (AMD Ryzen 5 3600, 3.60
Ghz, 16 GB RAM). The JVM is limited to 10 GB of RAM
through -Xmx10G. We augmented the VI approach by paral-
lel computation and implemented a tailored Minkowski sum /
convex hull computation. The LP approach computes a lower
bound on the minimal VaR via a reachability VI. These op-
timizations already yield order-of-magnitude improvements
compared to a naive implementation. Our implementation,
all models, and instructions to reproduce the experiments can
be found at https://doi.org/10.5281/zenodo.5764140.

Since (Chow et al. 2015) solve a similar problem (albeit
with discounting), we tried evaluating their approach with a
sufficiently large discounting factor, too. Unfortunately, we
could not obtain an implementation of their methods.

Models To test out our methods, we first consider a hand-
crafted probabilistic path planning task on a grid world, called
Grid. A robot has to move to its charging station, avoiding
fixed obstacles. Moreover, a janitor is moving semi-randomly
through a part of the region. In particular, the janitor faces
a direction and either moves into that direction or randomly
turns to one side. Whenever the robot is close to the jan-
itor (distance ≤ 1), it is not allowed to move in order to
avoid being stepped on. We consider the problem for several
grid widths to investigate scalability. In order to keep the
probability of interaction with the janitor high, we always
restrict the janitor to a 4x4 grid that the robot necessarily
has to cross. Furthermore, we consider two models from the
literature, namely FireWire (Kwiatkowska, Norman, and
Sproston 2003), the IEEE 1394 “FireWire” root contention
protocol, and WLAN (Kwiatkowska, Norman, and Sproston
2002), the CSMA/CA mechanism of the 802.11 Wireless
LAN protocol. See (Kwiatkowska et al. 2006) for further
details on how FireWire and WLAN are constructed.

To evaluate the influence of the threshold, we consider
another hand-crafted model Walk: Here, the system moves
along a line of length n and can at each position choose to
take one step forward, succeeding with 50% probability, or
gamble to double its current position. The doubling action
has a 10% chance to fail, instead halving the current position,
and is disabled if it fails thrice. Note that the risk of the
gamble, i.e. how much is “lost” in case of a fail, changes with
the current position of the system. As such, depending on the
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Model |S| |A| |∆| E VaR10% CVaR10% SSP LP VI

Grid(x = 4) 1,270 4,230 12,390 6.7 8 11.0 0s 2s 0s
Grid(x = 8) 3,196 12,796 37,996 13.1 16 17.6 1s 199s 2s
Grid(x = 16) 6,396 28,796 85,996 19.3 22 23.6 2s 2,373s 11s
Grid(x = 32) 12,796 60,796 181,996 35.9 39 40.8 15s >1h 221s

FireWire 138,130 302,654 304,826 166.2 167 167.0 3s MO 3s
WLAN 87,345 157,457 177,639 48.0 61 62.3 1s MO 1s

Table 1: Summary of our experiments. For each model we list, from left to right, the number of states, actions, and transitions,
the expected total cost until goal states are reached, i.e. the classical SSP value, the considered threshold, resulting VaR and CVar,
and finally the times required to compute the SSP values, CVaR via LP, and CVaR via VI, respectively. MO denotes a memout.
To ease presentation, we only considered a threshold of t = 10% for this experiment.
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Figure 6: Runtime evaluation of our VI approach on Walk for
different thresholds. We also depict the VaR and CVaR for
each threshold by dots. Note that thresholds are decreasing
from left to right. For readability, we include a zoomed, loga-
rithmic plot for thresholds from 10−3 to 10−6.

level of risk aversion, the system may choose the gambling
option at different positions (or even not at all).

For simplicity, we consider uniform cost for all models.

Results Our results for the first experiment are summarized
in Table 1. We clearly see that the LP approach quickly be-
comes infeasible, while VI can tackle significantly larger
models. This is in line with the usual observations, where LP
is more appealing in theory, but VI scales much better in prac-
tice. We highlight that the time required by VI is comparable
to the time needed to simply optimize SSP. While solving
the SSP first is required by our methods, it nevertheless is
encouraging that the overhead of risk-aware optimization is
not too large in these cases.

The results of the second experiment, evaluating the in-
fluence of the threshold, are depicted in Fig. 6. We omitted
evaluating the LP approach here, since it took over 30 min-
utes to evaluate a single threshold. We clearly see the points
where the optimal strategy switches away from taking the
risky doubling action by a sharp increase of VaR. Moreover,
the VaR and CVaR increase mostly linearly with the thresh-
old, only spiking exponentially for very small thresholds.

This is to be expected due to Lemma 1: a small portion of
probability mass remains inside the system for a long time.
However, the time required for the VI steps decreased dras-
tically, since the number of points in Ps

n decreased. After
this many steps, only a single dominant strategy remains, and
most Pareto sets actually are singletons. Altogether, we ob-
serve that the runtime of VI seems to depend mostly linearly
on the threshold, even on an adversarially crafted model.

Improvements As our simple optimization heuristics al-
ready yielded significant improvements, there likely are many
further possibilities. We conjecture that additional structural
properties might be used to speed up computation of Ps

n, e.g.
a special structure of optimal policies. Moreover, we found
that the performance of VI improves if we merge extremal
points of Ps

n which are, for example, very close to each other
or lie just on boundary of the convex hull (i.e. removing them
barely changes Ps

n). Since Bellman operators typically are
contractive, we conjecture that the error introduced by this
merging can be bounded, allowing for a trade-off between
precision and speed. More generally, we think that in order
to achieve a given precision of ε, polynomially in 1

ε and log t
many points for Ps

n may be sufficient. Here, the ideas of
(Papadimitriou and Yannakakis 2000) could be applicable.

Conclusion
We have presented a new risk-aware perspective on stochastic
shortest path through the lens of CVaR. For this objective, we
have derived an LP and a VI based solution, both of which
yield precise, provably correct results. This analysis naturally
comes at an additional price, however our experiments show
that already with a simple implementation, our approach is
feasible on moderately complex problems.

For future work, we aim to provide tight complexity
bounds for CVaR-SSP. In (Bonet 2007), a rather general con-
dition for polynomial convergence of VI for SSP is presented,
which might be applicable to our approach, too. Moreover,
we seek to study the exact structure of optimal policies. In
particular, we conjecture that they do not alternate between
actions. For the practical side, we plan to investigate the
improvements mentioned in the previous section as well as
study the influence of fixed-precision rounding errors. Finally,
we want to investigate how risk-aware policies differ from
purely expectation maximizing solutions in practice.
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