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Abstract

Learning linear temporal logic on finite traces (LTLf ) formu-
lae aims to learn a target formula that characterizes the high-
level behavior of a system from observation traces in plan-
ning. Existing approaches to learning LTLf formulae, how-
ever, can hardly learn accurate LTLf formulae from noisy
data. It is challenging to design an efficient search mecha-
nism in the large search space in form of arbitrary LTLf for-
mulae while alleviating the wrong search bias resulting from
noisy data. In this paper, we tackle this problem by bridging
LTLf inference to GNN inference. Our key theoretical con-
tribution is showing that GNN inference can simulate LTLf

inference to distinguish traces. Based on our theoretical re-
sult, we design a GNN-based approach, GLTLf, which com-
bines GNN inference and parameter interpretation to seek
the target formula in the large search space. Thanks to the
non-deterministic learning process of GNNs, GLTLf is able
to cope with noise. We evaluate GLTLf on various datasets
with noise. Our experimental results confirm the effectiveness
of GNN inference in learning LTLf formulae and show that
GLTLf is superior to the state-of-the-art approaches.

Introduction
We examine the problem of learning target formulae that
characterize the high-level behavior of a system from ob-
servation traces in planning. We focus on the linear tempo-
ral logic on finite traces (LTLf ) formula because it facili-
tates human interpretation and manipulation (Camacho and
McIlraith 2019). Learning LTLf formulae has wide applica-
tions, e.g., verification of system properties (Kasenberg and
Scheutz 2017), behavior classification (Camacho and McIl-
raith 2019), and explainable models (Kim et al. 2019), etc.

It is valuable to learn arbitrary LTLf formulae from noisy
data. In theory, arbitrary LTLf formulae are of more per-
fect characterization and expressive ability than the for-
mula restricted by LTLf templates. Besides, in practice, the
traces, e.g., from sensors or unintended user behavior, usu-
ally contain noise (Kim et al. 2019). It is challenging to
learn arbitrary LTLf formulae from noisy data. Firstly, the
search space of the target formula is huge because the target
formula with arbitrary form only has semantic constraints
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rather than syntactic constraints. Secondly, noisy data tend
to bring wrong search bias deviated from the target formula.

There have been some approaches attempting to address
the above challenge. Some approaches, e.g., (Neider and
Gavran 2018; Camacho and McIlraith 2019), assume a
noise-free environment. Other approaches, e.g., (Lemieux,
Park, and Beschastnikh 2015; Shah et al. 2018; Kim et al.
2019), restrict the hypothesis space by LTLf templates. Re-
cently, Gaglione et al. (2021) proposed a MaxSAT-based
approach to learn arbitrary LTLf formulae while dealing
with noisy data. Their approaches, however, are subject to
the high complexity of MaxSAT.

In this paper, we propose a novel way to tackle the above
challenge, by bridging LTLf inference to Graph Neural Net-
work (GNN) inference. Intuitively, an LTLf formula distin-
guishes positive traces (i.e., the trace satisfies the formula)
from negative traces (i.e., the trace does not satisfy the for-
mula), based on the satisfaction relations between traces
and formulae. We discover that GNNs can capture the sat-
isfaction relations. In more details, we show in Theorem 1
that GNN inference can simulate LTLf inference to distin-
guish traces. It provides an intuition for exploiting learning
a GNN classifier to search for approximate LTLf formulae,
i.e., modeling the search problem in discrete space to the
parameter learning problem in continuous space.

Based on this theoretical result, we design a GNN-based
approach, named as GLTLf, which combines GNN infer-
ence and parameter interpretation to seek the target formula
in the large search space. Specifically, GLTLf first learns a
GNN classifier to distinguish traces. It then extracts an LTLf
formula by interpreting the parameters of the learned GNN
classifier. Thanks to the non-deterministic learning process
of GNN, GLTLf is good at handling noisy data.

Following the assessment methods of the state-of-the-
art approaches (Camacho and McIlraith 2019; Kim et al.
2019), we evaluate GLTLf on traces with some noise across
benchmarks. Experimental results confirm the highlights
of GLTLf. Compared with other approaches, GLTLf is
demonstrated stronger robustness for noisy data and better
scalability in data size.
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Preliminaries
Notation. A graph G is a pair (V,E), where V is a finite
set of vertices and E ⊆ {〈u, v〉|u, v ∈ V ∧ u 6= v} is a
set of edges. The edge is directed: if an edge e = 〈u, v〉,
then e is from u to v. We denote the set of vertices (resp.
edges) ofG by V(G) (resp. E(G)). Moreover,N (v) denotes
the neighborhood of v ∈ V(G), formally, N (v) = {u ∈
V(G)|〈u, v〉 ∈ E(G)}. A path graph is a graph whose ver-
tices can be listed in the order v0, v1, . . . , vn such that the
edges are 〈vi, vi+1〉 where i = 0, 1, . . . , n− 1. Let {{. . . }}
denotes a multiset. Let (v)i denote the ith element of a vec-
tor v. Let (A)ij denote the element of a matrix A at the ith

row and the jth column.
Graph Neural Networks. Graph neural networks
(GNNs) (Hamilton, Ying, and Leskovec 2017) are a
powerful neural architecture to learn vector representations
of vertices and graphs. A GNN model consists of a stack
of neural network layers, where each layer aggregates local
neighborhood information, i.e., features of neighbors, and
then combines with the feature of itself to generate the
feature of the next layer. Formally, a aggregate-combine
GNN (AC-GNN) model is defined as follows. Let G be a
graph. Each vertex v ∈ V(G) has an associated feature
vector xv . x(0)

v is an initial representation. In each layer
t > 0, the updating representation x

(t)
v is defined as follows:

x(t)
v = COM(t)(x(t−1)

v ,AGG(t)({{x(t−1)
u |u ∈ N (v)}})),

where AGG(t) and COM(t) are aggregation and combination
functions, respectively. We call an AC-GNN simple if

AGG(X) =
∑
x∈X

x,

COM(t)(x1,x2) = σ(C(t)x1 + A(t)x2 + b(t)),

where C(t), A(t), and b(t) are parameters and σ denotes a
component-wise non-linear function, e.g., sigmoid or ReLU.
We call an AC-GNN homogeneous if it shares the same pa-
rameters across layers. Finally, each vertex v ∈ V(G) is
classified according to a Boolean classification function ap-
plied to x

(T )
v , where T > 0 denotes the last layer.

Linear temporal logic. Linear temporal logic (LTL) is a
modal logic typically used to express temporally extended
constraints over state trajectories (Pnueli 1977). Derived
from LTL, LTL interpreted over finite traces is referred to as
finite LTL (LTLf ) (Baier and McIlraith 2006; Giacomo and
Vardi 2013). The syntax of LTLf for a finite set of atomic
propositions P includes> (true) and⊥ (false), standard log-
ical operators (∧ and¬), and temporal logical operators: next
(X) and until (U), described as follows:

φ := ⊥ | > | p | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2,

where p ∈ P∪{>,⊥} and ϕ, ϕ1, and ϕ2 are LTLf formulae.
Operator or (∨), weak next (N), release (R), eventually

(F), and always (G) are commonly used, and can be defined
as ϕ1∨ϕ2 := ¬(¬ϕ1∧¬ϕ2), Nϕ := ¬X>∨Xϕ, ϕ1Rϕ2 :=
¬(¬ϕ1U¬ϕ2), Fϕ := >Uϕ, and Gϕ := ¬(>U¬ϕ) respec-
tively. For brevity, we only consider the fundamental opera-
tors in this paper. Our approach allows to receive all tempo-
ral modal operators of LTLf . The size of an LTLf formula

φ is the number of logical operators and atomic propositions
in φ, denoted by |φ|.
Definition 1. Let φ be an LTLf formula. The set of sub-
formulae sub(φ) of φ is defined recursively as follows:

• if φ = p, then sub(φ) = {p};
• if φ = o1 φ

′, then sub(φ) = {φ} ∪ sub(φ′);
• if φ = φ′ o2 φ

′′, then sub(φ) = {φ}∪ sub(φ′)∪ sub(φ′′),

where p ∈ P ∪ {>,⊥}, o1 ∈ {¬,X}, o2 ∈ {∧,U}, and
φ′, φ′′ are LTLf formulae.

LTLf formulae are interpreted over finite traces of propo-
sitional states. An finite trace is represented in the form
π = s0, s1, . . . , sn, where st ∈ 2P is a state at time t. For
every state si of π and every p ∈ P, p holds if p ∈ si or
¬p holds otherwise. The traces mentioned in this paper are
finite. The size of π is the number of states of π, denoted by
|π|. πi denotes a sub-trace of π beginning from the state si.
Let π is a trace and |π| = n. The satisfaction relation |= is
defined as follows:

πi |= p iff p ∈ si
πi |= ¬φ iff πi 6|= φ
πi |= φ1 ∧ φ2 iff πi |= φ1 and πi |= φ2
πi |= Xφ iff i < n and πi+1 |= φ
πi |= φ1Uφ2 iff ∃i ≤ k ≤ n, πk |= φ2 and

∀i ≤ j < k, πj |= φ1.

where φ, φ1, φ2 are LTLf formulae, and p ∈ P ∪ {>,⊥}.
Learning LTLf formulae. We focus on the problem of
learning a target LTLf formula to characterize the behav-
iors observed in a set of positive traces (Π+), while to ex-
clude behaviors observed in a set of negative traces (Π−).
The target formula is an LTLf classifier over traces aiming
to separate the provided positive and negative traces. We de-
note Π = Π+ ∪ Π−. We define lab : Π → {0, 1}: for any
e ∈ Π, lab(e) = 1 if and only if e ∈ Π+. The accuracy of
an LTLf formula φ for Π is defined as follows:

acc(φ,Π) =
|{π ∈ Π+|π |= φ}|+ |{π ∈ Π−|π 6|= φ}|

|Π|

Related Work
Learning temporal logic formulae. Temporal logic for-
mula, such as LTL and LTLf formula, is interpretable and
expressive. So learning temporal logic formula has been ver-
ified very useful in many applications. Some works focus
on learning formulae from positive and negative traces. Kim
et al. (2019) proposed a method based on bayesian inference
to handle noisy data, but limited in the hypothesis space of
formulae due to using templates. Neider and Gavran (2018)
proposed two novel learning algorithms for LTL formulae,
one based on SAT solving, another based on learning deci-
sion trees. Further, Camacho and McIlraith (2019) designed
a SAT-based method to learn formulae from a symbolic state
representation of arbitrary LTLf formulae. Both (Neider and
Gavran 2018) and (Camacho and McIlraith 2019) are limited
in a noise-free environment. Gaglione et al. (2021) proposed
a MaxSAT-based approach to extract concise LTLf formu-
lae in a noise environment, however, the scalability of which
is limited in calling the MaxSAT solver.
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Other approaches learn temporal logic formulae from
other forms of data. Kasenberg and Scheutz (2017) in-
ferred formulae from Markove Decision Processes. Some
approaches only focus on positive traces (la Rosa and McIl-
raith 2011; Lemieux, Park, and Beschastnikh 2015; Le and
Lo 2015; Shah et al. 2018; Cao et al. 2018). In business pro-
cess modelling, some works (Maggi, Bose, and van der Aalst
2012; Ciccio, Mecella, and Mendling 2013; Maggi et al.
2018; Leno et al. 2020) learned process models using tempo-
ral logic from event logs, a kind of positive traces. Recently,
Maggi, Montali, and Peñaloza (2020) modelled uncertainty,
i.e., the noise, using probabilistic temporal logic.
Learning other logic representation. There exists many
works on learning regular languages, such as deterministic
finite-state automata (Angluin 1987; Giantamidis and Tri-
pakis 2016), non-deterministic automata (Bollig et al. 2009),
alternating automata (Angluin, Eisenstat, and Fisman 2015),
finite-state machines (Smetsers, Fiterau-Brostean, and Vaan-
drager 2018). However, these approaches use explicit state
representations and also suffer from scalability.

Other approaches include signal temporal logic (Asarin
et al. 2011; Jin et al. 2015; Bombara et al. 2016; Xu et al.
2016; Xu and Julius 2016; Kong, Jones, and Belta 2016),
past time linear temporal logic (Arif et al. 2020), interval
temporal logic (Brunello, Sciavicco, and Stan 2020), prop-
erty specification language (Roy, Fisman, and Neider 2020),
and graph temporal logic (Xu et al. 2019b), etc.
Expressiveness of GNNs. The ability of GNNs has been re-
cently characterized in the Weisfeiler-Lehman test (Xu et al.
2019a; Morris et al. 2019) or the logic FOC2, a fragment of
first order logic (Barceló et al. 2020). These studies inspire
us to explore the relationship between GNNs and LTLf .

Relationship between GNNs and LTLf

In the following, we explore the relationship between GNNs
and LTLf . Based on the satisfaction relation of LTLf , we
have Property 1.
Property 1. Let φ be an LTLf formula and π a trace. For
any sub-trace πi of π, it fulfills following property:
• if φ = p, then πi |= φ if and only if πi |= p;
• if φ = ¬φ1, then πi |= φ if and only if πi 6|= φ1;
• if φ = Xφ1, then πi |= φ if and only if πi+1 |= φ1;
• if φ = φ1 ∧ φ2, then πi |= φ if and only if πi |= φ1 and
πi |= φ2;

• if φ = φ1Uφ2, then πi |= φ if and only if it fulfills two
conditions: (1) πi |= φ2 or πi |= φ1; (2) πi |= φ2 or
πi+1 |= φ;

where φ, φ1, φ2 are LTLf formulae, and p ∈ P ∪ {>,⊥}.
Property 1 shows that the satisfaction relation between a

sub-trace πi and an LTLf formula φ depends on the satisfi-
ability of the sub-formulae of the current state (si) or the
satisfiability of the sub-formulae of the next state (si+1).
Therefore, we explore the relation between GNN and LTLf
by constructing the relation of satisfiability of formulae be-
tween current state and the next state.
Definition 2. Let φ be an LTLf formula. The semantics un-
folding of φ, denoted by unfold(φ), and its semantics ele-
ments of φ, denoted by element(φ), are defined as follows:

• if φ = p, then unfold(φ) = p and element(φ) = {p};
• if φ = ¬φi, then unfold(φ) = ¬φi and element(φ) =
{φi};

• if φ = φi ∧ φj , then unfold(φ) = φi ∧ φj and
element(φ) = {φi, φj};

• if φ = Xφi, then unfold(φ) = Xφi and element(φ) =
{Xφi};

• if φ = φiUφj , then unfold(φ) = φj ∨ (φi ∧ Xφ) and
element(φ) = {φi, φj ,Xφ},

where p ∈ P ∪ {>,⊥} and φi, φj are LTLf formulae.

Property 2. Let φ be an LTLf formula. For any φi ∈
sub(φ), element(φi) ⊆ {φj ,Xφj |φj ∈ sub(φ)} holds.

Property 2 ensures that we can construct relation between
φ and element(φ) shown in Definition 3.

Definition 3. Let φ be an LTLf formula. Its LTLf graphGφ
is a four-tuple (Vφ, Eφ,Wφ, bφ) defined as follows, where
Vφ is a set of vertex, Eφ ⊆ Vφ × Vφ, Wφ : Eφ → N, and
bφ : Vφ → N. Vφ and Eφ are initialized as {vφ} and ∅,
respectively. For each sub-formula φi ∈ sub(φ), Vφ, Eφ,
Wφ, and bφ iteratively are constructed as follows:

• if unfold(φi) = p, then Vφ = Vφ ∪ {vp}, Eφ = Eφ ∪
{〈vp, vp〉}, Wφ(〈vp, vp〉) = 1, and bφ(vp) = 0;
• if unfold(φi) = ¬φj , then Vφ = Vφ ∪{vφj}, Eφ = Eφ ∪
{〈vφj , vφi〉}, Wφ(〈vφj , vφi〉) = −1, and bφ(vφi) = 1;
• if unfold(φi) = φj ∧ φk, then Vφ = Vφ ∪ {vφj , vφk

},
Eφ = Eφ ∪ {〈vφj , vφi〉, 〈vφk

, vφi〉}, Wφ(〈vφj , vφi〉) =
1, Wφ(〈vφk

, vφi〉) = 1, and bφ(vφi) = −1;
• if unfold(φi) = Xφj , then Vφ = Vφ∪{vXφj},Eφ = Eφ∪
{〈vXφj , vφi〉}, Wφ(〈vXφj , vφi〉) = 1, and bφ(vφi) =
bφ(vXφj ) = 0;
• if unfold(φi) = φk ∨ (φj ∧ Xφi), then
Vφ = Vφ ∪ {vφk

, vφj
, vXφi

}, Eφ = Eφ ∪
{〈vφk

, vφi
〉, 〈vφj

, vφi
〉, 〈vXφi

, vφi
〉}, Wφ(〈vφk

, vφi
〉) =

2, Wφ(〈vφj
, vφi
〉) = 1, Wφ(〈vXφi

, vφi
〉) = 1,

bφ(vφi
) = −1, and bφ(vXφi

) = 0,

where p ∈ P ∪ {>,⊥} and φj , φk are LTLf formulae.

Intuitively, the LTLf graph of a formula construct the re-
lation of satisfiability of the sub-formulae between current
state and the next state. We use an example to illustrate the
LTLf graph.

Example 1. Let φ = pU(X¬q) be an LTLf formula. We
have sub(φ) = {p, q, φ3, φ4, φ5}, where φ5 = pU(X¬q),
φ4 = X¬q, and φ3 = ¬q. The LTLf graph of φ is illustrated
as follows. Vφ = {vφ5

, vφ4
, vφ3

, vp, vq, vXφ5
, vXφ3

}, Eφ =
{〈vXφ5

, vφ5
〉, 〈vφ4

, vφ5
〉, 〈vp, vφ5

〉, 〈vXφ3
, vφ4
〉, 〈vq, vφ3

〉,
〈vp, vp〉, 〈vq, vq〉}, Wφ(〈vXφ5

, vφ5
〉) = 1,

Wφ(〈vφ4 , vφ5〉) = 2, Wφ(〈vp, vφ5〉) = 1,
Wφ(〈vXφ3 , vφ4〉) = 1, Wφ(〈vq, vφ3〉) = −1,
Wφ(〈vp, vp〉) = 1, Wφ(〈vq, vq〉) = 1, bφ(vφ5) = −1,
bφ(vφ3) = 1, and bφ(vφ4) = bφ(vp) = bφ(vq) =
bφ(vXφ3) = bφ(vXφ5) = 0.

Next, we define the state classifier for any given trace.

Definition 4. Let φ be an LTLf formula such that
|sub(φ)| = L, (Vφ, Eφ,Wφ, bφ) an LTLf graph of φ, and
π = s0, s1, . . . , sn a trace. For each state si ∈ π, let
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xsi ∈ RL represent a vector of the state si ∈ π. xsi is
defined as a vector [x1, . . . , xL] one-to-one corresponding
to sub(φ) such that for all 1 ≤ i ≤ L, xi corresponds to
φi ∈ sub(φ) and that for all 1 ≤ j < k ≤ L, φk 6∈ sub(φj).
Let x(t)

si be the value of xsi at time t. x(0)
si is defined such that

for all 1 ≤ j ≤ L, (x
(0)
si )j = 1 if φj ∈ si or (x

(0)
si )j = 0

otherwise. x(t)
si is defined recursively as follows:

x(t)
si = σ(Cφx

(t−1)
si + Aφxsi+1 + bφ), (1)

where t ≥ 1, σ(x) = min(max(0, x), 1), and Cφ,Aφ ∈
RL×L and bφ ∈ RL are parameters defined as follows:

(Cφ)ij =

{
Wφ(〈vφj

, vφi
〉), if 〈vφj

, vφi
〉 ∈ Eφ and

φj ∈ sub(φ)
0, otherwise,

(Aφ)ij =

{
Wφ(〈vφj

, vφi
〉), if 〈vφj

, vφi
〉 ∈ Eφ and

φj ∈ {Xφk|φk ∈ sub(φ)}
0, otherwise,

(bφ)i = bφ(vφi
), for all vφi

∈ Vφ and φi ∈ sub(φ).

By Sφ we denote the state classifier Sφ which accepts two
vectors x

(0)
si ,xsi+1

and a number of iterations T ∈ N as
input, and outputs x(T )

si , i.e., x(T )
si = Sφ(x

(0)
si ,xsi+1 , T ).

Based on the state classifier, we define the trace classifier.
Definition 5. Let φ be an LTLf formula such that
|sub(φ)| = L, and π = s0, s1, . . . , sn a trace. By Tφ we
denote the trace classifier which takes a vector x

(0)
si and a

number of iterations T ∈ N as input and x
(T )
si as output;

i.e., x(T )
si = Tφ(x

(0)
si , T ), where

Tφ(x(0)
si , T ) =

{
Sφ(x

(0)
si , Tφ(x

(0)
si+1 , T ), T ), 0 ≤ i < n

Sφ(x
(0)
si ,0, T ), i = n

(2)
Intuitively, for each state si ∈ π, (xsi)j represents the

classifying result whether πi |= φj where φj ∈ sub(φ).
Specially, (xs0)L represents whether π |= φ. Theorem 1
shows that the trace classifier can check the satisfaction of
LTLf formulae over traces.
Theorem 1. Let φ be an LTLf formula such that |sub(φ)| =
L. For every trace π = s0, s1, . . . , sn, (Tφ(x

(0)
s0 , L))L = 1

if and only if π |= φ.
Intuitively, a state classifier is a simple homogeneous AC-

GNN classifier, and a trace classifier distinguishes positive
and negative traces by iteratively invoking the same simple
homogeneous AC-GNN classifier. Learning LTLf formulae
can be reduced to learning a simple homogeneous AC-GNN
classifier that can distinguish positive and negative traces.
Therefore, Theorem 1 provides a new idea to learn LTLf
formulae: first learning a GNN classifier and then interpret-
ing LTLf formulae from the GNN classifier. We will illus-
trate the approach in the next section. The formal proof of
Theorem 1, as well as other formal statements, can be found
in the technical report1.

1Our code, benchmarks and technical report are publicly
available at https://github.com/a79461378945/Bridging-LTLf-
Inference-to-GNN-Inference-for-Learning-LTLf-Formulae.

GNN-based Learning Approach
In this section, we propose a GNN-based approach named
GLTLf to learn LTLf formulae. In order to face the chal-
lenge about large search space, the key idea of GLTLf is to
model the searching of a formula that potentially distinguish
positive and negative traces by learning a simple homo-
geneous AC-GNN model. Thanks to the non-deterministic
learning process, GLTLf can naturally handle noisy data.
The framework of GLTLf is summarized as follows.
1. In the first phase, we train a simple homogeneous AC-

GNN model S to distinguish positive and negative traces.
2. In the second phase, we interpret the parameters of S to

obtain an LTLf formula φA.

Converting Traces to Graphs
To apply GNNs on traces, we convert traces to graphs. Let
π = s0, s1, . . . , sn be a trace and P a set of atomic proposi-
tions. We convert π to a directed path graphGπ = (Vπ, Eπ),
where Vπ is the set of vertices and Eπ is the set of edges.
Each vertex vi in Vπ corresponds to a state si in π. For each
pair of adjacent states si, si+1 in π, there is a corresponding
edge 〈vi+1, vi〉 in Eπ .

Training GNNs as Classifiers
Let φ be a formula to be learned. To apply GNN on graph
Gπ , each vertex vi ∈ Vπ has an associated feature vector
xvi ∈ RL represented as [x1, . . . , x|P|, x>, x|P|+2, . . . , xL].
We set L = |P|+ 1 + kg , where kg is a hyperparameter rep-
resenting the number of sub-formulae of non-atomic propo-
sitions. For all 1 ≤ i ≤ L, xi corresponds to φi and for all
1 ≤ j < k ≤ L, φk 6∈ sub(φj) where φi, φj and φk are
possible sub-formulae of φ. Specially, x1, . . . , x|P| one-to-
one correspond to propositions in P, x> corresponds to >,
and xL corresponds to φ. (xvi)j means the classifying result
whether πi |= φj where φj ∈ sub(φ). Let x(t)

vi be the value
of xvi at the tth iteration. If φj ∈ si, then φj is a proposi-
tion and si |= φj . Therefore, x(0)

vi is defined such that for all
1 ≤ j ≤ L, (x(0)

vi )j = 1 if φj ∈ si or (x
(0)
vi )j = 0 otherwise.

The state classifier S follows Definition 4, but the parame-
ters C,A ∈ RL×L and b ∈ RL need to be trained. Formally,
S accepts two vectors x(0)

vi ,xvi+1
and a number of iterations

T ∈ N as input, and outputs x(T )
vi . S iteratively updates the

vector xvi by passing the satisfaction relation between πi+1

and each sub-formulae of φ forth along the edges of Gπ:

x(t)
vi = COM(x(t−1)

vi ,AGG({{x(t−1)
u |u ∈ N (vi)}}))

= σ(Cx(t−1)
vi + Axvi+1

+ b),
(3)

There is at most one neighbor in each vertex in the path
graph and the vector of the neighbor is not updated, thus
AGG({{x(t−1)

u |u ∈ N (vi)}}) = xvi+1
if 0 ≤ i < n or 0

otherwise. To overcome the problem of vanishing gradient,
we set σ to a variant of leaky ReLU defined by:

σ(x) =

{
αx, x < 0,
x, 0 ≤ x ≤ 1,
αx+ 1− α, x > 1,

(4)
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where α is a hyperparameter. The trace classifier T is de-
fined by Definition 5. (T (x

(0)
vi , L))j indicates whether πi |=

φj , where φj ∈ sub(φ). Specially, (T (x
(0)
v0 , L))L indicates

whether π |= φ.
The classification objective are formulated as:

ζ1 = ((T (x(0)
v0 , L))L − φT (π))2. (5)

To obtain sparse parameters that are suitable for interpreting
formulae from, we apply L1 regularization to C and A. The
regularization is formulated as:

ζ2 =
L∑
i=1

L∑
j=1

|(C)ij |+
L∑
i=1

L∑
j=1

|(A)ij |. (6)

We force the range of the parameters of C to be [−1, 2] and
the range of the parameters of A to be [0, 1]. The range of the
parameters comes from Definition 3 and is for learning in-
terpretable parameters. The regularization is formulated as:

ζ3 =
L∑
i=1

L∑
j=1

(Relu((C)ij − 2) + Relu(−(C)ij − 1)),

ζ4 =

L∑
i=1

L∑
j=1

(Relu((A)ij − 1) + Relu(−(A)ij)).

(7)

The final joint objective is:

ζ = ζ1 + βζ2 + γ(ζ3 + ζ4), (8)

where β, γ are the regularization coefficients. We train S to
minimize the joint objective.

In order to learn interpretable parameters, We freeze parts
of the parameters in C,A,b when training. Specifically, we
freeze Ci,Ai,bi for i from 1 to |P| + 1 because they cor-
respond to atomic propositions. For i from |P|+ 2 to L, we
freeze Cij for j from i to L and Aij for j from i + 1 to
L. It is to avoid the situation where the two formulae are
sub-formulas of each other.

Interpreting LTLf Formulae from GNNs
We interpret an LTLf formulae φA from the parameters
C,A,b of a learned GNNs. Based on the equation 3, (x

(t)
vj )i

depends on (x
(t−1)
vj )i and (xvj+1)i. (C)i, (A)i, (b)i de-

scribe the their dependence which is like the WφT
, bφT

of
LTLf graph of the target formula φT (Definition 3). There-
fore, for any 1 ≤ i ≤ L, we interpret a sub-formula from
(C)i, (A)i, and (b)i. We call the interpreted sub-formula as
interpretation. Since for any 1 ≤ i ≤ |P| (x)i corresponds
to an atomic proposition and (x)|P|+1 corresponds to >, we
only interpret the sub-formulae for any |P|+ 2 ≤ i ≤ L.

Because the model training by gradient descent results to
uncontrollable bias of parameters for interpreting, we only
interpret an approximate formula. The main idea is to first
recommend a set of candidate formulae based on a cheap
metric that measures the rationality of interpretations, and
then select the best formula based on some expensive met-
rics, such as the discrimination effect for the traces. To this
end, we define interpretation similarity between an interpre-
tation and a sub-formula interpreted by parameters.

Definition 6. Let φi be an LTLf formula and C,A,b pa-
rameters. The interpretation similarity between φi and the
interpretation of (C)i, (A)i, (b)i is defined as follows:

sim(φi, (A)i, (C)i, (b)i) =
1

1+dis([(C)ij ,(b)i],[−1,1]) , φi = ¬φj ,
1

1+dis([(A)ij ],[1])
, φi = Xφj ,

1
1+dis([(C)ij ,(C)ik,(b)i],[1,1,−1]) , φi = φj ∧ φk,

1
1+dis([(C)ij ,(C)ik,(A)ii,(b)i],[1,2,1,−1]) , φi = φjUφk

where dis(v1, v2) is the euclidean distance between the vec-
tor v1 and the vector v2.

Intuitively, the interpretation similarity measures the dif-
ference between an interpretation and the sub-formula inter-
preted by parameters. For example, if the interpretation of
φi is φj ∧ φk, then (C)ij is close to 1; (C)ik is close to 1;
(b)i is close to −1. These values that need to be close are
from Definition 3. The greater the degree of approximation,
the better the interpretation. The total interpretation similar-
ity of a formula φ is the product of the interpretations of all
sub-formulae of φ.

Algorithm 1: Interpreting LTLf Formulae
Input : A training set Π, parameters of GNNs

C,A,b, and the number of best
interpretations θik.

Output : A formula φ.
1 ∀i = 1, 2, . . . , |P|+ 1, fi ← (1, ∅);
2 ∀i = |P|+ 2, |P|+ 3, . . . , L, fi ← ∅;
3 for i← |P|+ 2 to L do
4 for φi ∈ {¬φj |j < i ∧ (C)ij < 0} ∪ {Xφj |j <

i ∧ (A)ij > 0} do
5 for (sj , cj) ∈ fj do
6 fi ← fi ∪ {(sim(φi, (A)i, (C)i, (b)i) ·

sj , {(i, φi)} ∪ cj)};

7 for φi ∈ {φj ∧ φk|j, k < i ∧ (C)ij , (C)ik >
0}∪{φjUφk|j, k < i∧(A)ii, (C)ij , (C)ik > 0}
do

8 for (sj , cj) ∈ fj , (sk, ck) ∈ fk do
9 fi ← fi ∪ {(sim(φi, (A)i, (C)i, (b)i) ·

sj · sk, {(i, φi)} ∪ cj ∪ ck)};

10 sort fi according to the total interpretation
similarity and preserve the top θik elements in
fi;

11 construct top θik best candidate formulae Φ from φL;
12 φA ← select the best formula from Φ according to

some priorities;
13 return φA;

Algorithm 1 shows the process of interpreting. We inter-
pret every sub-formula from bottom to top, i.e. interpret φi,
where i is from |P| + 2 to L (lines 3-10). fi denotes the set
of total interpretations of φi, which includes the interpreta-
tions of φi and its sub-formulae. (si, ci) ∈ fi denotes the
tuple of total interpretation similarity of φi (si) and a set of
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interpretations of sub-formulae of φi (ci). (j, φj) ∈ ci de-
notes the interpretation of φj . Intuitively, we can construct
the entire formula φi from top to bottom by traversing ci.
For each φi, we first enumerate all possible interpretations
of φi and update fi (lines 4-9). Then, we sort fi according
to the total interpretation similarity to preserve the top θik
best total interpretations for φi (line 10). Finally, we obtain
the top θik best candidate formulae Φ from φL (line 11). We
ranks the candidate formulae according to the priorities: (1)
the accuracy of traces classification; (2) the size of formulae;
(3) the interpretation distance. We select the best formula φA
as the result of interpreting (line 12). We use an example to
illustrate Algorithm 1.

i φi sim total sim fi

1 φ1 1 1 {(1, ∅)}
2 φ2 1 1 {(1, ∅)}
3 ¬φ2 1 1 {(1, {(3,¬φ2)})}

4
Xφ2 0.56 0.56 {(1, {(4,Xφ3), (3,¬φ2)}),

(0.56, {(4,Xφ2)})}Xφ3 1 1

5

φ1 ∧ φ3 0.77 0.77

{(0.83, {(5, φ1Uφ4),
(4,Xφ3), (3,¬φ2)}),
(0.77, {(5, φ1 ∧ φ3),

(3,¬φ2)})}

φ1 ∧ φ4 0.56
0.31
0.56

φ3 ∧ φ4 0.54
0.30
0.54

φ1Uφ3 0.43 0.43

φ1Uφ4 0.83
0.46
0.83

φ3Uφ1 0.49 0.49

φ3Uφ4 0.73
0.41
0.73

φ4Uφ1 0.44
0.41
0.44

φ4Uφ3 0.40
0.22
0.40

Table 1: The process of Algorithm 1 on Example 2. The or-
der in each row related to φ4 of column total sim is the same
as the row where i = 4. The numbers in bold denote the θik
elements in fi. fi is shown after preservation.

Example 2. Assume |P| = 2, θik = 2, and C,A,b are as
follows, where we remove (x)|P|+1 corresponding to > for
simplification.

C = A = b =
1 0 0 0 0
0 1 0 0 0
0.4 −1 0 0 0
0 0 0 0 0
1 0 0.7 1.8 0



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0.2 1 0 0
0 0 0 0 1




0
0
1
0
−1


First, f1, f2 ← {(1, ∅)}, f3, f4, f5 ← ∅. Then, we calculate
fi for each i from 3 to 5. The enumerations in each itera-
tion are shown in Table 1. Finally, we construct top θik best
candidate formulae Φ from φL. Take the first element in φL,
(0.83, {(5, φ1Uφ4), (4,Xφ3), (3,¬φ2)}), for an example. It
represents that φ5 = φ1Uφ4, φ4 = Xφ3, φ3 = ¬φ2. We

only use the atomic propositions φ1, φ2 to represent φ5, so
φ5 = φ1UX¬φ2. We select the best formula φA according
to the priorities.

Preliminary Results
To evaluate our approach, we considered three research
questions as follows. (1) Is GLTLf better than state-of-the-
art (SOTA) approaches in noisy data or noise-free data? (2)
What is the performance of GNN model and interpreting
method? (3) How about the scalability of the size of for-
mulae and the robustness of hyperparameter kg?
Competitors. We compared GLTLf with three SOTA ap-
proaches in different setting shown in Table 2.

approach noise arbitrary

C.&M. (Camacho and McIlraith 2019) × X
BayesLTL (Kim et al. 2019) X ×

MaxSAT-DT (Gaglione et al. 2021) X X
GLTLf (Ours) X X

Table 2: Details about SOTA approaches. “noise” means
noisy data. “arbitrary” means arbitrary formulae.

Datasets. We used randltl tool of SPOT (Duret-Lutz et al.
2016) to generate random formulae. The tool generated
unique formulae following a specified token distribution
(P, B, standard logical operators, temporal modal opera-
tors) in a specified size interval. The number of different
atomic propositions was fixed to 5. Our token distribution
put weight as follows, P: 2.5, >: 1, ¬: 1, ∨: 1, X: 1, and
U: 1. The propositions in P obeyed uniform distribution.
We generated 5 domains for kf ∈ {3, 6, 9, 12, 15}. For
each domain, we generated 50 datasets. For each dataset,
we generated a formula of which has kf sub-formulae of
non-atomic propositions and then we randomly generated
250/250 positive/negative traces of this formula as the train-
ing set, 500/500 positive/negative traces of this formula as
the test set.

To generate a trace, we first determined the length of the
trace by an random integer between 1 and 20. Then for each
state in the trace, each atom proposition was set true with a
probability of 1

3 . For each trace in the set, we used a sym-
bolic path checking algorithm to decide whether it is a pos-
itive trace or a negative one. If there ware not enough pos-
itive/negative traces, we generated more random traces and
continue the procedure.

To generate noisy data, following the work (Kim et al.
2019; Gaglione et al. 2021), we randomly chose some traces
from the original data and give them wrong labels (if it was
a positive label, it becomes a negative label, and vice versa).
The number of traces with wrong labels is determined by the
noise rate δ. For example, if the noise rate is 0.1, 10% of the
traces will be given wrong labels.
Settings. All experiments are run on a Linux equipped with
an Intel(R) Xeon(R) Gold 5218R processor with 2.1 GHz
and 126 GB RAM. The time limit is 1 hour and the mem-
ory limit is 10 GByte for each instance. Hyperparameters of
GLTLf are set as follows: θik = 100, kg ∈ {3, 6, 9, 12, 15}
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kf = 3 kf = 6 kf = 9 kf = 12 kf = 15
Acc F1 Ns Acc F1 Ns Acc F1 Ns Acc F1 Ns Acc F1 Ns

C.&M. 99.77 99.77 50 97.93 96.79 47 97.14 95.55 35 95.10 91.91 20 93.74 87.49 8
BayesLTL 85.19 85.96 50 77.94 76.78 50 74.08 75.73 50 72.77 73.47 50 74.85 77.32 50
MaxSAT-DT 100 100 49 100 100 19 100 100 8 100 100 5 100 100 5

GLTLf 93.50 93.09 50 86.53 86.28 50 78.09 78.66 50 77.69 78.63 50 78.53 79.34 50

Table 3: Experiment results at kg = 15 on noise-free data across different approaches. “Acc” means accuracy (%). “F1” means
F1 score (%). “Ns” stands for the number of successfully solved formulae (50 total).
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Figure 1: (a) Accuracies among different noise rates. The results are the average results of the 5 accuracy when kf ∈
{3, 6, 9, 12, 15}. (b) Accuracies among different kg settings. There results are from noise-free datasets. (c) Net accuracy and
interpreting accuracy. There results are from kg = 15 setting and noise-free datasets.

to study the robustness of kg , α = 0.1, β = 0.1, and γ = 10.
We use Adam (Kingma and Ba 2015) to optimize the pa-
rameters in our model. The learning rate is set to 1e − 4.
The number of epochs is 400 and the batch size is 10. The
number of samples for BayesLTL is set to 2M and other
settings for BayesLTL are default. In experiments, all ap-
proaches first learn an LTLf formula from the training set
and then are compared by evaluating the classification effect
of the learned formulae on the test set.

Result Analysis
The results shown below are the average results on 50 dif-
ferent datasets in each domain.
Comparisons on noise-free data. As shown in Table 3,
our approach significantly surpasses BayesLTL. Although
MaxSAT-DT and C.&M. are in the lead, they cannot solve
long formulae. MaxSAT-DT and C.&M. fail to solve most
formulae (due to time-out) as kf increased.
Comparisons on noisy data. Our approach is proven to be
more noise-tolerated then other approaches by Figure 1(a).
We evaluate all compared approaches on noisy datasets with
δ ∈ {0.1, 0.2, 0.3, 0.4}. Figure 1(a) shows that GLTLf sur-
passes BayesLTL notably. MaxSAT-DT and C.&M. also
fail to solve all formulae when the training data was noisy.
Performance of interpreting. Our approach consists of net-
work training and interpreting. Thus, we studied the perfor-
mance gap between both parts. As shown in Figure 1(c),
there is a significant gap between net accuracy and interpret-

ing accuracy. The gap suggests that there is a lot of potential
for the interpreting method to evolve.
Scalability and robustness. Table 3 and Figure 1(b) show
that our approach can handle long formulae because our ap-
proach gets all the results with higher performance com-
pared to other approaches. We also studied the robustness
of network size. As shown in Figure 1(b), larger networks
achieve better performance, even when solving short for-
mulae, while small networks can also achieve comparable
performance on long formulae to larger networks, such as
GLTLf (kg = 6). Meanwhile, we find that the accuracy de-
creases with increasing formulae complexity kg except for
kg = 15. The reason might be that the formula with kg = 15
is more likely to be simplified. In summary, our approach is
able to solve formulae in various sizes and is rather robust.

Conclusions and Future Work
Learning LTLf formulae to characterize the high-level be-
havior of a system is an important and challenging prob-
lem in planning. We theoretically bridge LTLf inference to
GNN inference, which provides a new method for learning
arbitrary LTLf formulae from noisy data. Based on the the-
oretical result, we design a GNN-based approach, named as
GLTLf. Experimental results demonstrate that our approach
is stronger robustness for noisy data and better scalability in
data size.

Future work will extend our approach to learning LTLf
with uncertainty and explore interpretable GNN learning.
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