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Abstract

Recent deep models for solving routing problems al-
ways assume a single distribution of nodes for training,
which severely impairs their cross-distribution gener-
alization ability. In this paper, we exploit group distri-
butionally robust optimization (group DRO) to tackle
this issue, where we jointly optimize the weights for
different groups of distributions and the parameters for
the deep model in an interleaved manner during train-
ing. We also design a module based on convolutional
neural network, which allows the deep model to learn
more informative latent pattern among the nodes. We
evaluate the proposed approach on two types of well-
known deep models including GCN and POMO. The
experimental results on the randomly synthesized in-
stances and the ones from two benchmark dataset (i.e.,
TSPLib and CVRPLib) demonstrate that our approach
could significantly improve the cross-distribution gen-
eralization performance over the original models.

Introduction

Combinatorial optimization problems (COPs) with NP-
hardness are always featured by discrete search space and
intractable computation to seek the optimal solution. As
a fundamental COP in logistics, the vehicle routing prob-
lem (VRP) (Dantzig and Ramser 1959) concerns the cost-
optimal delivery of items from the depot to a set of ge-
ographically scattered customers through vehicle(s). It has
been extensively investigated for decades and found wide-
spread applications in reality, such as waste collection (Han
and Ponce Cueto 2015), dial-a-ride (Malheiros et al. 2021)
and courier delivery (Steever, Karwan, and Murray 2019).
The studies on VRP with deep (reinforcement) learn-
ing is emerging in recent years. Different from the con-
ventional methods, this line of works aims at automati-
cally searching heuristic policies by using neural networks
to learn the underlying patterns in instances, which could be
used to discover better policies than hand-crafted ones (Ben-
gio, Lodi, and Prouvost 2021). Towards reducing the gaps
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to the highly optimized conventional heuristic solvers in-
cluding Concorde (Applegate et al. 2006) and LKH (Hels-
gaun 2000), a large number of efforts have been performed
to invent various deep models to solve the VRP variants,
i.e., traveling salesman problem (TSP) and capacitated vehi-
cle routing problem (CVRP) (Khalil et al. 2017; Kool, van
Hoof, and Welling 2019; Chen and Tian 2019; Hottung and
Tierney 2020; Ma et al. 2021; Wu et al. 2021; Kwon et al.
2020; Li et al. 2021; Xin et al. 2021b).

Although much success has been achieved, existing deep
models always assume a pure spatial distribution of nodes
(customers) for training, i.e., uniform distribution, which
severely limits their applications given the impaired cross-
distribution generalization ability. While it is natural to stip-
ulate that a majority of typical instances follow an identi-
cal distribution, a minority of atypical (yet important) in-
stances which follow different one(s) may always exist in
reality (Hashimoto et al. 2018). In this sense, the mono-
training paradigm in existing deep models may cause in-
ferior performance or even failures for those atypical in-
stances. E.g., a trained routing policy may offer unreason-
able routes to serve a group of (important) customers whose
location pattern differs from the ones used in training. In-
tuitively, an alternative is to force the model to homoge-
neously treat all the instances of different distributions for
training. However, it does not necessarily enhance the cross-
distribution generalization performance in our view, as it
may suffer high losses on the group of the atypical instances.

To address this issue, we propose an approach by exploit-
ing group distributionally robust optimization (group DRO)
to jointly train the deep models on instances of different
groups (more than one group), where each group follows
a distribution. In particular, we aim at minimizing the loss
for the worst-case group during training, where we optimize
the weights for different groups of instances and the param-
eters for the deep model in an interleaved manner. More im-
portantly, we do not need to label the distribution for each
group during inference. In addition, we also leverage con-
volution neural network (CNN) to learn initial representa-
tions of VRP instances so that the distribution-aware fea-
tures in spatial patterns could be favorably captured to boost
the performance further. The experimental results show that,
our approach not only achieves superior performances on
the overall instances and the worst-case performance on the



atypical instances, but also exhibits desirable applicability to
different deep models. Note that we do not claim to surpass
the state-of-the-art deep methods for solving VRPs in all as-
pects, but to inject them with robustness for better cross-
distribution generalization instead. Our contributions in this
paper are summarized as follows.

* We exploit group DRO to add the dimension of ro-
bustness to deep models, which enhances their cross-
distribution generalization for solving VRPs. The pro-
posed approach could be freely applied to various deep
models, in the fashions of either supervised or reinforce-
ment learning, e.g., GCN (Joshi, Laurent, and Bresson
2019) and POMO (Kwon et al. 2020), respectively.

* We leverage CNN to initially identify the spatial pattern
of the nodes in VRP instances, which allows the deep
models to learn more informative distribution-aware rep-
resentation and thus generate solutions of higher quality.

* We apply our approach to solve randomly generated in-
stances of different distributions. The results show that it
not only improves the overall performance and the worst-
case performance over the original deep models, but also
achieves superior performance for solving the instances
from the benchmark dataset, i.e., TSPLib and CVRPLib.

Related Works

In this section, we provide a review of the deep models for
solving VRPs, and the DRO in the machine learning com-
munity, respectively.

Deep Models for VRPs

The recent learning-based methods have shown great merits
to automatically discover heuristics for solving VRPs, which
effectively circumvent massive human expertise and trial-
and-error required in the classic hand-engineering methods.
Most of the deep models concentrate on solving TSP and
CVREP, i.e., two representative VRP variants. The very early
endeavor was the Pointer Network which used a recurrent
neural network (RNN) to learn node selection in a super-
vised manner (Vinyals, Fortunato, and Jaitly 2015). Sim-
ilarly, Joshi, Laurent, and Bresson (2019) predicted edges
which will appear in the optimal solutions with supervised
learning, where a graph convolutional network (GCN) was
developed for deep embedding of both nodes and edges.
The other works diverged mainly by employing different
Transformer-based architectures and training with reinforce-
ment learning (Bello and Pham 2017; Kool, van Hoof, and
Welling 2019; Xin et al. 2021a). Specially, Khalil et al.
(2017) tackled TSP using a graph embedding network. In-
stead of learning heuristics to select nodes, another line of
works sought policies to improve solutions with local search
frameworks (Chen and Tian 2019; Lu, Zhang, and Yang
2019; Hottung and Tierney 2020; Wu et al. 2021). Among
the deep models, Kwon et al. (2020) presented a method
called POMO to train multiple rollouts on augmented in-
stances and delivered the state-of-the-art performance. On
the other hand, despite the near-optimal results, most of the
above deep models are validated with the synthesized in-
stances of the uniform distribution. The cross-distribution
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generalization is not explicitly considered in their training
process, which may degenerate on non-uniform instances,
e.g., the ones from the well-known TSPLib and CVRPLib.

Distributionally Robust Optimization

It is known that the standard maximum likelihood estimation
may degrade the inference performance of deep models, if
the training samples are out of the distribution for test (Oren
et al. 2019; Kuhn et al. 2019). This issue about the out-of-
distribution generalization is still stubborn for the general
learning models, either in supervised or reinforcement learn-
ing (Sun et al. 2020; Cobbe et al. 2019).

One of the solutions to ameliorate the generalization ca-
pability is using distributionally robust optimization (DRO),
which seeks to minimize losses over all sub-populations
of the training distribution (Ben-Tal et al. 2013; Duchi,
Hashimoto, and Namkoong 2019). It was originally de-
signed for classic underparameterized models to reduce the
training loss, by regularizing the models and defending them
against adversarial examples (Namkoong and Duchi 2017;
Sinha, Namkoong, and Duchi 2018). Different from them,
group DRO instead defines the uncertainty set as mixtures
(or combinations) of groups over training data to avoid opti-
mizing implausible worst-case groups (Hu et al. 2018; Oren
et al. 2019). In this line, Sagawa et al. (2019) applied group
DRO in the overparameterized regime with vanishing train-
ing loss and poor worst-case generalization, and suggested
that desirable accuracy for the worst-case group could be
attained even if the groups are imperfectly designated. In
this paper, we exploit group DRO to enhance the cross-
distribution generalization of deep models for solving VRPs,
where we explicitly define the uncertainty via (instance)
groups of different distributions and minimize the worst ex-
pected loss over them.

Preliminaries

In this section, we present the graph representation of TSP
and CVRP, followed by the basic rationale of DRO.

VRPs and Data

We consider TSP and CVRP in 2D Euclidean space. A TSP
instance is represented as a fully connected graph G with n
nodes {v1,vs,...,v,}, where the edge weights correspond
to distances between nodes. We target at the common objec-
tive to find a permutation of the nodes 7, i.e., a tour, which
traverses each node once and returns to the starting one with
the shortest distance. On top of the TSP graph, CVRP re-
quires one more node vy as the depot, and prescribes the
demands {01, ds, ..., d,} for each node. The objective is to
decide routes with the shortest distance for the vehicle(s)
satisfying that, 1) each route starts and ends at the depot; 2)
each node is traversed by one route; 3) the sum of demands
in a route is less than the pre-defined capacity D of vehicle.

Learning-based methods often assume a uniform distri-
bution of nodes to generate the instances, and simply pur-
sue smallest average (optimality) gap of the objective values
over them. It inevitably sacrifices the performance on atypi-
cal instances that do not follow a majority distribution (i.e.,
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Figure 1: An example illustration of our approach with VRP instances sampled from six distribution groups, which alternately
optimizes the parameters 6 of a deep model and updates the importance weights ¢ of the distribution groups in the training set.

when more than one distribution exist), which may also de-
teriorate the overall performance.

Distributionally Robust Optimization

Given a parameter family ©, loss function ¢ and training
samples = drawn from a distribution P, most of existing
deep models directly optimize the empirical risk minimiza-
tion (ERM) as below,

Ogrm = argminE _ 5[0(6; x)], )
[2C]

where P is the empirical distribution over the training sam-
ples. When the test distribution is same as the one for train-
ing, it guarantees that a model trained via ERM performs
well for test given sufficient training samples. However,
ERM may impair the performance on atypical samples since
the model is tuned to emphasize more on the majority sam-
ples of the distribution for training.

Different from ERM, DRO aims at optimizing parameters
@ for a model to achieve more accurate predictions over the
test set following diverse or even unknown distributions. It
hinges on a more conservative objective that encourages the
model to assign higher weights to optimize for atypical sam-
ples. Formally, DRO minimizes the worst expected loss over
an uncertainty set of distributions Q as below,

b

where Q includes the potential test distributions that we
hope the model to perform well on, and p is a possible train-
ing distribution sampled form the uncertainty set. By mini-
mizing the worst-case loss for all distributions in the uncer-
tainty set Q, we can also expect to achieve desirable over-
all performance. Note that the objective in Eq. (2) does not
necessarily rely on the unknown test distribution p’. In the
meantime, it is also the upper bound of the test risk (Oren
etal. 2019), i.e., Ep [((z;0)] < sup,cg Ep[€(0; x)].

min
0cO

{’R(G) = sup E;,[4(6; x)] 2)

pEQ

Methodology

In this section, we first exploit the group DRO to train deep
models for solving VRPs, which allows them to favorably
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handle instances of different distributions. Then we fill the
gaps for deep models that hinge on reinforcement learn-
ing (RL). Finally, we present a convolutional module which
could effectively initialize the distribution-aware represen-
tations for VRP instances. The overview of our approach is
illustrated in Figure 1.

Group DRO for VRPs

We stipulate that the VRP instances in the training set follow
a mixture of distributions rather than a single one, e.g., the
majority of typical instances are generated uniformly along
with the minority of atypical ones sampled from another dis-
tribution. While different from those in existing deep mod-
els, this setting offers two merits that, 1) it explicitly consid-
ers heterogeneous instances, where atypical (yet important)
ones may always exist in reality even on a daily basis; 2)
the cross-distribution generalization ability could be poten-
tially enhanced. To train deep models with the above setting,
DRO is a conceptually appealing option to balance the train-
ing on instances of different distributions, since it minimizes
the worst expected loss over different distributions in the un-
certainty set. It will also potentially empower deep models
to tackle the discrepancy between the training and test dis-
tributions. However, the effectiveness of DRO often hinges
on the choice of the uncertainty set Q, where common prac-
tice is to define it as a divergence ball over the entire training
distribution. Unfortunately, it may lead to an overly conser-
vative set of potential test distributions that overemphasizes
on the minority instances.

To circumvent this issue, we exploit the group DRO and
explicitly leverage prior knowledge of distributions to group
the instances in the training set. In this way, the inferior
models that are overwhelmed by unreasonable worst-case
distributions due to the divergence ball in DRO, will be
avoided (Duchi, Hashimoto, and Namkoong 2019). Particu-
larly, we allocate training instances of each distribution into
arespective group, termed distribution group, and the uncer-
tainty set Q is defined as the combination of these distribu-
tion groups as below,

Q= {ZQng:qum}y
g=1

3)



Algorithm 1: Group DRO for Solving VRPs

Input: Training set S, hyperparameter for M (6; x)
Output: Model parameters 6

1: Initialize model parameters /(%)
2: Initialize group weights ¢(*)

3: fort=1,2,...,7 do

4:  Sample a group index g from (1,...,m)

5: fort' =1,2,...,7" do

6 Sample a batch of instances s from group g

7: Sample trajectories via M (6(); z) solving s

8 Calculate the reinforce loss ¢,

90U 0 g IVe, (60D; (2, 9))

10:  end for

1: ¢ g Vg, « g exp (nq&- (0“'); (ar,g)))
. 14 H t / /

12:  Renormailize weights by ¢ < ¢ /2 g Ay

13: end for

where the training set is a mixture of m distribution groups
P,,indexedby G = {1,2,...,m}; A,, denotes the (m—1)-
dimensional probability simplex; g, denotes the importance
weight of the g-th distribution group.

In light of the above setting, each training instance is as-
sociated with a 2-tuple (z, g), where x denotes the input to
deep models for an instance and g is its group index. While
the group index of each instance in training will enhance
the deep models with more desirable cross-distribution gen-
eralization ability, this group index is not required during
inference. Formally, we update the parametrized model by
minimizing the worst empirical expected loss as below,

Opro := arg min

0€O

{R(Q) = I;leaé( E, .p,

[ae;xn}, @

where 7%(6‘) refers to the maximum empirical expected loss

among all distribution groups, and each group P, is an
empirical distribution over the corresponding training in-
stances. The above equation could be further reformulated
as below,

m

&)

min sup
€0 gen, |

4B (2)~p, [€(0; )],
1

where ¢ is a m-dimensional trainable vector with the same
meaning as the one in Eq. (3). According to Eq. (5), we pro-
pose to optimize the parameters of the deep model and im-
portance weights of the distribution groups in an interleaved
manner. Specifically, we train a deep model to minimize the
loss 7@(9) over distribution groups, while importance weight
qg is updated and used to emphasize the expected losses for
each distribution group g.

Adapt DRO with RL The DRO with the fashion of su-
pervised learning has been widely studied in the machine
learning community (Namkoong and Duchi 2017; Oren
et al. 2019; Sagawa et al. 2019), which could be naturally
adapted with the deep models trained in a supervised way
for solving VRPs, such as GCN (Joshi, Laurent, and Bres-
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son 2019). Compared with supervised learning, reinforce-
ment learning (RL) is much preferred given its independence
of optimal solution as the ground-truth label. For example,
POMO (Kwon et al. 2020) trained with reinforcement learn-
ing, has achieved state-of-the-art performance among all the
deep models. As such, we elaborate on how to adapt the
DRO with RL algorithms.

Without loss of generality, we define a deep model M
to sample solutions to VRPs, i.e., Py(rw|z) M(6; x),
where 6 denotes trainable parameters for M; x and 7 denote
the input and the solution, respectively. We extend REIN-
FORCE (Williams 1992) to encourage M to generalize well
across different distributions. The reinforce loss ¢,. for VRPs
is the expected length of the routes in the solution, i.e., [(7).
Accordingly, we train the deep model parameters 6 using the
gradient of the worst expected reinforce loss as below,

V/i= sup Z 49Enr(0:2) [(1(m) — b()) ViegM (6; x)], (6)

qung:l x~ Py

where b(x) denotes the baseline to reduce the variance of
gradients. We maintain a importance weight g, for the dis-
tribution group F. The hybrid training with DRO and RL is
summarized in Algorithm 1. Particularly, following the DRO
for supervised learning (Sagawa et al. 2019), we alternately
optimize model parameters 6 using stochastic gradient de-
scent (SGD) with the fixed importance weights ¢ (line 9),
and update g using exponentiated gradient ascent (line 11).
Additionally, we fix g for every T” iterations to stabilize the
training (lines 5-10). Note that this algorithm can be applied
to a wide range of deep RL models for VRPs.

Distribution-aware Embedding via CNN

On the one hand, the nodes in a VRP solution are always
connected with the ones in their close proximities, and the
local spatial information is critical to reveal the node dis-
tribution, which is helpful to enhance the cross-distribution
generalization performance for the deep models. On the
other hand, while the convolutional neural networks (CNN5)
have demonstrated strong capability for learning spatial fea-
tures in computer vision, directly mapping the graph rep-
resentation of VRP instances to 2-dimensional images and
then applying CNN did not bring obvious benefit (Miki and
Ebara 2019; Ling et al. 2020).

This motivates us to leverage CNN in more elegant ways,
i.e., 1) rather than mapping them to 2-dimensional images,
we adopt one-dimensional convolution to learn the repre-
sentation of the nodes; 2) rather than directly relying on the
learned representation by CNN, we feed them as the input to
the subsequent deep models that are equipped with more ad-
vanced architectures (e.g., Transformer in POMO) to learn
deeper representations. Accordingly, in our approach, we
adopt a convolutional embedding layer to identify the micro-
patterns of VRP instances by exploiting the spatial invari-
ance of the nodes. In specific, we embed the input of a node
i by performing one-dimensional convolution over its K-
nearest neighbors in the input graph G. Firstly,the convolu-
tional layer computes dj-dimensional embedding based on



the coordinates of each node ¢ and its K -nearest neighbors.
Then we produce the embedding h; for node ¢ using a linear
projection as h; = Wix; +Wsh,;, where x; is the coordinate
of node i; h; is the convolutional results of CNN embedding
layer; W7 and W5 are trainable matrices. With the embed-
dings for each node h; which carries spatial information of
its K -nearest neighbors, different deep models can process
them by the encoder to further produce more informative
embeddings for the decoder.

Experiments and Analysis

In this section, we conduct experiments to evaluate the effi-
cacy of our approach on the randomly generated instances,
and also the ones from two benchmark datasets, i.e., TSPLib
and CVRPLib, respectively.

Experimental Settings

Typically, we consider 50 and 100 nodes for TSP and CVRP,
respectively. We employ six different types of distributions
to generate instances for them, including uniform, explo-
sion, implosion, expansion, cluster, and grid (Bossek et al.
2019; Zhao et al. 2020), and also normalize them to the
[0,1] square. We generate uniform distribution instances as
the typical group, and the other one from the five to gener-
ate atypical instances as the minority group. As such, five
combinations of distributions will be initially considered for
each problem and size for training, while we will also addi-
tionally consider the combination of the six distributions to-
gether when applying our approach to solve the complex in-
stances in TSPLib and CVRPLIib. Particularly, regarding the
cluster instances, we set 2 clusters for TSP50 and CVRP50,
and 4 for TSP100 and CVRP100, respectively. Regarding

CVRP, we compute the demand for each node as Si =6;/D,
where 0; is uniformly sampled from {1,2,...,9} and D =
40 and 50 for CVRP50 and CVRP100, respectively. An ad-
ditional “depot” node without demand is created in a random
inside location.

We apply our approach to two different types of deep
models for solving VRPs, i.e., GCN (Joshi, Laurent, and
Bresson 2019) ' and POMO (Kwon et al. 2020) 2, which
are trained in the fashion of supervised learning and rein-
forcement learning, respectively. We term GCN and POMO
that are equipped with our group DRO and CNN as DROG
and DROP, respectively. Pertaining to DROG, we follow the
suggestion stated in the original work of GCN by modifying
the output to predict the next node to visit rather than an ad-
jacency matrix. Thus, we train it as an auto-regressive model
while still in the supervised way. The training labels (dis-
tance of the route) of TSP and CVRP are obtained by Con-
corder (Applegate et al. 2006) and LKH3 (Helsgaun 2000)
respectively. We also set the inner training loop number 7"
in Algorithm 1 to 1, and use the cross-entropy loss to op-
timize edge probabilities from output layer for the sake of
GCN. Pertaining to DROP, the original POMO introduces
a data augmentation technique to exploit the symmetries of

Uhttps://github.com/chaitjo/graph-convnet-tsp
*https://github.com/yd-kwon/POMO
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VRP instances in inference, where we adopt x 8 augmenta-
tion following its original setting. We also apply group ad-
justments with strong /s penalties in group DRO as did in
(Sagawa et al. 2019). Regarding the convolutional embed-
ding layer by CNN, the input length for each node equals
to 2 (coordinate) for TSP and 3 (coordinate+demand) for
CVRP. We extract the spatial pattern of K=10 nearest nodes
with the kernel size 11 and set the number of kernels to 128.
The output dimension is fixed to 128.

Our approach is implemented in PyTorch 1.2 (Paszke
et al. 2019) with Python 3.7. We run the experiments on the
device with a single Nvidia GeForce RTX 2080Ti GPU and
a single CPU of an Intel Xeon i9-10940X CPU at 3.3 GHz.
We use the SGD optimizer with minibatches and a momen-
tum. The learning rate 7 is 10~ for all experiments. Train-
ing time varies with the size of the problem, from a couple of
hours to a week. Taking TSP100 as an example, one training
epoch consumes about 11 minutes. We trained the models up
to 2,000 epochs (~ 10 days) to observe full convergence, al-
though most of them are converged within 300 epochs (~ 2
day). However, the inference time is much shorter, which is
almost the same as the respective original models, as shown
in the following tables. Note that all baseline deep models
including GCN and POMO (and AM) are re-trained in our
device, considering the instances used in this paper are es-
sentially different from the ones in their original works.

Comparison with Baselines

We compare DROG and DROP with a variety of baselines,
1) Concorde, a specialized exact solver for TSP; 2) LKH3,
a strong heuristic solver with state-of-the-art performance
on many VRP variants; 3) attention model (AM) (Kool, van
Hoof, and Welling 2019), the Transformer based deep model
which achieves desirable results on both TSP and CVRP and
recognized as a milestone; 4) GCN (original), a graph con-
volutional network for VRP which is trained in a supervised
way and outputs the probabilities of edges that will appear
in the optimal route(s) in the format of adjacency matrix;
5) POMO (original), a recent deep model developed based
on AM, which is trained by RL and achieves state-of-the-art
results among the deep models. Following the common set-
tings in the works of the deep models, we use Concorde to
solve TSP instances, and LKH3 to solve CVRP instances.

We train both DROG and DROP with five pairs of dis-
tribution groups in DRO. Specifically, the training set for
each pair comprises 100,000 typical instances from the uni-
form distribution and 10,000 atypical instances from one of
the distributions including explosion, implosion, expansion,
cluster, and grid, respectively. The test set comprises 10,000
typical instances and 1,000 atypical instances sampled from
the same pair of distribution groups used in training. Note
that, the label or index of the distribution group is not re-
quired during inference. All the baseline deep models are
trained and tested using the same instances as ours. Since
GCN did not solve CVRP in its original work, we do not
apply it to solve CVRP either.

We record the performance in terms of objective value,
(optimality) gap and computation time, which are aver-
aged over the instances in each test set. Particularly, we
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25m
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17.58 1.91%
17.65 2.32%
17.52 1.57%

30m
30s
29s

12.55 0.80%
12.71 2.09%
12.60 1.20%

12.26 1.24%
12.43 2.64%
12.28 1.40%

6.13 0.00%
6.36 3.75%
6.24 1.79% 6.
6.18 0.82% 6.26
6.29 2.61% 6.61
6.20 1.14% 6.23

0.00%
5.82%
5.49%
1.13%
6.79%
0.65%

13m
7m
23m
24m
19s
19s

8.19 0.00%
8.46 3.30%
8.41 2.69%
8.34 1.83%
8.40 2.56%
8.34 1.83%

Solvers
AM
GCN
DROG
POMO
DROP

Expansion

0.00%
4.74%
2.69%
0.86%
2.37%
0.75%

1h

1h
1m
1m

28m
54m

16.98 0.00%
17.66 4.00%

17.37 0.00%
18.23 4.95%

%h
44m

11.86 0.00%
12.23 3.12%

12.14 0.00%
12.69 4.53%

5h
12m
2h
2m
2m

17.75 2.19%
18.04 3.86%
17.73 2.07%

17.32 2.00%
17.55 3.36%
17.30 1.88%

12.24 0.82%
12.49 2.88%
12.28 1.15%

11.95 0.76 %
12.08 1.85%
11.97 0.93%

28m
26s
25s

5.88 0.00% 6.17
6.12 4.08% 6.67
6.02 2.38% 6.34
591 0.51% 6.24 1.13%
6.07 3.23% 6.33 2.59%
5.90 0.34% 6.22 0.81%

0.00%
8.10%
2.76%

10m
6m

22m

23m
18s
18s

7.44 0.00%
7.81 4.97%
7.69 3.36%
7.64 2.69%
7.68 3.23%
7.58 1.88%

Solvers
AM
GCN
DROG
POMO
DROP

Cluster

0.00%
4.73%
4.07%
2.10%
2.50%
1.58%

1h

1h
Im
Im

26m
50m

8h
40m
2h
2m
2m

11.68 0.00%
12.04 3.08%

11.83 0.00%
12.47 5.41%

5h
10m

16.69 0.00%
17.30 3.65%

16.98 0.00%
17.97 5.83%

17.50 3.06%
17.73 4.42%
17.42 2.59%

17.09 2.40%
17.22 3.18%
17.01 1.92%

12.10 2.28%
12.32 4.14%
12.03 1.69%

11.84 1.37%
11.88 1.71%
11.79 0.94%

27m
23s
23s

6.02 0.00% 6.28 0.00%
6.24 3.65% 6.65 5.89%
6.19 2.82% 6.38 1.59%
6.06 0.66% 6.30 0.32%
6.20 2.99% 6.41 2.07%
6.10 1.33% 6.33 0.80%

7.85 0.00%
8.13 3.57%
8.09 3.06%
7.96 1.40%
8.01 2.04%
7.93 1.02%

7.99
8.51
8.40
8.15
8.32
8.09

11m
Tm
22m
23m
18s
17s

Solvers
AM
GCN
DROG
POMO
DROP

Grid

0.00%
6.51%
5.13%
2.00%
4.13%
1.25%

1h

28m
S51m

17.05 0.00%
17.90 4.99%

11.72 0.00%
12.14 3.58%

11.97 0.00%
12.52 4.59%

5h
10m

16.71 0.00%
17.32 3.65%

17.51 2.70%
17.75 4.11%
17.47 2.46 %

17.08 2.21%
17.21 2.99%
17.00 1.74%

27m
25s
25s

12.12 1.25%
12.35 3.17%
12.08 0.92%

11.83 0.94%
11.92 1.71%
11.80 0.68%

! The gap is computed based on Concorder for TSP and LKH3 for CVRP respectively.
2 & means the average results over atypical instances; Bold means the best result from deep models.

Table 1: Results for Comparison with Baselines

also record the objective value and gap for the atypical in-
stances to indicate the worst-case performance. All results
are summarized in Table 1. We see that our models (DROG
and DROP) significantly outperform all other learning-based
baselines on the five pairs of distributions, achieving much
smaller objective values and gaps on both TSP and CVRP of
different sizes. The superiority is more obvious for the atyp-
ical instances from the minority group, where one motivat-
ing observation is that the gaps delivered by DROP are much
smaller than those by POMO, e.g., 1.25% vs 4.13% (grid)
and 2.59% vs 4.42% (cluster) on TSP100 and CVRP100,
respectively. We also found that while the original GCN is
inferior to POMO, DROG significantly surpasses POMO for
all problems and achieves even better results than DROP
occasionally, e.g., TSP50 (grid), TSP100 (expansion) and
CVRP50 (implosion).

Although the deep models like AM, GCN and POMO
have demonstrated desirable performance when they are
trained and tested solely using the uniform distribution (as
reported in their original works), their overall and worst-case
performance obviously deteriorate in the presence of atypi-
cal instances (as shown in Table 1). One of the major reasons
is that the models would be overwhelmed by the typical in-
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stances (majority) even if they also consider the atypical in-
stances (minority) in training. In contrast, our approach ele-
gantly balances the training on different distribution groups
(i.e. either the majority or minority one) by leveraging the
group DRO, and enhance the distribution-aware embedding
by CNN. Moreover, our approach is versatile to different
deep models either trained by supervised or reinforcement
learning, such as GCN and POMO used in our experiments.
Besides, our approach would not incur much additional time
for inference, as suggested in Table 1.

Ablation Study

To further verify the effectiveness of the components in our
approach, i.e., group DRO and CNN, we conduct an ablation
study on TSP100 by separately removing the correspond-
ing component from our DROP. The experimental setting
is similar to the previous one, and the results are displayed
in Table 2. When POMO is solely equipped with CNN,
we observe that the average objective values for the over-
all instances and the atypical instances are both decreased.
Benefiting from the initial distribution-aware embedding, it
indicates that the convolutional embedding layer can help
learn better spatial patterns of nodes and improve the gen-



Concorde POMO POMO+CNN POMO+DRO DROP
Distribution|Obj. Gap Obj* Gap* |Obj. Gap Obj* Gap* |Obj. Gap Obj* Gap* |Obj. Gap Obj* Gap* |Obj. Gap Obj* Gap*
Explosion |8.58 0.00% 9.15 0.00%|8.84 3.03% 9.63 5.25%|8.80 2.56% 9.62 5.14%|8.76 2.10% 9.45 3.28%|8.73 1.75% 9.40 2.73%
Implosion |8.76 0.00% 9.50 0.00%|8.89 1.48% 9.80 3.16%|8.83 0.80% 9.76 2.74%8.83 0.80% 9.59 0.95%|8.81 0.57% 9.58 0.84%
Expansion [8.19 0.00% 9.28 0.00%|8.40 2.56% 9.50 2.37%|8.37 2.20% 9.45 1.83%8.35 1.95% 9.37 0.97%|8.34 1.83% 9.35 0.75%
Cluster 7.44 0.00% 7.61 0.00%|7.68 3.23% 7.80 2.50%|7.61 2.28% 7.79 2.37%|7.62 2.42% 7.75 1.84%)|7.58 1.88% 7.73 1.58%
Grid 7.85 0.00% 7.99 0.00%|8.01 2.04% 8.32 4.13%|7.97 1.53% 8.27 3.50%(7.95 1.27% 8.12 1.63%|7.93 1.02% 8.09 1.25%
Table 2: Results for Ablation Study
Instance | Opt. AM POMO | DROG DROP and the original model, which well justified the effective-
Eil51 426 439 136 427 426 ness of the two components that could jointly promote the
Berlin52 7542 8352 7836 7553 7544 performance on both the overall and atypical instances.
St70 675 691 683 684 679
rat99 1211 1340 1286 | 1233 1248 Evaluation on Benchmark Dataset
KroA100 21282 46621 38452 25196 24623
KroB100 22141 37921 33521 26583 24874 We continue to evaluate DROG and DROP on the public
KroC100 20749 34258 30736 | 24343 24785 benchmark dataset, i.e., TSPLib (Reinelt 1991) and CVR-
KroD100 21294 36141 29512 | 23633 23257 PLib (Uchoa et al. 2017), whose instances may follow vari-
KroE100 22068 29628 26829 | 26289 26057 ous distributions that are totally different from ours. We train
rq100 7910 8252 8180 8137 8043 our models on 150,000 instances, which include 100,000
lin105 1437915148 14922 14876 14688 instances from uniform distribution, and 50,000 instances
prl07 44303 53846 52846 | 46572 47853 fi the other five, with 10,000 for each (although they do
ch150 6528 6930 6844 | 6792 6709 rom ’ ’ gh they
[at195 2323 2612 2554 2466 2403 not need to be the same). Then we apply our models trained
kroA200 20368 35637 34972 34682 34275 on TSP100 and CVRP100 to solve some representative in-
stances, whose sizes range from 51 to 200. We separately
X-n101-k25 | 27591 38264 29484 | 29167 28949 display results for TSP and CVRP in the upper and lower
X-nl06-k14 | 26362 27923 27762 | 27331 27308 half of Table 3. The baseline models are also re-trained us-
X-nl10-k13 | 14971 16320 15896 | 15226 15386 ing the same instances. It is revealed that DROG and DROP
X-nlI5-K10 | 12747 14055 13952 ) 13921 13783 achieve near-optimal solutions on both TSP and CVRP. Both
X-n120-k6 13332 14456 14351 14227 14058 .
X-n125-K30 | 55539 74329 69560 | 64596 61382 DROG and DROP, with average gaps of 9.68% and 8.08%,
X-n129-k18 28940 30869 30155 30181 30075 prOduce much better results than that of AM and POMO,
X-n134-k13 | 10916 13952 13483 13117 12846 with average gaps of 29.93% and 17.57%, respectively, al-
X-n139-k10 | 13590 14893 14132 | 14153 13979 though they are using the same training set as ours. This
X-nl43-k7 | 15700 18251 17923 | 17547 17682 superiority suggests that, our approach equipped with group
X-n153-k22 | 21220 38423 26386 | 24591 24386 DRO and CNN, allows the deep models to favorably gener-
X-n157-k13 | 16876 22051 19978 | 18993 18378 alize to different distributions and sizes. Last but not least,
X-nl81-k23 | 25569 27826 ~ 27428 | 27232 27094 the inference of DROG and DROP are almost as efficient as
X-n190-k8 | 16980 37820 22310 | 20682 19864 AM and POMO, respectively, indicating that our approach
X-n200k36 | 58578 76528 73135 | 68283 64921 introduces negligible additional computation overhead.
Avg. Gap \ 0.00% 29.93% 17.57% \ 9.68%  8.08%

! Bold means the best result from deep models.

Table 3: Generalization Results on TSPLib and CVRPLIib

eralization performance. On the other hand, when POMO
is solely equipped with group DRO, it can also amelio-
rate the performance over the original POMO on both the
overall instances and the atypical instances. We also found
that the advantage brought by DRO (POMO+DRO) is more
significant than that of CNN (POMO+CNN), especially on
the atypical instances, since it is specialized to improve the
performance for instances of the worst-case group. Finally,
when equipped with both CNN and group DRO, our DROP
achieves further better results than the respective variants
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Conclusion

In this paper, we exploit group DRO (distributionally robust
optimization) to enhance the cross-distribution generaliza-
tion ability for deep models that are used to solve VRPs. We
also leverage an elegant CNN to learn the initial distribution-
aware representations of VRP instances. Our approach is
readily applicable with either supervised or reinforcement
learning and evaluated with two well-known deep models,
i.e., GCN and POMO. Empirical results show that our ap-
proach significantly improves the cross-distribution general-
ization performance and outstrips other learning based meth-
ods on both the synthesized and benchmark dataset. The ab-
lation study also verifies the efficacy of components in our
approach. In future, we will investigate more flexible combi-
nations of distributions and tackle problems of larger scales.
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