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2 École polytechnique fédérale de Lausanne, Switzerland

3 Ben-Gurion University of the Negev, Israel
4 Ariel University, Israel

kshitijgajjar@gmail.com, agastya.jha@epfl.ch, manishk@post.bgu.ac.il, abhiruk@ariel.ac.il

Abstract

Reconfiguring two shortest paths in a graph means modify-
ing one shortest path to the other by changing one vertex at a
time, so that all the intermediate paths are also shortest paths.
This problem has several natural applications, namely: (a) re-
vamping road networks, (b) rerouting data packets in a syn-
chronous multiprocessing setting, (c) the shipping container
stowage problem, and (d) the train marshalling problem.
When modelled as graph problems, (a) is the most general
case while (b), (c) and (d) are restrictions to different graph
classes. We show that (a) is intractable, even for relaxed vari-
ants of the problem. For (b), (c) and (d), we present efficient
algorithms to solve the respective problems. We also general-
ize the problem to when at most k (for some k ≥ 2) contigu-
ous vertices on a shortest path can be changed at a time.

1 Introduction
A reconfiguration problem asks computational questions of
the following type. Given two different configurations of a
system, is it possible to gradually transform one to the other?
The two most popular examples of reconfiguration problems
are the 15-puzzle (Ratner and Warmuth 1986; Goldreich
2011) and the Rubik’s cube (Demaine et al. 2011; Demaine,
Eisenstat, and Rudoy 2018). In both, we want to determine
how to reach a “solved” final configuration using a sequence
of “moves”, starting from a given initial configuration. Re-
cently, a lot of research has gone into the study of differ-
ent types of reconfiguration problems on graphs (Mouawad
et al. 2017; Lokshtanov and Mouawad 2018; Lokshtanov
et al. 2018; Mouawad et al. 2018).

In this paper, we undertake a theoretical study of the re-
configuration problem on shortest paths, known as the Short-
est Path Reconfiguration problem (abbreviated as SPR), in-
troduced by (Kaminski, Medvedev, and Milanic 2010).

Definition 1. Given an undirected, unweighted graph G
with a source vertex s and a target vertex t, we say that two
s–t shortest paths P and Q in G are reconfigurable if there
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is a sequence of s–t shortest paths (P0, P1, . . . , Pk−1, Pk)
where P0 = P and Pk = Q (for some positive integer k)
such that Pi and Pi+1 (for each i ∈ {0, 1, . . . , k− 1}) differ
in only one vertex. (See Figure 1 for an example.)

Technically, SPR is the decision problem of checking
whether two given shortest paths in a graph are reconfig-
urable. Additionally, one can ask questions of the follow-
ing form. If two paths are reconfigurable, is the reconfigura-
tion sequence short enough? If so, is the sequence efficiently
computable?
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Figure 1: Reconfiguring a path P = P0 to another path Q =
P5 by changing one vertex at a time. Note that all paths in
the sequence (P0, P1, P2, P3, P4, P5) are s–t shortest paths.

SPR has several real-world applications, some of which
we describe in Subsection 1.2. Despite these numerous ap-
plications, SPR has not received its fair share of attention
from the theoretical standpoint. This is because when re-
search on reconfiguration began almost forty years ago, the
main motivation behind studying the problem was in the
context of coordinated motion planning of robots (Hopcroft,
Schwartz, and Sharir 1984). Large swarms of robots are op-
erated by a central algorithm, which gives specific instruc-
tions to each robot so that they can function as a team to
solve a given task. Given the initial and final configurations
of the robots (a configuration is simply a snapshot of the
positions of the robots), the goal of the algorithm is to mod-
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ify the positions of the robots in a sequential, step-by-step
manner so that they can reach the final configuration with-
out bumping into each other. (A possible usage of the robots
in this setting is to manage a warehouse or inventory.)

Soon thereafter, it was shown that coordinated motion
planning of robots is PSPACE-complete (Hopcroft and Wil-
fong 1986), implying that there is no polynomial-time algo-
rithm for it unless P = PSPACE. Another closely related
problem that was studied roughly around the same time was
known as 2-dimensional planar linkage (Hopcroft, Joseph,
and Whitesides 1984). Although it was not explicitly stated,
it is easy to observe that 2-dimensional planar linkage is
essentially a problem about reconfiguring paths of a fixed
length on a graph, which is a special case of SPR. For two
decades after that, this observation went unexplored and the-
oretical research in SPR remained dormant. Recently how-
ever, there has been a flurry of papers on SPR (Kaminski,
Medvedev, and Milanic 2010; Bonsma 2013, 2017; Asplund
et al. 2018; Asplund and Werner 2020).

Prior to this work, (Bonsma 2013) showed that SPR is
PSPACE-complete in general. A careful look at their proof
further tells us the following.

Observation 1. SPR is PSPACE-complete even when the
input graphs are restricted to be bipartite.

On the positive side, it known that SPR is solvable in
polynomial time for certain graph classes such as planar
graphs (Bonsma 2017), grid graphs (Asplund et al. 2018),
claw-free graphs and chordal graphs (Bonsma 2013).

In this paper, we further investigate the complexity of
SPR, particularly focusing on graph classes that model real-
world problems.

1.1 Our Contributions
Our contributions are twofold. First, we study SPR for var-
ious graph classes. And second, we introduce a generalized
variant of SPR.

SPR: circle graphs, Boolean hypercube, bridged graphs.
For circle graphs, permutation graphs and the Boolean hy-
percube, we provide a complete characterisation of short-
est paths and their reconfigurability for SPR. This automat-
ically yields polynomial-time algorithms for them. For the
Boolean hypercube, we show that every shortest path cor-
responds to a permutation. In fact, the length of the short-
est reconfiguration sequence between two shortest paths is
precisely the Kendall tau distance (Sedgewick and Wayne
2016) between their respective permutations. See Subsec-
tion 3.3 for more details. The characterisation for circle
graphs and permutation graphs is a bit more technically in-
volved. Details can be found in Subsection 3.1. For a sub-
class of metric graphs called bridged graphs, we show that
SPR can be solved in polynomial time (Subsection 3.2). Fi-
nally, for graphs of bounded diameter, we observe that SPR
can be solved in polynomial time (Subsection 3.4).

k-SPR: hardness and optimization variants. We intro-
duce a novel generalisation of SPR called k-SPR, in which

we are allowed to change at most k successive vertices1 (in-
stead of only one vertex) at a time. We show that k-SPR is
PSPACE-complete when k = O(1), and can be solved in
polynomial time when k ≥ n/2 (Subsection 2.1).

It is known that SPR can be solved in polynomial time
for line graphs (Bonsma 2013). We show that k-SPR is
PSPACE-complete for line graphs for all k ≥ 2 (Subsec-
tion 2.1), demonstrating that k-SPR can be significantly
harder than SPR. We also use a “lift-and-project” type
proof to show that SPR is PSPACE-complete for graph
powers (Subsection 2.2) by using the PSPACE-hardness of
k-SPR.

We also study a few optimisation variants of k-SPR, and
show that there is no polynomial-time algorithm to approxi-
mate k-SPR within a factor of 2O(n2), unless PSPACE = P
(Section 4). Finally, we examine the gradation of the maxi-
mum number of different shortest paths in n-vertex graphs
as the distance between s and t varies from O(1) to Ω(n)
(Section 5).

1.2 Applications

Time

Figure 2: An overlap graph (above) for a cargo ship, and
its corresponding circle graph (below). Each interval in the
overlap graph represents a cargo container, its two end points
being the loading/unloading times of the container on the
ship. Figure inspired by a similar figure from (Gavril 1973).

The shipping container stowage problem. SPR for cir-
cle graphs is applicable in maritime transport. Around 80%
of all traded goods are transported by sea (Review of Mar-
itime Transport 2018). Cargo shipping a billion dollar in-
dustry which leaves a considerable carbon footprint on the
environment (Organisation Co-operation and Development
2021). Therefore, an efficient process for stowing freight
containers on cargo ships is desirable. The process of shift-
ing these containers is an expensive, time-consuming and

1More formally, let (v1, v2, . . . , vr) be an s–t shortest path.
Then for each 1 ≤ i < j ≤ r such that j − i < k, one may re-
place the subpath (vi, vi+1, . . . , vj) by a completely new subpath
(ui, ui+1, . . . , uj) in a single reconfiguration step of k-SPR.
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delicate task. The problem of minimizing the amount of
shifting, given a ship’s voyage plan, is known as the con-
tainer stowage problem. Owing to its importance, this prob-
lem has been studied extensively (Wilson and Roach 2000;
Avriel et al. 1998; Avriel, Penn, and Shpirer 2000; Tierney,
Pacino, and Jensen 2014; Gajjar and Radhakrishnan 2017).
A slight variation of this problem, called the blocks relo-
cation problem has also been studied (Caserta, Voß, and
Sniedovich 2011; Caserta, Schwarze, and Voß 2012).

One can model the container stowage problem as a graph
by representing each container as a vertex, wherein two ver-
tices are adjacent if and only if loading one container neces-
sitates unloading the other. These graphs are called overlap
graphs. In fact, a graph is an overlap graph if and only if
it is a circle graph (Gavril 1973) (Figure 2). Using this, it
was shown that it is NP-complete to minimize the amount
of unloading/reloading of containers (Avriel, Penn, and Sh-
pirer 2000; Tierney, Pacino, and Jensen 2014). However,
there are two heuristics that give an approximate solution
efficiently (Wilson and Roach 2000; Caserta, Schwarze, and
Voß 2012). One heuristic uses a shortest path-based solu-
tion (Caserta, Schwarze, and Voß 2012), while the other
reshuffles the containers in a smart way while limiting the
number of possible moves for each container (Avriel et al.
1998).

When the containers are reshuffled at a port, a major op-
erational challenge is to maintain the quality of the solution.
Unloading a container (say C) at its destination port requires
removing the containers stowed above it (called overstowed
containers). As all these overstowed containers are adjacent
to the vertex C in the overlap graph, a good strategy is to
maintain a path from C to the vertex that corresponds to the
container at the top of C’s stack at each port.

The train marshalling problem. We solve SPR for cir-
cle graphs by solving SPR for a subclass of circle graphs
called permutation graphs, and then generalizing our solu-
tion to circle graphs. We do this by considering all possi-
ble “equators” of the circle graph. Thus, our algorithm for
permutation graphs is more efficient than our algorithm for
circle graphs. In fact, permutation graphs themselves model
a problem similar to container stowage called the train
marshalling problem (Dahlhaus et al. 2000; Jaehn, Rieder,
and Wiehl 2015; Rinaldi and Rizzi 2017; Dörpinghaus and
Schrader 2018; Falsafain and Tamannaei 2020). Both per-
mutation graphs and circle graphs also have applications
in memory allocation for system programs (Even and Itai
1971; Even, Pnueli, and Lempel 1972). For a compre-
hensive survey on permutation graphs and circle graphs,
see (Golumbic 1980; Brandstädt, Le, and Spinrad 1999).

Data packet rerouting. In an efficient synchronous mul-
tiprocessing environment, it is widely assumed that there is
a common memory and processors having sequential ca-
pabilities can access it simultaneously and almost arbitrar-
ily (Valiant and Brebner 1981). Such a network of proces-
sors had been realised in a d-dimensional Boolean hyper-
cube (Hayes et al. 1986). The routing of message pack-
ets in such a network happens via a greedy scheme which
follows shortest paths (Stamoulis and Tsitsiklis 1994). The

main challenge here is to perform routing in a congestion-
free manner, and a lot of research had gone into this (Pifarré
et al. 1994; Grammatikakis, Hsu, and Sibeyn 1998). A natu-
ral solution is to gradually reroute the packets to a different
route (Greenberg and Hajek 1992), which is precisely the
SPR problem on the Boolean hypercube.

Revamping road networks. k-SPR has a natural applica-
tion in restructuring road networks. Suppose you are a city
planner and your city’s road network needs to be revamped
to better serve the requirements of its residents. For this, you
want to change the route between two point locations s and
t in the city. It is not possible to change the entire route in
one go, as laying out new roads takes resources, effort and
time. Furthermore, this transition should be smooth. You do
not want your ongoing renovation project to cause undue
congestion on some roads, leading to a disruption in the
overall flow of traffic. In other words, your job is to alter
the s–t route gradually (one road at a time), whilst ensuring
that road commuters do not have to undertake a longer route
from s to t during the process.

A similar scenario arises in road accidents (Wang et al.
2016). This can sometimes lead to a certain road becom-
ing inoperable, leading to bottleneck situations that could
increase the travel times of the commuters. In this case, it
should be possible to quickly find a way to reroute the traffic
gradually and efficiently.

In SPR, only one vertex can be changed at each reconfig-
uration step, by definition. This condition can be sometimes
too restrictive for practical purposes. When a graph is used
to model a road network, roads are generally represented by
simple induced paths, and vertices on the path represent var-
ious landmarks like bus stops, gas stations, shops, etc. (Bast,
Funke, and Matijevic 2006; Bast et al. 2007; Bauer and
Delling 2009; Goldberg, Kaplan, and Werneck 2006).

To model the fact that all these consecutive vertices can be
changed in one go, we introduce the k-SPR problem, where
one can change at most k (for some fixed positive integer k)
contiguous vertices at each reconfiguration step. We study
the optimization variant of k-SPR, where each road has a
“cost of construction” associated with it and the aim is to
produce a reconfiguration sequence whose total construction
cost is close to optimal.

We study k-SPR for line graphs and graph powers. These
graph classes give us interesting theoretical results that en-
hance our understanding of SPR. Optimization variants of
other types of reconfiguration problems (e.g., reconfigur-
ing swarm robots) have also been studied previously (Kirk-
patrick and Liu 2016; Demaine et al. 2019).

2 Hardness Results

Note that k-SPR for k = 1 is precisely the SPR problem,
which is known to be PSPACE-complete (Bonsma 2013).
Note that the PSPACE-hardness of SPR does not straight-
away imply the PSPACE-hardness of k-SPR. We show that
k-SPR is PSPACE-complete, even for a restricted graph
class called line graphs.
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Figure 3: The construction of G′ = L(G∗k) to show PSPACE-hardness of k-SPR for k = 5. The two s–t shortest paths denoted
in bold red in G differ in only 1 vertex. The corresponding s∗–t∗ shortest paths denoted in bold green in G′ differ in 5 vertices.

2.1 Hardness of k-SPR for Line Graphs
In this section, we will see that k-SPR (for k ≥ 2) can
be significantly harder than SPR. In particular, we show
that k-SPR is PSPACE-complete for line graphs. In con-
trast, (Bonsma 2013) showed that SPR can be solved in
polynomial time for line graphs (in fact, for claw-free
graphs, a superclass of line graphs).
Definition 2. Given a graph G on m edges, its line graph
L(G) is an m-vertex graph where each vertex of L(G) cor-
responds to an edge of G, such that two vertices of L(G) are
adjacent if and only if their corresponding edges in G share
a vertex (see Figure 4 for an example).

v1 v2

v3

v′3

v4 v5 v1v2

v2v3 v3v4

v4v5

v′3v4v2v
′
3

Figure 4: A graph (left) and its line graph (right)

Lemma 1. k-SPR is PSPACE-complete for all fixed (con-
stant) integers k ≥ 2, even when the input graphs are re-
stricted to line graphs.

Proof. Fix an integer k ≥ 2. We reduce SPR on general
graphs to k-SPR on line graphs.

For our proof, we study graphs in their layered represen-
tation. Such representations have been studied in the context
of shortest paths in the past (Dinic 1970; Dinitz 2006). It is
instructive to follow Figure 3 while reading this proof. Sup-
pose we are given an SPR instance (G, s, t, P,Q), where
P and Q are s–t shortest paths in G. The goal is to check
whether P and Q are reconfigurable in G. From the SPR
instance (G, s, t, P,Q), we will construct a k-SPR instance
(G′, s′, t′, P ′, Q′), where P ′ and Q′ are s′-t′ shortest paths
in G′, such that P ′ and Q′ are k-reconfigurable in G′ if and
only if P and Q are reconfigurable in G. Also, G′ is a line

graph that can be constructed from G in polynomial time in
three steps (i), (ii), (iii), as explained below.

Step (i): Consider the layered graph representation of G,
with s being the zeroth layer and t being the last layer. This
can be done by constructing a BFS tree rooted at s. Now
replace every “even-odd” edge (i.e., every edge connecting a
vertex in layer i to a vertex in layer i+1, for every even i) by
a path on k vertices between the two end points of the edge.
Note that if k = 2, then this last operation does nothing. Let
this new graph be Gk, and the new paths corresponding to
P and Q in Gk be Pk and Qk, respectively.

Step (ii): Add two vertices s∗ and t∗ to Gk such that s∗

is adjacent only to s, and t∗ is adjacent only to t. Let this
new graph be G∗k. The start vertex of G∗k is s∗ and the target
vertex of G∗k is t∗. Thus, each s–t shortest paths of G corre-
sponds to an s∗–t∗ shortest paths of G∗k whose first edge is
always (s∗, s) and last edge is always (t, t∗).

Step (iii): Let G′ = L(G∗k). Since G′ is the line graph of
G∗k, each vertex of G′ is labelled by two vertices of G∗k. That
is, a vertex xy in G′ (where x and y are two adjacent vertices
of G∗k) corresponds to an edge (x, y) in G∗. The vertex s∗s
is our start vertex s′ and the vertex tt∗ is our target vertex t′.

This completes our construction of G′. The paths P ′ and
Q′ in G′ have their first vertex as s∗s, and their last vertex
as tt∗. Their remaining vertices are the edges on the paths
Pk and Qk, respectively. Given the fact that P and Q are s–t
shortest paths in G, it is easy to check that P ′ and Q′ are s′–
t′ shortest paths in G′. This completes the definition of the
k-SPR instance (G′, s′, t′, P ′, Q′). We make the following
claim, whose proof will complete our proof of Lemma 1.

Claim 1. (G, s, t, P,Q) is a yes-instance of SPR ⇐⇒
(G′, s′, t′, P ′, Q′) is a yes-instance of k-SPR.

⇒ direction: Every reconfiguration step in G changes
some vertex ui in layer i to a vertex vi in the same layer,
where (ui−1, ui, ui+1, vi) is a 4-cycle in G. Note that ui can
never be s or t, so it cannot be present in the zeroth or last
layer of G. Thus, the graph G∗k contains a vertex ui−2 (pos-
sibly s∗) and a vertex ui+2 (possibly t∗). Both ui−2ui−1 and
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ui+1ui+2 are vertices in the line graph G′ = L(G∗k). Among
the two edges (ui−1, ui) and (ui, ui+1) in G, one is retained
as an edge in Gk and one is converted to a path on k vertices
in Gk (depending on whether i is odd or even). The retained
edge contributes to a single vertex in the line graph G′, and
the path on k vertices (or k− 1 edges) contributes k− 1 ver-
tices to the line graph G′. Thus, there are 1 + (k − 1) = k
vertices between ui−2ui−1 and ui+1ui+1 on the path P ′ in
G′. These k vertices are reconfigured to another set of k ver-
tices on the path Q′ in G′.
⇐ direction: Consider a reconfiguration step in G′ which

replaces a subpath of j (where j ≤ k) vertices on a shortest
s′–t′ path by another subpath of j vertices. Since G′ is the
line graph of G∗k, these j vertices of G′ can be mapped back
to a subpath of j edges in G∗k (i.e., a subpath of j + 1 ver-
tices in G∗k). Let x and y be the first and last vertices of the
subpath comprised by these j + 1 vertices in G∗k. It is easy
to see that neither x nor y are not changed by mapping the
reconfiguration step in G′ back to a reconfiguration step in
G∗k. Note that x is adjacent to at least two vertices in the next
layer in G∗k (thus x 6= s∗ and so x ∈ Gk) and y is adjacent to
at least two vertices in the previous layer in G∗k (thus y 6= t∗

and so y ∈ Gk). Therefore, x and y can be mapped back to
vertices im(x) and im(y) in G, because all “new” vertices
of Gk are adjacent to only one vertex in the next layer and
only one vertex in the previous layer. Finally, if im(x) is in
layer i of G (for some i), then im(y) must be in layer i + 2
of G. This is because if im(y) lies in a layer before i + 2
(i.e., i+ 1), then (im(x), im(y)) would be a multiple edge in
G, which is a contradiction. And if im(y) lies in a layer after
i + 2, then x and y would have more than k edges between
them in Gk. This is also a contradiction, since j ≤ k.

2.2 Hardness of SPR for Graph Powers
We show that it is possible to use the PSPACE-hardness of
k-SPR to prove PSPACE-hardness of SPR for some graph
classes, namely graph powers.
Definition 3. The k-th power of a graph G is obtained by
making all vertices u, v such that d(u, v) ≤ k adjacent.
Theorem 1. SPR is PSPACE-complete for graph powers.

Our proof technique is as follows. Let Gk be the k-th
graph power of G. We use the PSPACE-hardness of (2k−1)-
SPR for G to show the PSPACE-hardness of SPR (or 1-SPR)
for Gk. A proof of this theorem can be found in the full ver-
sion of our paper (Gajjar et al. 2021).

2.3 Gradation of the Complexity of k-SPR
In this section, we show that for a fixed n, the complexity of
k-SPR can decrease as k increases.
Theorem 2. For every fixed (constant) integer k ≥ 1, there
exists an n-vertex graph G and two reconfigurable s–t short-
est paths P1 and P2 in G such that the length of every recon-
figuration sequence from P1 to P2 is at least exp

(
Ω
(√

n
k

))
.

Theorem 3. k-SPR can be solved in polynomial time when
k ≥ n/2.

Detailed proofs of Theorem 2 and Theorem 3 can be
found in the full version of our paper (Gajjar et al. 2021).

O(1) n/2 n

Polynomial

PSPACE-complete

Complexity

k

?NP-complete

Figure 5: Complexity of k-SPR, as k varies from 1 to n

3 Polynomial-time Solvable SPR Problems
In this section, we present polynomial-time algorithms for
SPR on permutation graphs, circle graphs, bridged graphs,
Boolean hypercubes and graphs of constant diameter.

3.1 SPR for Permutation and Circle Graphs

1 2 3 4 5 6

5 1 6 2 4 3

1

1

2

2

3

3

4

4

5

5

6

6

Figure 6: A circle graph with an equator (left) and the per-
mutation graph isomorphic to the circle graph (right)

In this section, we will show that SPR can be solved in
linear time for circle graphs.

Definition 4. A graph is called a circle graph if its vertices
can be represented by the chords of a circle such that two
vertices have an edge in the graph if and only if their corre-
sponding chords intersect.

Given a graph, its circle representation can be constructed
in quadratic time, if it exists (Golumbic 1980).

Circle graphs and permutation graphs. A circle graph
is called equatorial if an additional chord can be drawn in
the circle that intersects all the other given chords. The ad-
ditional chord is called the equator. It is easy to see that a
graph is an equatorial circle graph if and only if it is a per-
mutation graph (see Figure 6 for an example). Thus, permu-
tations graphs constitute a subclass of circle graphs.

For the purpose of our proof, we devise a novel two-step
labelling scheme for the vertices of circle graphs. In step one
of our labelling, we label each vertex with its BFS level (i.e.,
a vertex is labelled i if it appears on ith level of the BFS tree
rooted at s). A chord labelled i intersects chords labelled
i − 1 and i + 1 (possibly also other chords labelled i, but
we ignore those). Then, we orient the chord i from the point
of intersection of the i − 1 chord on chord i to the point of
intersection of the i + 1 chord on the chord i.
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i
i− 1

i− 1

i + 1

i
i + 1

i + 1

i− 1

s

t

Figure 7: These two figures show a contradiction if a chord
has both orientations, proving Lemma 2. (Left) s cannot
reach the i − 1 below without intersecting i + 1. (Right)
The i + 1 above cannot reach t without intersecting i− 1.

Lemma 2. The orientation of the chords is unambiguous,
i.e., there is no chord with both possible orientations.

(The idea behind our proof of Lemma 2 is illustrated by
Figure 7.) In step two of our labelling, we define a labelling
scheme of the chords based on their orientation by step one.
This labelling is the basis of our proof of our main theorem.

Theorem 4. Two s–t shortest paths in a circle graph are
reconfigurable if and only they have the same label. Fur-
thermore, the reconfiguration sequence can be obtained in
linear time (if it exists).

Detailed proofs of Lemma 2 and Theorem 4 can be found
in the full version of our paper (Gajjar et al. 2021).

3.2 SPR for Bridged Graphs
We begin this section with some definitions. Let G be a
graph, and u, v be two vertices of G. Their interval I(u, v)
is the set of all vertices of G that lie on at least one shortest
u-v path. More formally,

I(u, v) = {w ∈ V (G) : d(u,w) + d(w, v) = d(u, v)}.

A subset of vertices H of V (G) is called convex if for each
pair of vertices (u, v) ∈ H ×H , their interval I(u, v) ⊆ H .

Definition 5. A graph G is called a bridged graph if the
neighbourhood of every convex set in G is also convex.

It is known that bridged graphs are precisely the graphs
in which all isometric cycles have length three (Soltan and
Chepoi 1983; Farber and Jamison 1987). In particular, all
chordal graphs are bridged. Bonsma (Bonsma 2013) showed
that SPR can be solved in polynomial time for chordal
graphs. We extend Bonsma’s result to bridged graphs.

Let us now look at some properties of bridged graphs. A
graph is called weakly modular if it satisfies the following
two conditions (Bandelt and Chepoi 1996; Chepoi 1989).

• Quadrangle condition: ∀ u, v, w, z ∈ V (G) with k :=
d(u, v) = d(u,w), d(u, z) = k + 1 and vz, wz ∈ E(G),
∃ x ∈ V (G) such that d(u, x) = k − 1 and xv, xw ∈
E(G).

• Triangle condition: ∀ u, v, w ∈ V (G) with k :=
d(u, v) = d(u,w) and vw ∈ E(G), ∃ x ∈ V (G) such
that d(u, x) = k − 1 and xv, xw ∈ E(G).

Bridged graphs are weakly modular graphs with no in-
duced cycle of length four or five (Chepoi 1989). We es-
sentially present a polynomial-time algorithm for SPR for
weakly modular graphs. Our algorithm recursively uses the
triangle condition from the above definition. For general
graphs, such a recursion would make the running time expo-
nential. We use a suitable data structure (apposite for weakly
modular graphs) to make the running time polynomial.

We denote a shortest path between s and t going through
the vertex w by Ps,w,t.

Algorithm 1: SPR for weakly modular graphs
Input: G, paths Ps,u`,t and Ps,v`,t

1: if w`−1 ∈ Ps,u`,t then
2: Output ul → vl, SPR(G,Ps,w`−1,v`

, Ps,v`−1,v`
)

3: end if
4: if w`−1 ∈ Ps,v`,t then
5: Output SPR(G,Ps,u`−1,u`

, Ps,w`−1,u`
), ul → vl

6: end if
7: if w`−1 /∈ Ps,u`,t, Ps,v`,t then
8: Output SPR(G,Ps,u`−1,u`

, Ps,w`−1,u`
), ul → vl,

SPR(G,Ps,w`−1,v`
, Ps,v`−1,v`

)
9: end if

Lemma 3. Algorithm 1 solves SPR on weakly modular
graphs in O(2`n) time, where ` = d(s, t).

The running time of Algorithm 1 is clearly exponential
in n when ` = Θ(n). This can be improved. Consider the
following data structure.

Definition 6. Lookup(ui, vi)

• Input: Two vertices ui and vi from layer i of the BFS
tree rooted at s.

• Output: A vertex wi−1 from layer i − 1 of the BFS tree
rooted at s, such that (wi−1, ui), (wi−1, vi) ∈ E(G).

We construct Lookup(ui, vi) by searching for common
parents for every pair of vertices in a BFS layer. Implement-
ing Lookup(ui, vi) takes O(n3) space. Finding a w at each
step using this data structure requires only a constant amount
of time. Finally, the BFS naturally partitions the vertices of
G into layers, reducing the running time to O(n2).

Theorem 5. SPR can be solved in O(n2) time for weakly
modular graphs.

Corollary 1. SPR can be solved in O(n2) time for bridged
graphs.

Detailed proofs of Lemma 3 and Theorem 5 can be found
in the full version of our paper (Gajjar et al. 2021).

3.3 SPR for Boolean Hypercubes
A d-dimensional Boolean hypercube is a graph whose ver-
tex set is {0, 1}d, and two vertices are adjacent if and only if
their corresponding bit strings differ by exactly one bit (Fig-
ure 8). As an input of SPR, we are given two paths P1 and
P2 of length k with terminal vertices s and t.

Let ` = s ⊕ t where ⊕ denotes the bitwise XOR op-
eration. We write ¯̀ to denote the indices where `i = 1.
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Figure 8: The 3-dimensional Boolean hypercube

For example, if d = 5, s = 00101 and t = 10011, then
` = 10110 and ¯̀ = {1, 3, 4}. Any shortest path from
s to t has to change these indices. This can be done in
3! = 6 ways: (134), (143), (314), (341), (413), (431). In
other words, there are six possible s–t shortest paths in this
example. So we represent s–t shortest paths as permutations.
Observation 2. An s–t shortest path given by the permu-
tation (i1i2 . . . ij−1ijij+1ij+2 . . . ik) can be reconfigured
to another s–t shortest path given by the permutation (i1
i2 . . . ij−1ij+1ijij+2 . . . ik) in a single reconfiguration step.

Algorithm 2: SPR for Boolean hypercubes
Input: Permutations P1 and P2

1: for (i, j) such that 1 ≤ i < j ≤ k do
2: if P−12 (P1[i]) > P−12 (P1[j]) then
3: Swap P1[i] and P1[j] in P2

4: end if
5: end for

Theorem 6. Algorithm 2 reconfigures two given s–t shortest
paths P1 and P2 in a Boolean hypercube in the minimum
number of reconfiguration steps.

A detailed proof of Theorem 6 can be found in the full
version of our paper (Gajjar et al. 2021).

3.4 SPR for Constant Diameter Graphs
Theorem 7. Let G be an n-vertex graph such that d(s, t) =
c. Then SPR can be solved in nO(c) time for G.

The following is well-known and easy to see.
Observation 3. Every split graph and every co-bipartite
graph has diameter at most 3.

This implies d(s, t) ≤ 3 for split graphs and co-bipartite
graphs, leading to the following corollary of Theorem 7.
Corollary 2. SPR can be solved in polynomial-time for split
graphs and co-bipartite graphs.

4 Optimization Variants of SPR
In this section, we introduce three variants of the SPR prob-
lem. In this new setting, we are allowed to change any num-
ber of vertices at a time. But change comes at a cost. We pay
a price of pi for changing i vertices on a path. Furthermore,

p1 ≤ p2 ≤ · · · ≤ pn−1 ≤ pn.

Definition 7 (MinSumSPR). Given (G, s, t, P1, P2), an in-
stance of SPR, output a reconfiguration sequence from P1

to P2 (if it exists) that minimises the total cost of reconfigu-
ration.

Definition 8 (MinMaxSPR). Given (G, s, t, P1, P2), an in-
stance of SPR, output a reconfiguration sequence from P1

to P2 (if it exists) that minimises the maximum cost of re-
configuration.

Generalizing these two definitions, we get the following.
Definition 9 (MinTop-`-SPR). Given (G, s, t, P1, P2), an
instance of SPR, output a reconfiguration sequence from P1

to P2 (if it exists) that minimises the sum total of the maxi-
mum ` (or top-`) costs of reconfiguration.

Note that MinSumSPR is a special case of MinTop-`-SPR
with ` = ∞ and MinMaxSPR is a special case of MinTop-
`-SPR with ` = 1. The following is easy to see.
Observation 4. For every positive integer n, the number of
s–t shortest paths in every n-vertex graph is at most 2n.

Theorem 8. There is no polynomial-time algorithm that ap-
proximates MinTop-`-SPR to within a factor of O(2n

2

), un-
less PSPACE = P.

A proof of Theorem 8 can be found in the full version of
our paper (Gajjar et al. 2021).

5 Length versus Number of Shortest Paths
In this section, we study how the number of s–t shortest
paths (|VSPR|) varies with the s–t distance (d(s, t)). Let
f(x) be the maximum value of |VSPR| when d(s, t) = x.

O(1) n/2 n−O(1)

2
√
n log

√
n

2n

|VSPR|

d(s, t)

2n/2

√
n

O(1)

Figure 9: The maximum possible number of s–t shortest
paths, as the distance between s and t varies from 0 to n− 1

It is easy to see that f(x) ≤ 2n (Lemma 4) for all 0 ≤
d(s, t) ≤ n− 1. For other specific values of d(s, t), we have
the following stronger bounds, represented by Figure 9.
Lemma 4.

d(s, t) = x = n/2 ⇒ f(x) = Ω(2n/2);

d(s, t) = x = Θ(
√
n) ⇒ f(x) = Ω

(
2
√
n log

√
n
)

;

d(s, t) = x = n−O(1) ⇒ f(x) = O(1).

A proof of this lemma can be found in the full version of
the paper (Gajjar et al. 2021).
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