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Abstract

For users to trust planning algorithms, they must be able to
understand the planner’s outputs and the reasons for each ac-
tion selection. This output does not tend to be user-friendly,
often consisting of sequences of parametrised actions or task
networks. And these may not be practical for non-expert users
who may find it easier to read natural language descriptions.
In this paper, we propose PlanVerb, a domain and planner-
independent method for the verbalization of task plans. It
is based on semantic tagging of actions and predicates. Our
method can generate natural language descriptions of plans
including causal explanations. The verbalized plans can be
summarized by compressing the actions that act on the same
parameters. We further extend the concept of verbalization
space, previously applied to robot navigation, and apply it to
planning to generate different kinds of plan descriptions for
different user requirements. Our method can deal with PDDL
and RDDL domains, provided that they are tagged accord-
ingly. Our user survey evaluation shows that users can read
our automatically generated plan descriptions and that the ex-
planations help them answer questions about the plan.

Introduction
Plans produced by a task planner may not be easy to un-
derstand by non-expert users. This plan output, usually writ-
ten as a sequence of parametrised actions, does not integrate
enough information for users not familiar with the domain to
understand it and the possible reasons for the plan’s actions.

These users may be more familiar with natural language
descriptions of the plans, narrated as a sequence of sentences
describing the actions and involving the parameters. Further-
more, this narration of the plan can include causality infor-
mation to link the actions together, making more explicit
why each action was taken. We believe this would make it
easier for those users to understand the plan, possibly in-
creasing their trust in the planner. Additionally, this may
also enable planning systems to narrate the plan themselves,
fostering interaction with the user. A clear example of this
would be that of a robot acting in human environments and
explaining its plans to the users around.

In this paper, we present PlanVerb, a domain-independent
method to verbalize task plans for planners based on PDDL
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(Fox and Long 2003) and RDDL (Sanner 2010). For this,we
first propose semantic tagging for planning domains that
specify the building blocks of the verbalized sentences (verb,
subject, and complements). The tags are used by PlanVerb
to generate the sentences, but may also be useful for readers
of the domain to get a quick idea of what each action rep-
resents. We also present an action compression method to
summarise plans by joining together actions that act on the
same parameters. An example of this are compressions of
navigation actions going through an intermediate point. Fi-
nally, we propose an extension to the verbalization space pa-
rameters from Rosenthal, Selvaraj, and Veloso (2016), pre-
viously used to narrate robot navigation. These parameters
allow the generation of verbalizations at different levels of
detail including only certain actions or objects, and with
more or fewer causality explanations. A user evaluation with
42 participants has demonstrated that the proposed approach
generates understandable plan verbalizations.

Related Work
This work on task plan verbalization extends the work by
Rosenthal, Selvaraj, and Veloso (2016), where verbalization
is applied to the narration of mobile robot navigation routes.
In that work, the authors introduce a verbalization space that
covers the variability in utterances that can be used to de-
scribe the route to different users. The route and map of the
robot are used to instantiate sentences that narrate the robot
experience. They then performed a user study in Perera et al.
(2016) where they analysed the kinds of questions that the
users can request to the robots to obtain the desired expla-
nations, to then learn a mapping between user queries and
verbalization space parameters. This approach was further
adapted in Zhu et al. (2017) to narrate manipulation tasks
along with navigation, including PDDL actions. We have ex-
tended this notion of verbalization and verbalization spaces
and applied it to task plans in a domain-independent fash-
ion, integrating causality information to explain the relations
between actions, with applications beyond robotics. Further-
more, we do not use pre-written sentence templates, but only
tagging of the actions’ syntactic elements.

Verbal communication of plans has been deemed nec-
essary in robotic scenarios involving humans. Fiore et al.
(2016) verbalize the actions in the plan for the user, explain-
ing which actions will be executed and in what order. Canal
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et al. (2019) communicate the next action in the plan when
the “inform” action is executed as part of the plan. Both
works provide domain-dependent verbalization of the plans,
probably written specifically for the task to be performed.
In Singh et al. (2020), robot teams verbalize explanations of
their actions and intentions to increase human understand-
ing. The plan is verbalized by partitioning it based on the in-
formativeness of the actions. The utterances come from pre-
defined templates of possible phrases. Similarly, Nikolaidis
et al. (2018) explore how utterances improve Human-Robot
Collaboration with a robot that issues commands to users
and explains why actions are done. The proposed formal-
ism optimally combines verbal communications and robot
actions to improve task performance. Neither of these works
make causal relations between actions explicit, which may
help users understand the reasoning behind the actions.

State verbalization was performed in Moon et al. (2019),
where language descriptions of scene graphs are verbalized
and used for scene understanding to describe the states while
executing the plan, although these descriptions are not yet
linked with the planning domain or planner.

Hayes and Shah (2017) explain robot control policies, ver-
balizing learned action conditions queried by the user. Sim-
ilar to our domain description tagging, they add function
decorators in the code to be able to verbalize the actions
performed by the robot. Sridharan and Meadows (2019)
present a theory of explanations for Human-Robot Collab-
oration. With it, they represent, reason, and learn knowledge
to generate explanations, an explanation categorisation, and
an explanation construction method. The defined character-
istic axes can be seen as an equivalent of the verbalization
space. Causal chains have been used to provide explanations
in Seegebarth et al. (2012), where plans are represented in
first-order logic with explanations being proofs based on
causal links. Madumal et al. (2020) also use causal chains
to generate explanations for RL agents using decision trees.

We summarise a plan by compressing some of the actions
appearing in it. This is similar to work performed on Macro-
Operators (Botea et al. 2005; Coles, Fox, and Smith 2007),
where a set of actions is joined to form a macro-action. Sim-
ilarly, we join sets of actions operating in intermediate pa-
rameters to verbalize them together. Other summarisation
approaches, such as Myers (2006), summarise by describ-
ing features based on semantic concepts, while we compress
redundant parts of the plan to show it as a whole.

Semantic Domain Information Tagging
In order to generate sound sentences that represent each ac-
tion and its parameters, we need information on how those
actions relate to the parameters, and what do they mean.

For this, we propose to tag the domain file with informa-
tion on how to generate sentences for each action. Thus, our
method requires the input domains to be tagged with seman-
tic information. While this introduces some manual work on
the side of the domain expert, we believe it can also be useful
to encourage commenting those domains, making it easier to
understand the meaning of each action by the domain users.
Therefore, we propose a commenting format to add semantic

information to the actions. We denote these tags as “seman-
tic information tags” as they will help the domain readers to
understand the semantics of the action without the need of
digging into its conditions and effects. The tags describe the
syntactic information on the actions and their parameters.

We propose a flexible approach to obtain the necessary
information to verbalize the actions in the domain. Instead
of writing all the templated verbalization sentences, we tag
each action and predicate with the verb that they represent
along with its syntactic complements, and the subject of the
action. These tags may include the parameters of the actions
which will be replaced by their grounded value in the plan.

Our proposed format allows the specification of alter-
natives to produce richer verbalizations (i.e., synonyms),
which are selected at random. Optional complements such
as prepositional clauses may be flagged as required to pre-
vent them from being omitted based on the verbalization
space parameters (as detailed in the next section). Alterna-
tive forms of the syntactical clause are separated by a for-
ward slash (/), while prepositional clauses can be flagged as
required with an exclamation mark (!) at the end. Phrasal
verbs can be added by putting the particle in parentheses
such that only the non-parenthesised part will be conjugated.
For instance, the phrasal verb “look for” would be defined
as ; verb = look (for). Fig. 1 shows an example of
tagged action and predicate with different verbal options.

These tags are then used to generate sentences for each
action. Verbs are conjugated to the appropriate tense using
mlconjug3 (Diao 2022). Thus, our method can generate
sentences in past, present, and future, allowing the planning
system to update the plan verbalization while executing it.

Task Plan Verbalizations
Following the definition from Rosenthal, Selvaraj, and
Veloso (2016), we will define the verbalization of a task plan
as the process that converts the plan into a natural language
description. A natural language description of the plan may
be easier to understand by a wider range of users, including
non-experts in planning nor the domain. This understanding
can then be key to improve plan transparency and user trust,
as users’ acceptance can increase when the reasons for the
system’s actions are explained (Koo et al. 2015).

We propose a verbalization method that is domain-
independent provided that the input domain has been tagged
as described above. We use the ROSPlan system (Cashmore
et al. 2015) as planning framework. This allows us to have a
planner-agnostic method, as well as to support both PDDL-
based and RDDL-based planners (by using the probabilis-
tic extension by Canal et al. (2019)). In the case of RDDL,
one caveat is that we are constrained to the subset of it sup-
ported by ROSPlan. Thus, causality information and goals
(if present) may not be properly captured by ROSPlan, re-
stricting the verbalization that our method can perform. We
support durative and non-durative actions (PDDL2.1) but
not processes or events (PDDL+).

Verbalization Space
Different users will have distinct preferences or needs when
it comes to obtaining task plan descriptions. An expert user
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; verb = go / travel / move
; subject = ?v
; prep = from the ?from
; prep = to the ?to / towards the ?to !
(:durative-action goto_waypoint
:parameters (?v - robot ?from ?to - waypoint)

(a) Example of PDDL action tagging.

; The robot ?r is at the waypoint ?wp
; verb = be
; subject = ?r
; prep = at the ?wp
(robot_at ?r - robot ?wp - waypoint)

(b) Example of PDDL predicate tagging.

Figure 1: Examples of semantic tags. A RDDL example can be found in the supplementary material1.

may need a detailed, step by step description of the plan to
find incongruities or erroneous actions. A lay user, instead,
may prefer to read a summarised version of the plan, know
what was performed to achieve the main goals, or get a sum-
mary of the actions that were applied on a particular object.

To cope with these different verbalization use cases, we
have extended the concept of verbalization space suggested
by Rosenthal, Selvaraj, and Veloso (2016) to cover the nar-
ration task plans. The verbalization space specifies different
variations of the descriptions of the plans to cover different
user preferences. It includes four parameters: abstraction, lo-
cality, specificity, and explanation, as detailed below.

The combination of the different parameters allows to
generate various plan descriptions, from more detailed to
more abstract and summarised, covering a wide range of sit-
uations. This verbalization space for task plans should be
general enough for most use-cases, but can easily be ex-
tended to handle more parameters or combinations of them.

Abstraction The abstraction parameter a ∈ A represents
the level of concretion used in the verbalization of the plans.
We consider four levels of abstraction:
A1 No abstraction. This means that the verbalization will

include numerical values such as real-world coordinates
of objects or locations. It also includes the duration of
the actions (if available), as well as all their parameters.
For this level, an extra file with the mapping from object
instances to real-world data can be provided.

A2 In this level, the parameter names are used instead of
the available real-world values. It still verbalizes action
durations and all the parameters, as well as intermediate
values for compressed actions.

A3 The duration of the actions is not verbalized, while
all the parameters and intermediate values (such as via
points) for compressed actions are kept.

A4 In the most abstract level, only the essential parameters
of the actions are verbalized, which are those needed for
a grammatically correct sentence and those flagged as re-
quired. Intermediate values are also skipped.

Locality The locality parameter l ∈ L narrows the verbal-
ization scope, to base it only on points of interest of the user
or a range of actions. We define three values for the locality:
All plan All the actions in the plan are verbalized.
Range of actions Restricts the scope to a subset of the ac-

tions of the plan. For instance, the verbalization would
only take from the third action to the fifteenth one.
1Available at https://bit.ly/planverb-supplementary

Action or object Limits the verbalization to those actions
including a specific object instance as a parameter, or ver-
balizes all the actions with a given name.

Specificity The specificity parameter s ∈ S describes how
specific the description of the plan should be regarding the
level of detail. It includes three options:
General picture A generic description of the main high-

lights of the plan. It focuses on actions achieving goals,
and verbalizes these along with their justifications, pro-
vided that they are set so by the explanation parameter.

Summary The verbalization will compress actions when
possible, giving a more compact representation. These
compressions short-cut actions that act on intermediate
objects (e.g. navigation via intermediate points), or join
actions that are repeated with different objects/subjects.
This is further detailed in the next section.

Detailed narrative Generates a detailed description of the
plan without summarising nor compressing any action.
Thus, all the actions will appear in the plan narration.

Explanation The explanation parameter e ∈ E specifies
the level of justifications between actions that will be nar-
rated. We have considered three kinds of verbalizable justi-
fications: immediate justifications of actions, deferred justi-
fications of actions, and goal-achieving explanations.

An action aj is an immediate justification of another ac-
tion ai if ∀k ∈ [i..j), there is a causal link between ak and
aj , where i, j, and k are the indices in which the actions
appear in the original plan. Thus, aj will be an immediate
justification of all the actions in [ai..aj), which are the ac-
tions that allow aj to happen. A deferred justification, in-
stead, happens when an action ai has a causal link with a
non-consecutive action aj . Therefore, we have a deferred
justification when ∃k ∈ [i..j) such that ak does not have a
causal link with aj . Goal-achieving explanations make goal
achievement explicit, showing when an action was taken to
complete a specific goal. The explanation levels are:

E1 No explanation is verbalized, so actions are verbalized
sequentially in order of appearance in the plan.

E2 Joins actions when one action is an immediate justifica-
tion of another action, and verbalizes them making the
causality between the actions explicit.

E3 Adds deferred justifications for actions that have a
causal link with another action that appears later in the
plan, but only if the action that is being justified achieves
a goal. Deferred justifications to actions that act as an
immediate justification are not verbalized.
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(grasp r A)
(grasp r [A B])
(grasp r C)

(grasp r [A B C])(grasp r B) → →
(grasp r C)

(a) Compression with multiple objects. The resulting action
symbolizes “r will grasp A, B, and C”.

(goto r A B) (goto r A C)
(goto r A D)
(through B and C)

(goto r B C) → (through B) →
(goto r C D) (goto r C D)

(b) Compression with intermediate parameters. The resulting
action means “r will go from A to D”.

Figure 2: Action compressions for plan summarisation ex-
amples. More can be found in the supplementary material1.

E4 The explanations of the goals that are achieved by the
actions are added to the verbalization, along with the ex-
planations from the lower levels.

E5 Includes all deferred justifications (for all the causal
links of an action).

Plan Summarisation through Action Compression
It is often the case with some domains that the same ac-
tion is sequentially repeated throughout the plan, with the
in-between appearances of the action providing intermedi-
ate values that may not be very informative to the user.

Examples of this include navigation actions for a robot,
where it can only move between a waypoint and another one
connected to it. Thus, to reach a certain position, it must
traverse a set of these waypoints, generating many actions
that reach intermediate positions. Similarly, a consecutive
sequence of the same action applied to different objects can
be summarised as the action applied to the set of objects.

We propose an action compression method to deal with
these kinds of actions to generate shorter plan verbalizations.
We only compress actions in the aforementioned cases, and
when there is only one free parameter (i.e., a grounded pa-
rameter whose value does not appear in both actions). Still,
the method is easily extendable to more complex situations.

Given two consecutive appearances of an action in the
plan, we compare their grounded parameters to create a pat-
tern that indicates if each parameter had the same value in
both actions, or the same instance appeared in different pa-
rameter positions. We then perform compression as follows:

• When all the action parameters but one have the same
values in the same position, the resulting compression
keeps those parameters and joins the free parameter in
a list. Note that this method will compress parameters
acting as an object or a subject. See example in Fig. 2a.
• When the same grounded parameter appears in different

positions in both actions, we consider it as an interme-
diate parameter. The resulting compression removes the
intermediate parameter and joins both actions by keep-
ing the rest of parameters. To do so, the space left by the
intermediate parameter is filled by the grounded values
appearing at the same place in the other action. The inter-
mediate parameters are kept to be used with abstraction
levels 1-3. Fig. 2b shows an example of this compression.

The compression method starts at the beginning of the
plan and checks every pair of consecutive actions trying
to compress them according to the above procedure. When
two actions are compressed, the resulting action is compared
with the next one, extending the compression to the subse-
quent actions in the plan. The compressed action duration is
computed as the time overlap between the two actions.

The PlanVerb Algorithm
The plan is preprocessed and stored in an intermediate struc-
ture to later allow the generation of the verbalized sen-
tences. This structure is a script of the plan to be verbal-
ized. Each element sl ∈ V in the script V is a 4-tuple
sl = 〈ai, Iai

, Dai
, Gai

〉, where ai is an action, Iai
is a list

of immediate justifications (actions aj with a causal link to
ai), Dai

is a list of deferred justifications (actions ak with a
causal link from ai), and Gai

a list of goals achieved by ai.
We first compute the action causality chains from the plan.

For this, we use a graph-based representation of the plan,
such as the one from Lima et al. (2020) that is integrated into
ROSPlan. From the plan graph, we compute causality chains
for those actions achieving a goal by traversing the graph’s
causal edges from these goal-achieving actions backwards.

Algorithm 1 shows the pseudocode of the PlanVerb algo-
rithm. To start, the actions in the plan are compressed using
the COMPUTEPLANCOMPRESSIONS method (line 5), as de-
scribed in the section above. The compression method splits
the plan into one plan per each subject performing an action.
This enhances the number of action compressions, as only
actions appearing consecutively in the plan are compressed.

Then, the causality chains are used to generate a full
plan script integrating every action’s information (immedi-
ate justifications, deferred, and goals). We call this script the
causality script, and it is generated in COMPUTECAUSALI-
TYSCRIPT (line 2). Justifications are also considered on a per-
subject basis, as immediate justifications may not be consec-
utive in the full plan, but be in the subject-split plan.

The causality script is then iterated and the verbaliza-
tion space parameters are applied to generate a verbalization
script including the actions that will be finally verbalized.
Actions and action justifications are filtered based on the
verbalization space parameters (lines 11–14). Actions act-
ing as immediate justification are skipped and not included
in the script, given that they will be verbalized with the ac-
tion they support. Actions appearing in a deferred justifica-
tion are not skipped. Instead, they are verbalized both as a
(later) consequence of the causing action, and as an action
with its own justifications when it appears later in the plan.

To avoid overcluttering the sentences, deferred justifica-
tions are skipped when they justify a skipped action (i.e., it
acts as immediate justification to another action), or when
they appear in a sentence where a goal is verbalized and the
explanation level is lower than 5 (so, goals take precedence).

Sentence generation Each action in the script is verbal-
ized in line 14 of Algorithm 1. The GENERATESENTENCE

method checks whether there are immediate, deferred justi-
fications, or goals in the script, verbalizes each of them and
joins them with pre-defined sentence linkers. The selected
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Algorithm 1: The PlanVerb algorithm
Input: Plan π; Causality chains C; Semantic tags T

Verbalization space (a, l, s, e) ∈ (A,L, S,E)
Output: Verbalization v
1 GA := GETGOALACHIEVINGACTIONS(C)
2 CS := COMPUTECAUSALITYSCRIPT(π, C)
3 PC := []; v := []
4 if s == Summary then
5 PC := COMPUTEPLANCOMPRESSIONS(π, GA)
6 else if s == General P icture then
7 CS := GETGOALACHIEVINGSCRIPTS(GA, CS)
8 foreach c ∈ CS do
9 if NOTINLOCALITY(c, l) then skip c

10 else // Filter the scripts according to e
11 c.I := FILTERIMMEDIATEJUSTIFICATIONS(c.I , e)
12 c.D := FILTERDEFERREDJUSTIFICATIONS(c.D, e)
13 c.G := FILTERGOALS(c.G, e)
14 v.add(GENERATESENTENCE(c, a, T , π, PC))

15 return v

linker is chosen at random, and the actions are verbalized to
the appropriate tense based on the structure of the linker and
the tense of the main action in the script.

The script may be tensed in future, past, or present de-
pending on the execution point of the plan. The justifica-
tions and deferred justifications are tensed accordingly, with
the verbs conjugated using the mlconjug3 library. All the
actions and predicates (goals) are verbalized similarly, tak-
ing the form of subject + verb + indirect-object +
direct-object + prepositional clauses. Only the
available parts of the sentence are used, based on the seman-
tic tags of the action and the abstraction parameter.

The sentence generation process also checks whether the
actions in the script are compressed and uses the compressed
version, adding the intermediate values as via points and the
action duration when specified by the level of abstraction.

Verbalization Questioning
While the proposed verbalization approach is flexible, cov-
ering many kinds of user preferences, there may be cases
where more information on a specific action is required. This
could be done by setting verbalization space parameters ac-
cordingly (i.e. with a narrow locality), but here we propose
a more flexible approach to question the verbalization to get
information on a single action, also using natural language.

We have used spaCy (Honnibal et al. 2020) to parse par-
tially grounded questions, which are then matched with the
PDDL plan. Ambiguities are solved by asking back the
user providing options on the remaining parameters to be
grounded. Once an action has been matched, it is then ver-
balized using PlanVerb. In this case, all the deferred justifi-
cations and goals are verbalized.

Evaluation
We have evaluated the proposed plan verbalization method
and spaces. First, we provide some examples of automati-
cally verbalized actions. Then, we analyse the impact of the

verbalization space parameters. Finally, we comment on the
results of an online survey regarding the verbalization.

For our evaluation we used ROSPlan with the POPF plan-
ner (Coles et al. 2010) for PDDL domains, and the PROST
planner (Keller and Eyerich 2012) for RDDL domains2 .

Examples of Verbalized Actions
Here we will present some verbalized actions produced
by our algorithm. A wider set of examples can be found
in the supplementary material1. In this section, we use a
robotics domain where mobile robots perform navigation,
pick, place, and handover tasks. The exemplified plans in-
clude two robots: the narrator (in first person) and “Tomo”.

In the following examples, black sentences refer to the
main action, blue sentences to immediate justifications,
green sentences to deferred justifications, and red to goals.
Sentences appear in different tenses to show that the method
can generate sentences at different points of execution.

Example 1: Abstraction We start with an action appear-
ing early in the plan where Tomo locates the manager. This
action enables the actions of “request person” and “give ob-
ject”, being the latter achieved by the other robot at the last
part of the plan. The sentence verbalized with (a, l, s, e) =
(A3, All plan, Summary, E4), action durations are not in-
cluded, and all the parameters are verbalized.

Tomo will locate the manager, which will allow me to later re-
quest the manager at the kitchen corridor and me to hand post2
to the manager at the kitchen corridor.

If verbalized with abstraction A4, the resulting sentence
ignores the location prepositional clause:

Tomo is going to locate the manager, which will allow me to
later ask the manager and me to deliver post2 to the manager.

Example 2: Specificity This shows action compression.
With verbalization space parameters (a, l, s, e) = (A3, All
plan, Summary, E4), intermediate actions are compressed:

Tomo will travel from the kitchen shelf towards the kitchen
counter (via coffee table) so Tomo can leave the paper at the
kitchen counter to achieve the goal of the paper being at the
kitchen counter.

When using Detailed Narrative instead, the sentence is as
follows (now in past tense). Note that as there is no com-
pression, actions from different subjects are interleaved:

Tomo is going to go from the kitchen shelf to the coffee table. I
am going to go from the kitchen table towards the kitchen corri-
dor, which will allow me to go from the kitchen corridor towards
the microwave. Tomo will travel from the coffee table to the
kitchen counter so Tomo can put the paper at the kitchen counter
to fulfill the goal of the paper being at the kitchen counter.

In the following example from the IPC’02 Rovers domain
(Long and Fox 2003), subjects are compressed. With verbal-
ization space parameters (a, l, s, e) = (A2, All plan, Detailed
Narrative, E1), the verbalization is:

2The code, domains, and the complete set of verbalized plans
with all the combinations of verbalization space parameters can be
found in https://github.com/gerardcanal/task_plan_verbalization
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Rover3 will travel from waypoint7 towards waypoint0 (taking
5 seconds). Rover2 is going to travel from waypoint7 towards
waypoint0 (taking 5 seconds).

When compressed with the Summary specificity parame-
ter and set to present tense, it becomes:

Rover3 and Rover2 are traveling from waypoint7 towards way-
point0 (taking 5 seconds).

Example 3: Immediate and deferred explanations Fi-
nally, an example of verbalization with both immediate and
deferred justifications. Here, the verbalization parameters
are (a, l, s, e) = (A4, All plan, Summary, E4):

Tomo is going to move to the office entrance 1, which will allow
Tomo to grasp the post1 so Tomo can later leave the post1 at the
main office desk.

Example 4: Verbalization questioning
Q: Why did you grasp the paper?
A: I took the paper at the desk, which will allow me to later
place the paper at the office shelf.

Q: Why did you go to kitchen?
A: Do you refer to when I will go from the entrance or the
corridor towards the kitchen?
Q: From the entrance.
A: I am going from the entrance towards the kitchen to later
be able to check the kitchen, find person1, locate person2, and
move from the kitchen to the desk.

Effect of the Verbalization Space Parameters
We have validated the effect of the verbalization space pa-
rameters with a set of test domains. Those include the of-
fice robot domain (4 instances), the IPC’02 Rovers domain
(Long and Fox 2003) (19 instances), the IPC’08 CrewPlan-
ning domain (Barreiro, Jones, and Schaffer 2009) (30 in-
stances) for PDDL. For RDDL, we have used the IPPC’14
triangle tireworld (Little and Thiebaux 2007), the print-
fetching domain from (Canal et al. 2019), and 3 interactive
robotics domains (Canal, Torras, and Alenyà 2022), involv-
ing assistive feeding and dressing tasks. We have computed a
plan for all the domains and instances and verbalized it with
all the combinations of parameters. Fig. 3 shows the average
number of words for all the verbalized plans and parameters.

Regarding the abstraction parameter (Figs. 3a and 3b),
the figures show that the higher the level of abstraction, the
fewer the number of verbalized words. Note that for abstrac-
tion A1, in this experiment we have sampled random real
coordinates from a 2D space to represent the locations ap-
pearing in the problem instances.

For the explanation parameter (Figs. 3b and 3c), the num-
ber of words increases with the level of explanation, as the
text becomes more verbose. E2 has a slight increase, as the
same number of actions are verbalized but linked together.
The deferred justifications added by level E3 increase more
the number of words, surpassed by E4 with the verbalized
goals. Lastly, the inclusion of all the deferred justifications
in level E5 generates the longest verbalizations.

Specificity (Figs. 3a and 3c) also has a clear effect on the
word number. The General Picture is the most summarised

one, including only some actions. The Summary level in-
cludes all the actions but compresses some of them, produc-
ing shorter narrations than the Detailed Narrative.

Online User Survey
We have conducted an online survey to assess both the use-
fulness of the provided explanations and the understandabil-
ity of the generated sentences. The survey was answered by
42 people in two groups. Two verbalizations were shown
to each user. The first one, v1 is a step-by-step plan of two
robots, Tomo and Asro, performing tasks of the office do-
main. The narration for v1 was generated with parameters
(a, l, s, e) = (A3, All plan, Detailed Narrative, E1). The other
one, v2 is a summarised version of the same plan including
explanations, generated with parameters (a, l, s, e) = (A3,
All plan, Summary, E4). One group would see first the step-
by-step plan v1 and then the summarised one v2; the other
would see them in the opposite order. The background of
the users ranged from robotics, computer science, AI plan-
ning, and unrelated disciplines (non-technical). 57% of the
users were not familiar with task planning (lay users), and
the 28% had occasionally seen or used a task planner be-
fore (non-experts). Four users were considered expert. We
kept them in the analysis because, while our focus is on
non-expert users, we wanted to see if there were notable dif-
ferences in views or comments from them. We did not find
differences in performance, while they provided meaning-
ful opinions. All of the users were fluent in English. The
survey involved multiple-choice questions on their opin-
ions on why they thought some specific actions were ap-
pearing in the plan based on the goals of the robots. The
multiple-choice questions were followed by 5-point and 7-
point Likert-scale questions regarding their agreement with
different statements on plan understandability. Finally, some
open-ended questions concluded the survey, available in the
supplementary material1. We have used a confidence level of
95% in the statistical tests used to analyse the survey results.

An F-test showed there were no significant differences be-
tween the two groups, for which the following results will
aggregate the answers regarding v1 and v2 for both groups.

The answers to the multiple-choice questions were given
one point for a correct value, and half a point for partially
correct answers (for instance, when the answer involved two
reasons but only one of them was selected). Our results
clearly show that v2, which included justifications, helped
the users to better answer the questions. More than 80%
of the users were able to answer correctly, with the high-
est question being 97.62%. In contrast, for the step-by-step
description v1 (without justifications) only half of the users
gave a correct answer, with the maximum for a single ques-
tion being 61.90%. For each question, between the 20% and
40% of the users stated they did not know the answer for v1,
while this percentage was at most 2.38% for v2. We have
assessed the significance of these results with a χ2 test.

Regarding the Likert questions, users were more confi-
dent in their responses for v2 (x̃ = 5.67 out of 7)3 than for
v1 (x̃ = 4.11 out of 7). On how easy it was to answer, the

3Where x̃ represents the arithmetic mean.
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(a) Average number of words for
abstraction and specificity.

(b) Average number of words for
abstraction and explanation.

(c) Average number of words for
explanation and specificity.

Figure 3: Effect of the verbalization space parameters in the average number of generated words in the verbalization.

means were x̃ = 4.02 out of 5 for v2 and x̃ = 2.45 for
v1. Those results indicate that users found explanations to
be helpful to answer the questions, clearly shown by the an-
swers to how quickly they could find the reasons behind each
questioned action: x̃ = 4.12 out of 5 for v2 and x̃ = 2.30 for
v1. Users also found the descriptions in v2 easier to read and
understand. Similarly, they reported higher satisfaction with
the plan description for v2, which included explanations. A
t-test found statistical significance for all these answers.

When asked about the grammatical soundness of the gen-
erated sentences, there were no significant differences be-
tween both verbalizations. For v1, x̃ = 4.19 out of 5, while
v2 got a x̃ = 4.17. Thus, both representations generated by
PlanVerb were found to be correct and readable.

When asked if the description of the plan made it easier to
answer the questions, most users agreed for v2 (with justi-
fications) against v1 (without justifications). Users that saw
v2 last agreed it helped more than v1, while those seeing v1
last disagreed that v1 helped more than v2. This supports the
claim that justifications help users understand the reasons for
actions. A t-test also showed significance for these results.

When asked about improvements, some users pointed to
elements that can already be solved by the different com-
bination of verbalization space parameters, such as show-
ing only actions achieving goals. Some users believed there
was too much information, with excessive granularity in v1,
while others mentioned v1 was missing information while
v2 wasn’t. This appears in different answers and suggestions
such as adding temporal information (which we can do with
different parameters). Therefore, users’ answers clearly sup-
port the need for different parametrizations, given that users
will have their preferences over the best verbalization. A few
users mentioned that one plan for each robot would be eas-
ier to understand, which supports the idea of joining plans by
subject and summarizing them separately as we propose. Fi-
nally, many users suggested adding visualisation along with
the verbalization, with ideas we leave for future work.

The conducted survey demonstrates that PlanVerb gener-
ates grammatically sound narrations of task plans that make
sense to users. The users’ answers further support the need
for different kinds of verbalizations, which can be achieved
with the verbalization space parameters we have proposed.

Conclusions
In this paper, we have presented PlanVerb as a domain-
independent method to automatically verbalize task plans.
We have proposed a semantic tagging for PDDL/RDDL ac-
tions and predicates that provide the necessary information
for PlanVerb to generate natural language sentences. Then,
by using causality information between actions, we are able
to generate sentences that make this causality explicit, both
for immediate justifications of actions appearing consecu-
tively in the plan and for deferred justifications of actions
that appear at a later stage. The narrated plans can also be
summarised by compressing related actions. We have fur-
ther extended the concept of verbalization space introduced
by (Rosenthal, Selvaraj, and Veloso 2016) to cover task
plans, adding a new explanation parameter that manages the
amount of verbalized justifications. We have also introduced
filtering by object or action in the locality parameter.

We have shown examples of verbalized sentences and
evaluated the effect of the verbalization space parameters in
different domains. The supplementary material1 includes an
extended set of examples. Finally, we have conducted an on-
line survey where users were shown examples of verbalized
plans. All users were able to read them and confirmed the
sentences were grammatically sound. Moreover, the justifi-
cations helped them understand the plan, which supports the
hypothesis that verbalizing causal chains fosters plan under-
standing. We believe this is a good step towards making task
plans more understandable. However, users also pointed to
the need for better Explainable Planning (XAIP) methods
able to explain the underlying reasons for the actions beyond
making causality explicit.

Although we can successfully verbalize plans that are un-
derstandable by users, some improvements may be done as
future work. First, using some natural language processing
techniques to improve sentence generation. Pronominalisa-
tion could help to make sentences more natural avoiding
subject repetition, as well as pluralization of nouns (i.e., after
some action compressions). Finally, the addition of precon-
ditions and effects could be beneficial to the verbalization
process, along with improved justification selection. This
could be accompanied by plan visualization techniques to
clarify the steps involved in the plan.
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