
Extended Goal Recognition Design with First-Order Computation Tree Logic

Tsz-Chiu Au
Department of Computer Science and Engineering, Ulsan National Institute of Science and Technology

Ulsan, Republic of Korea
chiu@unist.ac.kr

Abstract

Goal recognition design (GRD) is the task of modifying en-
vironments for aiding observers to recognize the objectives
of agents during online observations. The worst case distinc-
tiveness (WCD), a widely used performance measure in GRD
research, can fail to provide useful guidance to the redesign
process when some goals are too hard to be distinguished.
Moreover, the existing WCD-based approaches do not work
when an agent aims for a sequence of goals instead of just
one goal. The paper presents a new GRD framework called
extended goal recognition design (EGRD) for goal recogni-
tion that involves multiple goals. The objective of EGRD is
to modify an environment to minimize the worst case distinc-
tiveness of a goal condition that describes how an agent can
reach a set of goals. A goal condition can be formally ex-
pressed in first-order computation tree logic (FO-CTL) that
can be evaluated by model checking. We introduce a novel
graphical representation of FO-CTL sentences that is suitable
for extended goal recognition. Moreover, we present a search
algorithm for EGRD with a novel caching mechanism. Our
experimental results show that the caching mechanism can
greatly speed up our EGRD search algorithm by reusing the
previous evaluation of FO-CTL sentences.

Introduction
In goal recognition, an observer infers the goal of an agent,
who is acting in an environment, from a sequence of obser-
vations (Kautz 1987; Carberry 2001; Ramirez and Geffner
2010; Sukthankar et al. 2014; Vered and Kaminka 2017;
Pereira, Oren, and Meneguzzi 2017). Goal recognition de-
sign (GRD) is the task of designing an environment such
that it becomes easier for an observer to recognize an agent’s
goal (Keren, Gal, and Karpas 2020). In recent years, there is
a new line of research on GRD based on minimizing the
worst case distinctiveness (WCD), put forward by Keren,
Gal, and Karpas (2014). WCD is the highest number of ob-
servations that an observer needs before it can ascertain an
agent’s goal in the worst case. In some application domains
such as airport security, it is helpful to recognize inappro-
priate goals pursued by an agent as early as possible. This
early detection can be achieved by redesigning an environ-
ment such that WCD is minimized.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A B C D E

5

4

3

2

1

F

Figure 1: An example of EGRD that involves multiple goals.

However, there are situations in which WCD cannot pro-
vide helpful guidance for environmental design. Suppose
there are two long paths that share a long prefix but lead to
two different goals. It is difficult to redesign the environment
to reduce WCD even if other goals can be recognized easily.
Perhaps we should modify WCD to take the relative impor-
tance of goals into account. However, we pursue a differ-
ent approach: instead of asking exactly which goal an agent
aims for, an observer asks whether the agent aims for a goal
condition, which describes conditions such as whether the
agent aims for one of two goals but not any other goals. It is
not always necessary for the observer to recognize a goal ex-
actly. For example, if security guards have enough resources
to protect two locations simultaneously, it is sufficient to
know two possible locations an intruder plans to visit. More
generally, when WCD is too restrictive for GRD, recogniz-
ing weaker goal conditions can provide more opportunities
for the redesign process.

We propose using first-order computation tree logic (FO-
CTL) to express goal conditions (Bohn et al. 1998). Com-
putation tree logic is a widely used language for the for-
mal verification of properties by model checking (Clarke
and Emerson 1981). In this paper, we show that FO-CTL
can be used to express a wide variety of goal conditions
that are suitable for goal recognition. Specifically, FO-CTL
is expressive enough for specifying extended goals that in-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

9661

volve multiple goals (Pistore and Traverso 2001; Baier and
McIlraith 2006; Camacho et al. 2017). To illustrate when
extended goal recognition design (EGRD) is necessary, con-
sider the example in Figure 1, which extends the airport se-
curity example in (Keren, Gal, and Karpas 2020). In this ex-
ample, an agent has to aim for two goals: the first goal is
either gA or gB , which refer to the checkpoints at A5 or F5
respectively. The second goal is either gexit (exiting the area
normally) or ghack (entering the computer room using the
key the agent steals at E3). The agent must choose to follow
one of the legal paths1 (the red paths in Figure 1) starting at
the initial state s0. The observer does not know the chosen
path ahead of time, let alone the goals on the chosen path. If
the agent aims for ghack, it must choose one of the solid red
lines. The observer can recognize ghack as one of the agent’s
goals only after the agent visits D3 or E2. After recognizing
ghack, the observer has to deploy one security guard to one
of the checkpoints at A5 or F5 to intercept the agent. How-
ever, if the agent visits D3 but not E2, the observer cannot
recognize the agent’s first goal (gA or gB) and cannot decide
which checkpoints it should deploy the security guard. If we
put a barrier (the blue line in Figure 1) between D3 and E3,
we can force the agent to reveal its goal ghack as well as gB
at E2. If there is no barrier and the agent reaches D3, there is
a chance the observer misplaces the security guard and the
agent can reach the computer room. This example illustrates
a goal condition that involves two goals, and the second goal
(ghack) should not be recognized before the first goal (gA or
gB). In this paper, we will show how to use FO-CTL to ex-
press this type of goal conditions, such that we can redesign
the environment (e.g., putting a barrier at the right place) to
satisfy the goal condition while minimizing a cost function
(e.g, time to reveal the goals).

This paper is organized as follows. We first define the
syntax and the semantics of FO-CTL and explain what goal
conditions are. Then we describe the structure of goal query
graphs and how to compute WCD by model checking. After
that, we define the task of EGRD and present a technique to
speed up the search algorithm for EGRD. Finally, we present
the experimental results and conclude this paper.

First-Order Computation Tree Logic
The syntax of FO-CTL is just like the syntax of first order
logic with the addition of path quantifiers (A and E), tem-
poral operators (F, G, X, and U), and path formulas. We
assume no function symbol. The syntax of FO-CTL formu-
las is specified by the following context-free grammar.

φ ::= ⊥ |> |Atom | ¬φ |φ ∧ φ |φ ∨ φ |
φ⇒ φ |φ⇔ φ | ∀xφ | ∃xφ |Aψ |Eψ

ψ ::= Fφ | Gφ | Xφ | [φUφ]

Atom ::= Predicate(Term1, . . . , T ermn) |
Term1 = Term2

Term ::= Constant |V ariable
1A typical assumption in GRD research is that an agent can-

not move freely but follow one path in a given set of legal paths,
which can be either the shortest paths, some feasible paths subject
to physical constraints, or some paths in a path library.

where Atom is an atom, Predicate is a predicate symbol,
and Term is a term which can be either a constant or a vari-
able. Moreover, φ is a state formula, and ψ is a path for-
mula. A FO-CTL sentence is a state formula but not a path
formula. A variable is free if it is not quantified by univer-
sal or existential quantifiers. A substitution is a binding list
{x1/C1, . . . , xn/Cn}, where xi and Ci are a variable and a
constant, respectively, for 1 ≤ i ≤ n. We denote a sentence
after applying a substitution by SUBST(θ, φ). Let Θ be the
set of all possible substitutions.

Semantics of FO-CTL FO-CTL sentences are interpreted
over transition systems: M = (S,E,L, s0), where 1) S is a
finite set of states; 2) E ⊆ S×S is a transition relation (i.e.,
(s1, s2) ∈ E iff s2 is a next state of s1); 3) L : S → 2A

maps a state s to the set of ground atoms that are true at state
s, where A is the set of all ground atoms; and 4) s0 ∈ S is
the initial state. A path p starting at state s0 is a sequence of
states 〈s0, s1, . . .〉 such that si+1 ∈ T (si) for i ≥ 0. Let P(s)
be the set of all paths in M starting at s. Given a transition
system M = (S,E,L, s0), a state s ∈ S, and a sentence φ,
we say (M, s) entails φ (i.e., (M, s) |= φ) iff φ is true at s
in M . The entailment is defined recursively as follows:

1. (M, s) |= >
2. (M, s) 6|= ⊥
3. (M, s) |= ρ iff ρ ∈ L(s) where ρ is a predicate
4. (M, s) |= ¬φ iff (M, s) 6|= φ

5. (M, s) |= φ1 op φ2 iff [(M, s) |= φ1] op [(M, s) |= φ2],
for op ∈ {∧,∨,⇒,⇔}

6. (M, s) |= ∀xφ iff ∀(θ ∈ Θ) [(M, s) |= SUBST(θ, φ)]

7. (M, s) |= ∃xφ iff ∃(θ ∈ Θ) [(M, s) |= SUBST(θ, φ)]

8. (M, s) |= Aψ iff ∀(p ∈ P(s)) [(M,p) |= ψ]

9. (M, s) |= Eψ iff ∃(p ∈ P(s)) [(M,p) |= ψ]

The entailment of a path formula ψ ((M,p) |= ψ where
p = 〈s0, s1, . . .〉) in Statements 8 and 9 is defined as follows:

11. (M,p) |= Fφ iff ∃(s′ ∈ p) (M, s′) |= φ

12. (M,p) |= Gφ iff ∀(s′ ∈ p) (M, s′) |= φ

13. (M,p) |= Xφ iff (|p| ≥ 2) ∧ [(M, s1) |= φ]

14. (M,p) |= [φ1 Uφ2] iff ∃(si ∈ p) {[(M, si) |= φ2] ∧
∀(j ∈ [0, i)) (M, sj) |= φ1)}

Syntactic Sugar In goal recognition tasks, the set C of
constants is a finite set of goals G = {g1, g2, . . . , gm}
known to the observer, and there is exactly one predi-
cate symbol Goal in P with one argument. The predi-
cate Goal(gi) is true if gi is a goal at a given state.
Hence, we omit the predicate symbol Goal when writ-
ing a FO-CTL sentence. When we see constant sym-
bols or variable symbols in a sentence at which a
predicate is expected, we assume they are enclosed by
the predicate symbol Goal. For example, the sentence
“∃x {x ∧ ∀x′ [(x′ 6= x)⇒ ¬EFx′]}” should be translated
into “∃x {Goal(x) ∧ ∀x′ [¬(x′ = x)⇒ ¬EF Goal(x′)]}”.
Since there is only one type of ground atoms Goal(g) in
L, we can replace L in M = (S,E,L, s0) with G : S →
2G, which maps a state s to a set G(s) of goals such that

9662

Goal(g) ∈ L(s) for all g ∈ G(s). Hence, we shall define M
as (S,E,G, s0) for the rest of this paper. We shall use the
symbol x to denote variables in a FO-CTL sentence.

Goal Conditions
Most existing works in goal recognition design assume an
agent aims for one goal only. In this paper, we consider the
scenarios in which an agent can aim for several goals. Let
p∗ be the legal path chosen by an agent. We consider all
goals in all states in p∗ are the goals aimed by the agent. We
ignore the cases in which an agent visits a state with a goal g,
but it does not intend to achieve g. We ignore unintentional
goal achievement since an observer can only observe agents’
behavior and cannot read agents’ minds. From the observer’s
perspective, an agent does not accidentally achieve a goal.

A goal condition is a boolean query about temporal and
logical relationships among goals that an agent tries to
achieve. Given a transition system that models an environ-
ment, a goal condition describes a certain property of a sub-
structure in the transition system. In FO-CTL, a substructure
of a given state s is a subgraph formed by the set of paths
starting from s. In extended goal recognition, we are inter-
ested in checking whether a substructure that satisfies a goal
condition exists in a given transition system. In extended
goal recognition design, we are interested in modifying a
transition system such that the location of the substructure
that satisfies a goal condition can be optimized (e.g., make
it closer the the initial state). We choose FO-CTL to encode
goal conditions due to the expressiveness of FO-CTL and
the availability of efficient model checking algorithms. For
example, consider the following goal condition:

φunique = ∃x {AF (x ∧ ∀x′ [(x′ 6= x)⇒ AG¬x′])} (1)

φunique is a FO-CTL sentence that checks whether a goal g
exists such that the agent must eventually achieve g while
the agent will not achieve any other goal. Hence, if φunique
is true at state s, the agent will certainly achieve one goal
only, and the observer can successfully recognize the goal at
s even if the agent has not achieved the goal at s yet.

To compute the WCD of a goal condition φ, we find a set
Sφ(p) of states on a legal path p such that φ is true in these
states. Then the WCD can be computed by

WCD =

{
max
p∈P leg

min
si∈Sφ(p)

[dist(s0, si)]

}
− 1, (2)

where P leg is the set of all legal paths and dist(s0, si) is the
distance between si and the initial state s0. Note that the −1
term is needed because the WCD does not include the state
at which a goal has already been recognized.

Goal Query Graph
FO-CTL sentences can become quite long and complicated
when multiple goals are involved. In this section, we pro-
pose to express a goal condition in a graphical form that is
suitable for goal recognition. We also provide an algorithm
to translate a graph into a FO-CTL sentence.

A goal query graph is a directed acyclic graph that de-
scribes a substructure in a transition system that models

an environment. There are three types of vertices in a goal
query graph: state vertices, nil vertices, and choice vertices.
A state vertex v matches a state s in an environment accord-
ing to a state condition cond(v) associated with v. A state
condition is a first-order logic statement without the modal
operators in FO-CTL and can have free variables. If cond(v)
is true at state s, we say v matches s (or s matches v). A nil
vertex is a placeholder for connecting different edges and is
not used to match any state. A nil vertex cannot be a terminal
vertex and must be followed by an edge. A choice vertex cor-
responds to the beginning of alternative paths in a goal query
graph. It must be followed by two or more choice edges.

There are five types of edges: AP edges, EP edges, AX
edges, EX edges, and choice edges. An AP edge (v1, v2) de-
scribes the following substructure if both v1 and v2 are state
vertices: after an agent reaches a state s1 that satisfies the
state condition of v1, it will eventually reach another state
that matches v2 in all future paths after s1. In other words,
after matching v1 at s1 the agent will certainly reach another
state that matches v2. Each AP edge (v1, v2) has an edge
condition cond(v1, v2), a first-order logic statement with-
out the modal operators in FO-CTL and can have free vari-
ables. All intermediate states between s1 and the states that
matches v2 must satisfy cond(v1, v2). If we omit the edge
condition when we draw an AP edge in a goal query graph,
the edge condition is assumed to be True. We say an AP
edge matches a state s1 if there are states that matches v2 on
all paths after matching s and cond(v1, v2) is satisfied on all
states between s and the states that matches v2. Likewise, an
EP edge (v1, v2) matches a state s1 if an agent will possi-
bly (but not necessarily) reach another state that matches v2
after matching v1 at s1. More precisely, there is at least one
future path after s1 that matches v1 such that the agent will
reach another state s2 that matches v2, and all intermediate
states between s1 and s2 satisfy cond(ε). In other words,
there is a chance of reaching s2 after s1. Note that the length
of the path between s1 and s2 is at least 1.

AX edges and EX edges are similar to AP edges and EP
edges except that the length of the path between the states
that match v1 and v2 is exactly 1. AX edges and EX edges
do not have edge conditions because there is no intermediate
state between the states that match v1 and v2. A choice edge
denotes an alternative path after a choice vertex. It does not
match any substructure and has no edge condition.

The state conditions and edge conditions can contain free
variables that match goals in states. Moreover, a free vari-
able can appear multiple times in a goal query graph, match-
ing the same goal. There are two ways to match free vari-
ables with goals in a substructure that matches a goal query
graph. A free variable x strongly matches a goal g when x
always matches g in all paths in the substructure. By con-
trast, x weakly matches some goals when x matches a goal,
but the goal can be different on different paths that lead to
the vertices in which x is matched. For example, the goal
query graph in Figure 2 has two free variables x1 and x2.
If we want both x1 and x2 to strongly match two goals,
the graph should be translated into this FO-CTL sentence:
∃x1∃x2[AFx1 ∧ AX AFx2], which means that there exist
two goals that an agent will certainly reach one after another.

9663

Figure 2: A goal query graph that recognizes two goals se-
quentially. The black dot is a nil vertex, the circles are state
vertices, and the solid arrows are AP edges. The asterisk on
x1 denotes that x1 will weakly match a goal.

End

Figure 3: A goal query graph for recognizing a goal but ex-
cluding other goals.

After matching the graph to a substructure, we can tell ex-
actly which two goals are matched. If x1 weakly matches a
goal but x2 strongly matches a goal, the FO-CTL statement
should be ∃x2[AF ∃x1[x1] ∧ AX AFx2], which means that
an agent will first reach a goal before reaching a second goal.
However, we cannot tell exactly which goal is the first goal
because different paths to the states that match x1 can cause
x1 to match different goals. At the time a goal query graph is
matched, all we know is that the agent will eventually reach
two goals but we cannot determine exactly which goal is the
first goal. In some applications, weakly-matched variables
are exactly what we want. For example, the observer in Fig-
ure 1 does not need to know whether the first goal is gA or
gB as long as it recognizes ghack as the second goal. Know-
ing the existence of the first goal is crucial in protecting an
airport in an extended scenario in which the first goal is op-
tional (e.g., there is a new path from s0 to ghack without go-
ing through A5 or F5) and the deployment of security guards
depends on the knowledge of the first goal’s existence (send-
ing security guards to locations other than A5 and F5).

The goal query graph in Figure 2 ignores other goals in
the matched substructure. If we prefer to recognize a goal g
such that the agent will reach a state with g only and will not
reach other goals thereafter, we have to add additional re-
quirements to the state conditions and the edge conditions.
Let XA = ∀x[¬x] be a predicate called “Exclude All”. Let
XAy1,...,ym = ∀x[(x 6= y1) ∧ . . . ∧ (x 6= ym) ⇒ ¬x] be
a predicate called “Exclude All But y1, y2, . . . , ym”, where
yi is either a variable or a goal, for 1 ≤ i ≤ m. Let End be
a special predicate that matches the end of a legal path (i.e.,
the “state” after the last state of a legal path) only. The goal
query graph in Figure 3 can be translated into ∃x{AF (x ∧
(∀x1[(x1 6= x) ⇒ ¬x1]) ∧ (AX A [∀x2 [¬x2] UEnd)]},
which is mathematically equivalent to φunique in Sentence 1.

The goal query graphs in Figures 2 and 3 match states in
a sequential manner. Choice vertices and choice edges offer
a way to match states in a nonlinear fashion. Figure 4 shows
a goal query graph that offers a choice to match either g1 or
g2 after matching x. An agent must eventually reach either
g1 or g2 after matching a goal. However, the observer cannot
know ahead of time which one it is—it only knows either g1
or g2 (or both since there is no XA predicate) will be reached.
If the agent’s second goal is g1, the agent will immediately
reach g2 after g1, and then reach g3 and x; otherwise, the

Figure 4: A goal query graph with all five types of edges.
The empty circle is a choice vertex and the dotted lines are
choice edges. The solid unfilled arrow from g1 to g2, the
dashed unfilled arrow from g2 to g1, and the dashed arrow
from g1 to g3 are AX, EX, and EP edges, respectively.

agent will possibly reach g1 immediately after g2 and then
may or may not reach g3 and x due to the EP edges. Note
that the first x and the last x match the same goal. This goal
query graph can be translated into this FO-CTL sentence:
∃x[x ∧ AX AF [(g1 ∧ AX (g2 ∧ AX AF (g3 ∧ AX AFx))) ∨
(g2∧EX (g1∧EX EF (g3∧AX AFx)))]]. The supplementary
material contains additional examples showing the usage of
choice vertices and choice edges.

Translation to FO-CTL Sentences
We devised an algorithm to translate goal query graphs into
FO-CTL sentences that can be used to identify substructures
in a transition system by model checking. The algorithm
proceeds by a depth-first search starting from the start state
vertex v0 of a graph. Let tr(v1) be the FO-CTL sentence of a
subgraph starting at the vertex v1. Let tr(v1, v2) be the FO-
CTL sentence of a subgraph that includes the edge (v1, v2)
and the subgraph starting at v2. If v1 is a terminal vertex,
tr(v1) = cond(v1). If v1 is not a terminal vertex and v1 is a
state vertex, tr(v1) = cond(v1) ∧ tr(v1, v2) where (v1, v2)
is the edge that follows v1. If v1 is not a terminal vertex and
v1 is a nil vertex, tr(v1) = tr(v1, v2). If v1 is a choice vertex
and the choice edges incident on v1 are (v1, v2), (v1, v3),
. . . (v1, vm), then tr(v1) = tr(v2) ∨ tr(v3) ∨ . . . ∨ tr(vm).

Given an AP edge (v1, v2) where v1 is a state vertex, if
cond(v1, v2) is True, tr(v1, v2) = AX AF tr(v2); otherwise,
tr(v1, v2) = AX A [cond(v1, v2) U tr(v2)]. The modal oper-
ator AX makes sure that both cond(v1, v2) and cond(v2)
are not used to match the state that matches v1. If v1 is a nil
state, AX is dropped: tr(v1, v2) = AF tr(v2) if cond(v1, v2)
is True and tr(v1, v2) = A [cond(v1, v2) U tr(v2)] other-
wise. The translation of EP edges is the same except the
modal operators AF, AX, and AU are replaced with EF, EX,
and EU, respectively. The translation of AX edges and EX
edges are AX tr(v2) and EX tr(v2), respectively.

Lastly, the algorithm identifies all free variables in the FO-
CTL sentence φ and inserts existential quantifiers in φ. If x
is a strongly-matched variable, the algorithm put ∃x in the
front of φ. If x is a weakly-matched variable, the algorithm
first computes the common prefix of all paths to all occur-
rences of x in φ, and then insert ∃x before the last node in
the common prefix. The pseudo-code of the translation algo-
rithm can be found in the supplementary material. The time
complexity of the algorithm is O(|V | + |E|), where V and

9664

EF

AG

AF

Figure 5: The tree structure of Sentence 3 when φ = φunique.

E are the set of nodes and the set of edges in the goal query
graph, respectively.

Finding WCD by Model Checking
Suppose we want to calculate the WCD of a goal condition
φ according to Equation 2. Instead of using a specialized
algorithm (e.g., the latest-split method in Keren, Gal, and
Karpas (2014)), we can integrate the calculation into model
checking by evaluating an extended version of the FO-CTL
sentence at the initial state:

EFφ (3)

Typically a model checking algorithm evaluates a FO-CTL
sentence recursively according to the tree-structure of the
sentence as shown in Figure 5. The truth values of subsen-
tences are propagated to the root node by recursive function
calls. We can modify the model checking algorithm by at-
taching a cost to the truth value returned by each recursive
function call. Moreover, we attach a cost function to each
node in a sentence. A cost function takes the truth values and
the costs returned from the children nodes and computes a
new cost. In Sentence 3, the cost returned by the root node
of φ is always the depth of the state si that matches φ (i.e.,
dist(s0, si) in Equation 2). The cost is minimum on any le-
gal path to si because the EF node always matches the first
state that matches φ on a legal path. Then the cost function of
the EF node collects the minimum costs from all legal paths
that contain a state that matches φ, and returns the maximum
cost among them. The maximum cost minus 1 is the WCD
as defined in Equation 2.

This method can be generalized to compute performance
measures other than the WCD. Indeed, when there are mul-
tiple goals, we may be interested in optimizing other perfor-
mance measures such as the number of goals that can be rec-
ognized. However, we do not get into this discussion here.

Extended Goal Recognition Design
In this section, we define the design models for EGRD and
planning with goal sequences.

Modifications and Design Models
In this paper, we only allow modifications to the transi-
tion relation E in a transition system M = (S,E,G, s0).
We define a modification m as a pair (Add(m),Del(m)),
where both Add(m) and Del(m) are sets of edges such
that Add(m) ∩ Del(m) = ∅. m is applicable in M =
(S,E,G, s0) if and only if E ∩Add(m) = ∅ and (Del(m) \
E) = ∅. After m is applied to M , the new set of edges is

E′ = (E \ Del(m)) ∪ Add(m), and the new transition sys-
tem is M ′ = (S,E′,G, s0).

According to Keren, Gal, and Karpas (2019), a design
model is a triple 〈W , δ, η〉, whereW is a set of atomic mod-
ifications, δ is transition function between goal recognition
models (which are transition systems in our context), and η
specifies whether a modification sequence can be applied to
a goal recognition model. However, according to our def-
inition of modifications, δ can be deduced from W (i.e.,
δ(M,m) = M ′ where M ′ is the new transition system af-
ter applying m to M). We can also define η as follows: if a
modification sequence ~m = {m0,m1, . . . ,mk} is applica-
ble in M (i.e., mi+1 is applicable in Mi+1 = δ(Mi,mi) for
0 ≤ i ≤ k − 1), η(~m,M) = 1; otherwise, η(~m,M) = 0.
For the rest of the paper, we shall denote a design model as
W without δ and η.

Legal Paths and Legal Transition Systems
Given an initial transition system M0 = (S,E0,G, s0), let
M be the set of all possible systems that are reachable from
M0 by the modifications in W . In other words, M is the
closure of {M0} underW . Let Emax =

⋃
(S,E,G,s0)∈ME be

the set of all edges in all transition models in M. Basically,
the edges that are not in Emax will never be visited by an
agent and they can be ignored. LetMmax be (S,Emax,G, s0).

We denote the set of all paths starting at s0 in M by
P (M). We assume the agent will eventually choose to fol-
low one path p∗ ∈ P leg , where P leg ⊆ P (Mmax) is a finite
set of legal paths, each of which is a finite path. Basically,
P leg is determined by the agent’s controller. For example,
P leg can be the set of the shortest paths to the goals in G.
However, other controllers can use a different set of paths.
While the observer does not know p∗, he does know P leg by
either being given a database of legal paths or getting hold
of a controller that can generate legal paths on demand.

Mathematically, we should not directly evaluate φ inM =
(S,E,G, s0) since the agent cannot traverse any path not in
P leg . Instead, we should evaluate φ in a different transition
system whose paths are in P (M) as well as P leg . We de-
fine the legal transition system of M w.r.t. P leg as T (M) =
(S′, E′,G′, s0), which is formed by merging the longest
common prefixes of the paths in P leg(M) = P leg ∩P (M).
T (M) is a tree rooted at s0. Note that a state in s ∈ S can ap-
pear in several paths in P leg(M), and the different instances
of s in T (M) should be named differently in S′. Although
φ should be evaluated in T (M) instead of M , an evaluation
algorithm such as Algorithm 2 does not have to construct
T (M) explicitly, as long as it keeps checking whether the
current path is not in P leg while evaluating φ in M .

Extended Goal Recognition Design
An extended goal recognition model R is a tuple
〈M,P leg, φ, cost〉, where M = (S,E,G, s0) is a transi-
tion system, P leg is a set of legal paths, φ is a FO-CTL
sentence, and cost is a cost function. An extended goal
recognition design model is a pair 〈R0,W〉, where R0 =
〈M0, P

leg, φ, cost〉 is the initial goal recognition model and
W is a design model. Given 〈R0,W〉, the task of extended

9665

goal recognition design (EGRD) is to search for a transition
system M∗ in the closure M of {M0} under W such that
1) the legal transition system T (M∗) of M∗ w.r.t. P leg sat-
isfies (T (M∗), s0) |= φ, and 2) T (M∗) minimizes the cost
function cost w.r.t. φ. More precisely,

M∗ = arg min
∀M∈M s.t. (T (M),s0)|=φ

cost(φ, T (M)), (4)

where cost(φ, T (M)) is the cost of φ in T (M).

Planning with Goal Sequences
A transition system M = (S,E,G, s0) can be defined in
terms of classical planning with goal sequences using the
STRIPS formalism (Fikes and Nilsson 1971). In classical
planning, a state s ∈ S is defined as a set of fluents, each
of them is a ground, functionless atom that is true in s. Note
that a fluent is not an atom in FO-CTL sentences. A plan-
ning domain is a pair 〈F , A〉, where F is the finite set of all
fluents andA is a set of actions. A plan π is a sequence of ac-
tions 〈a0, a1, . . . ak−1〉, where ai ∈ A for 0 ≤ i < k. Given
an initial state I ⊆ F , a plan π is valid2 if ai+1 is applicable
in si+1 = apply(si, ai) for 0 ≤ i < k and s0 = I . The path
of a valid π is the sequence of states p(π) = 〈s0, s1, . . . , sk〉
visited by the agent if it executes π. Let Πleg be a finite set
of legal plans from which the agent can choose a plan and
execute the plan. Note that unlike the definition of the legal
plans in (Keren, Gal, and Karpas 2019), a legal plan in Πleg

does not have to associate with a unique goal; there could
be legal plans that lead to no goal or multiple goals. Given
Πleg , we can construct the corresponding set of legal paths:
P leg = {p(π) : ∀π ∈ Πleg}.

Many existing works consider action removal modifi-
cations only, which remove actions from a planning do-
main (Keren, Gal, and Karpas 2014; Son et al. 2016; Ang
et al. 2017; Wayllace, Hou, and Yeoh 2017; Mirsky et al.
2019). Action conditioning modification adds preconditions
to actions (Keren, Gal, and Karpas 2018). We adopt a sim-
ilar definition of modifications, whereby atoms or literals
can be added to or removed from the preconditions, the
add lists, or the delete lists of actions. Such modifications
will only update E in the corresponding transition system
M = (S,E,G, s0)—some new edges can be added to E
while some existing edges can be removed from E. Adding
new edges to E will enlarge P (M) such that there can be
more legal paths in P leg(M) = P leg ∩ P (M) for the agent
to choose, whereas removing edges from E can reduce the
set of P leg(M). These effects of a modification m can be
summarized by Add(m) and Del(m).

In partial observable environments, sensor refinements
modify sensory input models (Keren, Gal, and Karpas
2016a,b; Wayllace et al. 2020; Shvo and McIlraith 2020).
Since we assume the outcomes of actions are deterministic
and the model is fully observable to both the agent and the
observer, our design model do not allow sensor refinement.

2Unlike classical planning, a valid plan does not have to achieve
any goal in G in our framework. A plan that does not reach any goal
can still reach some hidden goals not in G. However, the hidden
goals are irrelevant to the goal recognition task and can be ignored.

Algorithm 1: The EGRD search algorithm.

1: procedure EGRD-Search(M0 = (S,E0,G, s0), φ,W)
2: LetF be the frontier andH be a set of visited sets of edges.
3: Let C be a cache of the evaluation results of subsentences.
4: node1 := the first node of φ; p∗ :=∞; F := {(E0, {})}
5: While F is not empty and the current time< the time limit
6: Use a heuristic function to select (E, ~m) from F
7: Remove (E, ~m) from F ; M := (S,E,G, s0)
8: t := EVAL(node1, s0, {}) with φ, M , C, P leg

9: Add E to H; Let p be the cost attached to t.
10: If t = True and p < p∗, then E∗ := E; ~m∗ := ~m
11: For each m ∈ W that is applicable to E,
12: Get E′ by applying m to E
13: If E′ 6∈ H , then insert (E′, ~m⊕ {m}) into F .
14: return M∗ = (S,E∗,G, s0) and ~m∗

Algorithm 2: Evaluate a FO-CTL sentence φ in M =
(S,E,G, s0) with a cache C.

1: procedure EVAL(nodei, s, θ)
2: /* φ, M , C, and P leg are given by Algorithm 1 */
3: t := C((nodei, s, θ), P leg(M, s)); If t exists, Return t
4: Use a model checking algorithm MC to evaluate φ.
5: /* MC will call EVAL() recursively */
6: Let t be the truth value of the subsentence rooted at nodei

7: Call the cost function of nodei to compute cost(t)
8: C((nodei, s, θ), P

leg(M, s)) := t with cost(t)
9: return t with cost(t).

The EGRD Search Algorithm with Caches
Given an EGRD model 〈R0,W〉 where R0 =
〈M0, P

leg, φ, cost〉 and M0 = (S,E0,G, s0), the ob-
jective is to search for a modification sequence ~m∗ that
minimizes the cost function cost(φ, T (M)) and leads to
M∗. Algorithm 1 is a best-first search for finding ~m∗. A
node in Algorithm 1 is a pair (E, ~m), where E is a set of
edges and ~m is a modification sequence that leads to E
from E0. The algorithm maintains a set of nodes in the
frontier F , which initially contains (E0, {}). The algorithm
chooses a node in F according to a heuristic function and
then expands the node. To prevent a cycle in the search
process, the algorithm avoids inserting a node into F if the
set of edges has appeared previously. The algorithm keeps
track of the solution with the minimum cost and returns it at
the end. Since all transition systems are finite, the number
of possible sets of edges is also finite. Hence, Algorithm 1
will eventually terminate.

In Algorithm 1, the evaluation of FO-CTL sentences in
a given transition system is conducted by EVAL(), which
returns the truth value of the sentence as well as the cost.
Algorithm 2 is the pseudocode of EVAL(). Algorithm 2 re-
lies on an external model checking algorithm, which can be a
naive algorithm that traverses the transition system by depth-
first search while checking the sentence recursively at each
state, using the definition of entailment directly. The input of
the algorithm is a tuple (nodei, s, θ) called a search node,
where nodei is the current sentence node in φ, s is the cur-
rent state inM , and θ is a substitute. At the beginning, the in-
put of Algorithm 2 is the initial search node (node1, s0, {}),

9666

as shown in Line 8 in Algorithm 1. Other inputs are φ, M ,
C, and P leg; these inputs remain unchanged in subsequent
recursive function calls of EVAL(). Whenever the model
checking algorithm needs to call itself recursively, the recur-
sive function call should invoke EVAL() instead such that
the cache and the evaluation functions can be used recur-
sively as well. In Line 11–13, the frontier is expanded even
if t is false in Line 10 because an environment may need two
or more modifications to form a new environment that satis-
fies φ, but the intermediate environments do not satisfy φ. In
Line 7, the cost function of the current search node is called
to compute the cost cost(t) that will be returned along with
the truth value t in Line 9.

The time complexity of Algorithm 1 is exponential to the
length of the modification sequences. It is difficult to come
up with a good heuristic function for node selection since
1) we allow modifications to add and delete edges simulta-
neously, and 2) the FO-CTL sentence and the cost function
can be arbitrary. One way to speed up Algorithm 1 is to avoid
running Algorithm 2 from scratch all the time. We propose
a caching mechanism that stores the results of the evaluation
of subsentences for reuse. This mechanism works because
1) the cost function is defined according to the tree structure
of a FO-CTL sentence φ such that the cost of a subsentence
of φ can be computed separately, and 2) the evaluation of
a subsentence starting at nodei is always the same given
the set same search node (nodei, s, θ) in Algorithm 2 and
the same set of legal paths P leg(M, s) = {p ∈ P leg(M) :
p has the same prefix from s0 to s }. Therefore, we can as-
sociate (nodei, s, θ) and P leg(M, s) with the truth value t
and cost(t). This association can be stored in a cache and
can be reused for different transition systems in Algorithm 2.
See Lines 3 and 8 in Algorithm 1 and Lines 3 and 8 in Algo-
rithm 2 for the implementation of this caching mechanism.
The cache is created in Lines 3 of Algorithm 1 and is uti-
lized by Algorithm 2: if the truth value can be found in the
cache, the model checking algorithm will not be invoked;
otherwise, the truth value and the cost will be stored in the
cache after invoking the model checking algorithm.

Empirical Evaluation
We conducted two experiments to evaluate the EGRD search
algorithm. In Experiment 1, we checked how well the EGRD
search algorithm scales with the number of goals being rec-
ognized. We extended the goal query graph in Figure 2 with
an increasing number of goals in sequential order, and half
of the goals are weakly-matched goals. In Experiment 2, we
evaluated the improvement of the execution time due to the
caching mechanism, using the goal query graph in Figure 3.
Experimental Setup We adopted four domains in the In-
ternational Planning Competition: BLOCK-WORLD LOGIS-
TICS, GRID, and DEPOTS. To generate EGRD problem in-
stances that involve n goals, we implemented a problem
generator for each domain. First, the problem generator ran-
domly generates a set of goals that are ordered in a binary
tree. For each path from the root to a terminal node in the
binary tree, we used a planner to find plans for the goals
on the path one by one without resetting the initial state af-
ter finding a plan for one goal. The planner we used was

1 Goal 2 Goals 3 Goals 4 Goals
LOGISTICS 1.67 7.85 10.86 14.99
DEPOTS 0.54 2.08 2.41 3.02
GRID 0.44 4.96 53.55 102.83
BLOCK-WORLD 0.79 4.43 9.63 17.54

Table 1: Execution times (in sec.) vs. the number of goals.

No Cache With Cache Improvement
LOGISTICS 6.43 0.90 86.0%
DEPOTS 5.87 0.90 84.5%
GRID 1.55 0.53 65.8%
BLOCK-WORLD 2.94 0.68 76.9%

Table 2: Execution times (in sec.) with and without cache.

Fast Downward (Helmert 2006). Then we collected the first
set of plans that can reach different goals in the binary tree.
We randomly selected some actions that were crucial to the
plans to reach different branches in the tree, and assigned
them to the setW of action removal modifications. For each
combination W ′ of the modifications in W , we reran the
planner for goals on the binary tree but forbade the plan-
ner to use the actions in W ′. This will force the planner to
generate slightly different plans. Starting with the first set
of plans, we ran the EGRD algorithm to optimize the WCD
of the goal query graph using the modifications in W . In
both experiments, the number of EGRD problem instances
in each domain was 50, and Algorithm 1 did not use any
heuristic function.

Results Table 1 shows the results of Experiment 1. As the
number of goals in a goal query graph increases, the exe-
cution times of the algorithm increase rapidly, especially in
GRID. We anticipate that the execution time will be even
larger for larger goal query graphs. Note that caching was
enabled in Experiment 1. In Table 2, we can see that the
caching mechanism can greatly enhance the performance of
the algorithm. In fact, the caching mechanism is crucial to
the performance of the evaluation of FO-CTL sentences and
the EGRD search algorithm.

We have implemented the pruned-reduce algorithm in
(Keren, Gal, and Karpas 2014) and conducted a preliminary
experiment to evaluate its effectivness in EGRD. However,
pruned-reduce do not always give a correct answer since the
removal of action can falsify some FO-CTL statements.

Conclusions and Future Work
Previous works on GRD aim to recognize an agent’s goal
exactly. We extended the existing GRD frameworks by al-
lowing the recognition of goal conditions that can be weaker
than exact goal recognition. We described what goal condi-
tions are and presented a novel graphical representation of
goal conditions called goal query graph. We devised an algo-
rithm to translate goal query graphs into FO-CTL sentences
for model checking. The EGRD search algorithm can mod-
ify an environment to optimize certain goal recognition be-
havior according to a given goal query graph. The caching
mechanism is highly effective in speeding up the redesign
process. In the future, we intend to extend our EGRD frame-
work with partial observability of the agent and the observer.

9667

Acknowledgments
This work has been taken place at UNIST and was sup-
ported by NRF (2016R1D1A1B0101359816) and UNIST
(1.210080.01).

References
Ang, S.; Chan, H.; Jiang, A. X.; and Yeoh, W. 2017. Game-
Theoretic Goal Recognition Models with Applications to
Security Domains. In GameSec 2017, 256–272.
Baier, J. A.; and McIlraith, S. A. 2006. Planning with First-
Order Temporally Extended Goals Using Heuristic Search.
In Proceedings of the National Conference on Artificial In-
telligence (AAAI), 788–795.
Bohn, J.; Damm, W.; Grumberg, O.; Hungar, H.; and Laster,
K. 1998. First-Order-CTL Model Checking. In Foundations
of Software Technology and Theoretical Computer Science,
283–294.
Camacho, A.; Triantafillou, E.; Muise, C.; Baier, J. A.; and
McIlraith, S. A. 2017. Non-Deterministic Planning with
Temporally Extended Goals: LTL over Finite and Infinite
Traces. In Proceedings of the National Conference on Ar-
tificial Intelligence (AAAI), 3716–3724.
Carberry, S. 2001. Techniques for Plan Recognition. User
Modeling and User-Adapted Interaction, 11(1–2): 31–48.
Clarke, E. M.; and Emerson, E. A. 1981. Design and synthe-
sis of synchronisation skeletons using branching time tem-
poral logic. In Logic of Programs, Proceedings of Workshop,
Lecture Notes in Computer Science, 52–71.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence, 2: 189–208.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research (JAIR), 26: 191–
246.
Kautz, H. 1987. A Formal Theory of Plan Recognition.
Ph.D. thesis, Department of Computer Science, University
of Rochester.
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal Recognition
Design. In International Conference on Automated Planning
and Scheduling (ICAPS), 154–162.
Keren, S.; Gal, A.; and Karpas, E. 2016a. Goal Recognition
Design with Non-Observable Actions. In Proceedings of
the National Conference on Artificial Intelligence (AAAI),
3152–3158.
Keren, S.; Gal, A.; and Karpas, E. 2016b. Privacy Preserv-
ing Plans in Partially Observable Environments. In Proceed-
ings of the International Joint Conference on Artificial Intel-
ligence (IJCAI), 3170–3176.
Keren, S.; Gal, A.; and Karpas, E. 2018. Strong Stubborn
Sets for Efficient Goal Recognition Design. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 141–149.
Keren, S.; Gal, A.; and Karpas, E. 2019. Goal Recognition
Design in Deterministic Environments. Journal of Artificial
Intelligence Research (JAIR), 65: 209–269.

Keren, S.; Gal, A.; and Karpas, E. 2020. Goal Recognition
Design - Survey. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 4847–4853.
Mirsky, R.; Gal, K.; Stern, R.; and Kalech, M. 2019. Goal
and Plan Recognition Design for Plan Libraries. ACM
Transactions on Intelligent Systems and Technology (TIST),
10(2).
Pereira, R. F.; Oren, N.; and Meneguzzi, F. 2017. Landmark-
Based Heuristics for Goal Recognition. In AAAI, 3622–
3628.
Pistore, M.; and Traverso, P. 2001. Planning as Model
Checking for Extended Goals in Non-deterministic Do-
mains. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI).
Ramirez, M.; and Geffner, H. 2010. Probabilistic Plan
Recognition Using Off-the-Shelf Classical Planners. In
AAAI, 1121–1126.
Shvo, M.; and McIlraith, S. A. 2020. Active Goal Recogni-
tion. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), 9957–9966.
Son, T. C.; Sabuncu, O.; Schulz-Hanke, C.; Schaub, T.; and
Yeoh, W. 2016. Solving Goal Recognition Design Using
ASP. In Proceedings of the National Conference on Artifi-
cial Intelligence (AAAI), 3181–3187.
Sukthankar, G.; Geib, C.; Bui, H. H.; Pynadath, D.; and
Goldman, R. P. 2014. Plan, Activity, and Intent Recogni-
tion: Theory and Practice. Newnes.
Vered, M.; and Kaminka, G. A. 2017. Heuristic Online Goal
Recognition in Continuous Domains. arXiv:1709.09839.
Wayllace, C.; Hou, P.; and Yeoh, W. 2017. New Metrics and
Algorithms for Stochastic Goal Recognition Design Prob-
lems. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), 4455–4462.
Wayllace, C.; Keren, S.; Gal, A.; Karpas, E.; Yeoh, W.; and
Zilberstein, S. 2020. Accounting for Observer’s Partial Ob-
servability in Stochastic Goal Recognition Design: Messing
with the Marauder’s Map. In Proceedings of the European
Conference on Artificial Intelligence (ECAI).

9668

