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Abstract

Along with the evolution of deep neural networks (DNNs) in
many real-world applications, the complexity of model build-
ing has also dramatically increased. It is thus vital to protect
the intellectual property (IP) of the model builder and ensure
the trustworthiness of the deployed models. Meanwhile, ad-
versarial attacks on DNNs (e.g., backdoor and poisoning at-
tacks) that seek to inject malicious behaviors have been in-
vestigated recently, demanding a means for verifying the in-
tegrity of the deployed model to protect the users. In this pa-
per, we present a novel DNN authentication framework Deep-
Auth which embeds a unique and fragile signature to each
protected DNN model. Our approach exploits sensitive key
samples that are well crafted from the input space to latent
space and then to logit space for producing signatures. Af-
ter embedding, each model will respond distinctively to these
key samples, which creates a model-unique signature as a
strong tool for authentication and user identity. The signature
embedding process is also designed to ensure the fragility of
the signature, which can be used to detect malicious mod-
ifications such that an illegitimate user or an altered model
should not have the intact signature. Extensive evaluations on
various models over a wide range of datasets demonstrate the
effectiveness and efficiency of the proposed DeepAuth.

Introduction
Through the development of powerful algorithms and design
tools, deep neural network (DNN) is becoming the state-
of-the-art in various fields. As the amount of available data
is vastly increasing and applications are becoming tremen-
dously sophisticated, the cost of model building has also
drastically increased. Since the process of model building
requires a substantial investment in very powerful comput-
ing resources, vast quantities of data collection and anno-
tation, and specialized expertise, it is crucial to provide the
model builders a means for authentication and integrity ver-
ification so that malicious modification of a model can be
easily detected. Such techniques can also be leveraged as a
proactive defense against causative attacks, e.g., backdoor
attacks (Chen et al. 2017; Liu et al. 2018; Gu et al. 2019;
Doan et al. 2021; Doan, Lao, and Li 2021).

*The work of Yingjie Lao was conducted as a consulting re-
searcher at Baidu Research – 10900 NE 8th St. Bellevue WA USA.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To this end, embedding signatures or watermarks is a
promising direction. Watermarking is widely used for IP
protection in the photo and multimedia domains (Hartung
and Kutter 1999; Lu 2004), which can be classified depend-
ing on the application requirements. For instance, a conven-
tional digital watermark on a photo can be either “robust”
(survives a wide variety of transformations, e.g., a photo fil-
ter and conversion to a different format) or “fragile” (disap-
pears when the photo is processed, e.g., compressing and re-
sizing). The “robust” watermarks are capable of tracing the
source of the content, while the “fragile” watermarks can be
used to verify the integrity of the original content that has
not been tampered with.

Recently, several works have extended watermarking into
DNN models (Adi et al. 2018; Zhang et al. 2018; Li
et al. 2019b,a; Szyller et al. 2021; Uchida et al. 2017;
Darvish Rouhani, Chen, and Koushanfar 2019; Le Merrer,
Perez, and Trédan 2020; Zhong et al. 2020; Fan, Ng, and
Chan 2019; Yang, Lao, and Li 2021). Most of these ex-
isting works seek to embed a relatively “robust” signature
that can withstand transformation attacks such as fine-tuning
and pruning (Darvish Rouhani, Chen, and Koushanfar 2019;
Chen et al. 2018), for the purpose of tracing the IP owner-
ship. In contrast, this paper exploits the less studied direction
of “fragile” DNN watermarks or signatures, which will be-
have distinctively in illegitimate or maliciously altered mod-
els. The “fragile” characteristic can be leveraged to verify
the identity of the user or ensure the trustworthiness of the
deployed models. To better differentiate from prior DNN
watermarking works, we will use signature to describe such
“fragile” watermarks in the rest of the paper. Consequently,
authentication schemes can be added on top of these signa-
tures to assess the trustworthiness of an unknown model.

In this paper, we propose DeepAuth, a novel DNN frame-
work for authenticating the trustworthiness of DNNs, which
is capable of embedding a unique yet “fragile” signature for
each protected model. We use “protected models” to refer to
models that have been embedded by our signatures. The ob-
jective is to produce unique yet diverse predictions for a set
of selected “key samples” across different protected models
while retaining the same predictions for the natural inputs.
After embedding, correct and unique signatures for all the
protected models are stored on a trusted server, which will
later be used for authentication.
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The contributions of this paper are summarized below:
• We propose a novel framework for generating different

versions of protected models from an original pre-trained
model for authentication by embedding a unique and
“fragile” signature, which can be used for authentication
and verifying the integrity of the model that has not been
tampered with. To the best of our knowledge, this direc-
tion of research has not been studied before.

• By exploiting well-crafted key samples from the input
space to latent space and then to logit space, the proposed
signature embedding methodology is capable of embed-
ding a unique yet fragile signature into each DNN model
without impairing the original behavior with respect to
the natural inputs.

• Extensive evaluations on various models over a wide
range of datasets clearly demonstrate the effectiveness
and efficiency of the proposed DeepAuth framework.

DNN Watermarking and Fingerprinting
To the best of our knowledge, all the existing methods seek
to embed a watermark that can be robust against transfor-
mation attacks, such as fine-tuning, pruning, and watermark
over-writing, which attempt to remove the watermark while
retaining the accuracy of the DNN model (i.e., the adver-
sary still wants to use the model). To this end, this objec-
tive naturally aligns with the strategies of DNN backdoor at-
tacks. As a result, a large number of prior approaches embed
the watermarks through backdoor attacks (i.e., backdoor-
based) (Adi et al. 2018; Zhang et al. 2018; Li et al. 2019b,a;
Szyller et al. 2021), which inject a backdoor trigger into the
model so that it will induce misclassification while facing in-
puts in the presence of this trigger. The verification process
is essentially done by activating the backdoor using triggers.
Another category of methods directly embeds the watermark
into the latent or feature space of a neural network (i.e.,
feature-based) (Uchida et al. 2017; Darvish Rouhani, Chen,
and Koushanfar 2019; Chen et al. 2018, 2019), which uses
the low probabilistic regions of activation maps in different
layers to gradually embed the signature.

One concern raised recently for DNN watermarking is the
ambiguity attacks (Fan, Ng, and Chan 2019; Li et al. 2019a),
which aim to cast doubt on the ownership verification by
forging additional watermarks for a DNN model. Intuitively,
if an adversary can embed a second watermark on a water-
marked model, there is a huge ambiguity about the model’s
IP ownership. Only a few of the prior DNN watermarking
approaches (e.g., (Fan, Ng, and Chan 2019)) in the literature
are secure against ambiguity attacks. It is important to note
that the ambiguity attack is not a concern for our proposed
scheme, since the “fragile” signature is utilized for user au-
thentication instead of model IP ownership verification. As
the authentication is performed by checking the signature of
an unknown model based on the enrolled information (i.e.,
the original/first signature) stored on the trusted server, a
forged signature is extremely unlikely to match the legiti-
mate signature, which hence does not create any ambiguity.

Another related line of research to this work is DNN fin-
gerprinting (He, Zhang, and Lee 2019; Cao, Jia, and Gong

2021; Zhao et al. 2020; Lukas, Zhang, and Kerschbaum
2021; Wang and Chang 2021), which aims at extracting the
inherent features as a fingerprint instead of embedding addi-
tional watermarks. However, similar to prior watermarking
works, the existing fingerprinting approaches all seek to find
“robust” fingerprints that can withstand certain transforma-
tion attacks, while as our signatures are “fragile” and we
seek to generate multiple versions of protected models from
one pre-trained model for authenticating different users.

Threat Model
The objective is to embed “fragile” signatures to DNN mod-
els to enable integrity verification. The signature embedding
process can be performed by the model builder or a trusted
party. We assume the trusted party receives a pre-trained
model from a model builder such that model architecture and
parameters are known. But we assume the trusted party has
access to a held-out validation dataset for evaluating the per-
formance. Verification and authentication can be performed
remotely through the API. An illegitimate user or an altered
model should not have the intact signature; thus, the signa-
ture is an effective tool for verifying each user and detecting
malicious modifications. The adversary is assumed to have
full access to the protected model but has no knowledge of
the signature or key samples.

To attack DeepAuth, the adversary may attempt to mali-
ciously modify a model without altering the signature. To
this end, we evaluate the performance against the backdoor
attack to verify if the signature is fragile or not. We also
perform fine-tuning and pruning to show the fragility of the
signature, although these are not necessarily attacks.

Notations: Throughout this paper, we will use lower-case
letters to denote scalars, lower-case bold letters to denote
vectors, and bold-face upper-case letters to denote matrices.
We use y = F (x) to represent the functionality of a neu-
ral network, where x and y are the corresponding input and
output. L,Dtr,Dv denote the loss function, training dataset,
and validation dataset, respectively. We use Hl to denote the
transformed representation (intermediate activation/values)
after the hidden layer l (0 < l < L), where layer 0 and layer
L represent the input layer and output layer of the neural
network, respectively.

DeepAuth Framework
Figure 1 summarizes the overall flow: 1) The methodology
starts with generating key samples. 2) Then, embedding is
performed on a selected subset of key samples to enable
a model-unique and “fragile” signature for each protected
model. 3) After embedding, the enrollment process collects
the signature si using an authentication vector Ti, which is
formed by a set of key samples, i.e., si represents the clas-
sifications of key samples in Ti. Then, the correct authenti-
cation vector and signature pairs (Ti, si) are stored on a se-
cure server. 4) When an authentication process is initiated,
the server will respond with an authentication vector. 5) The
server determines the authenticity of the unknown model by
checking how the model’s feedback on the authentication
vector matches the stored signature.
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Figure 1: Proposed DeepAuth mainly consists of key sample generation (Step 1) and signature embedding (Step 2). Enrollment
(Step 3) and authentication (Steps 4 and 5) are then performed based on the unique signature of each protected model.

We focus on the embedding process (Steps 1 and 2) in the
follows, while Steps 3-5 are common authentication flows.

Key Sample Generation
Conceptually, our key sample generation method resonates
with several prior watermarking and fingerprinting meth-
ods (Le Merrer, Perez, and Trédan 2020; He, Zhang, and
Lee 2019; Cao, Jia, and Gong 2021) at the input space that
utilize sensitive samples. However, we further innovatively
extend the guaranteed sensitivity through the latent space to
the logit space, which yields a much better signature embed-
ding performance in terms of both fidelity and fragility.

Input Space. Compared to exploring unused latent
space that requires a relatively large model tweak-
ing (Darvish Rouhani, Chen, and Koushanfar 2019), directly
using the unexplored input space incurs less modification
and is easier to achieve. From the input space, the objective
of our method is to find key samples that are near the deci-
sion boundary but are far away from the clean training/vali-
dation input distribution. Consequently, only a small update
to the model is needed to shift the classification for these se-
lected key samples. We adopt the techniques in adversarial
example generation (Carlini and Wagner 2017; Madry et al.
2018; Kurakin, Goodfellow, and Bengio 2018) for crafting
sensitive key samples. However, instead of constraining the
ℓp distance for minimizing the perturbation, we seek to find
adversarial examples that are only able to achieve misclas-
sification with a large ℓp distance or number of iterations,
for the purpose of minimizing the impact on the function-
ality over natural inputs after embedding. The unified opti-
mization problem for generating key samples x′ can then be
expressed as

min ||L(F,x′, c′(x))− L(F,x′, c∗(x))||
s.t. c′(x) = F (x′) ̸= c∗(x), ℓp(x

′,x) > ϵd
(1)

where c∗(x) and c′(x) denote the true label and adversar-
ial label of x, respectively, while ϵd represents the lower
bound of the required perturbation and L is the loss func-
tion. In our experiments, we use projected gradient descent
(PGD (Madry et al. 2018), a widely-used adversarial exam-
ple generation method) to perturb the input iteratively. We

start collecting the newly perturbed adversarial examples as
key samples, only after 90% of seed inputs in a batch had
already achieved misclassification.

Latent Space. Besides the input space, we also cali-
brate the latent space of key samples by utilizing a preva-
lent statistical learning technique, namely leverage score
sampling (Rudi et al. 2018; Yang, Zhao, and Gao 2018)
that estimates the uncertainty of the input with respect to
learned knowledge. We exploit the matrix-induced norm
||Hl(x

′)||A to guide the selection of key samples, where
Hl(x

′) is a vector that denotes the transformed represen-
tation of input x′ at the layer l of any neural network. Ma-
trix A represents the co-variance matrix of the training in-
puts, which can be approximated by using a batch of samples
from the held-out validation dataset Dv:

A = µI+
∑

x∈Dv

Hl(x)Hl(x)
T .

Then, we can estimate the uncertainty score of each se-
lected sample by computing the uncertainty norm, as

||Hl(x
′)||A =

√
Hl(x′)TA−1Hl(x′). (2)

Note that A is constructed using the natural validation
data x ∈ Dv instead of key samples x′. Specifically, a large
score of ||Hl(x

′)||A indicates that similar inputs were not
observed before by the model, and hence the model has a
low confidence on the current prediction. Thus, we select x′

with the largest scores as the final set of key samples Dk,
since they would have less impact on the natural inputs (i.e.,
previously learned knowledge). The parameter µ > 0, tuned
by the grid search (Gu and Han 2014), guarantees the matrix
A to be positive-definite. Different from prior methods that
require learning to capture the relationship between unex-
plored latent regions of one certain layer and the final output
space, our method effectively enforces a large-distance or
high-uncertainty guarantee between a selected key sample
and natural input distribution from the input space through-
out latent spaces until the penultimate layer.

Logit Space. To further close the gap between the key
samples and decision boundary, we craft the samples based
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Algorithm 1: Key Sample Generation

Require: F , L, Dv , ϵd, µ, l
1: A← µI
2: for ∀x ∈ Dv do
3: x′ ← Adversarial Example(x)
4: A← A+Hl(x)Hl(x)

T

5: if ℓp(x′,x) > ϵd then
6: Dk,input ← x′

7: end if
8: end for
9: for ∀x′ ∈ Dk,input do

10: ||Hl(x
′)||A =

√
Hl(x′)TA−1Hl(x′)

11: end for
12: Dk,latent ← x′ ∈ Dk,inputwith large ||Hl(x

′)||A
13: for ∀x′ ∈ Dk,latent do
14: Dk ← Logit Manipulation(x′)
15: end for
16: return key sample set Dk

on the gradient in the direction of reducing the logit differ-
ence between the corresponding classes of c′(x) and c∗(x).
This concept is similar to logit squeezing (Kannan, Kurakin,
and Goodfellow 2018) and logit manipulation (Zhao and
Lao 2022). Each step of the iterative process for some step
size α can be expressed as:

x′ := x′+α·sign(∇x′(L(F,x′, f ′(x′))−L(F,x′, f∗(x′))),

where f ′(·) and f∗(·) represent the logit outputs of the ad-
versarial class and truth class, respectively. When the logit
difference between the adversarial class and the true class is
below a small threshold ϵl, i.e., f ′(x′) − f∗(x′) < ϵl, the
final sample is included into Dk. We use ϵl = 0.0005 in our
experiments. Algorithm 1 outlines the detailed steps.

Signature Embedding
Since the objective is to assign a unique signature for each
protected model Fi, we need to select an appropriate subset
of key samples, Ki as the embedding batch for each model.

Balanced Classes. Prior works have shown that class im-
balance especially in online learning or incremental learn-
ing where data are available in a sequential order can cause
learning bias towards the majority classes (i.e., the classes
with more data) and poor generalization (Nguyen, Cooper,
and Kamei 2011). Therefore, to avoid significant decision
boundary shifts with respect to the natural inputs, it is essen-
tial to ensure the balance of classes in the embedding batch.

For each key sample x′, the adversarial class c′(x) can be
considered as a sample from C \ c∗(x), where C represents
the entire output space. Ideally, if we can select the set of
the embedding batch Ki such that c∗(x) → c′(x) is a one-
to-one mapping for each x′ ∈ Ki, balance can be guaran-
teed. In other words, the key samples with a same adversarial
class should be from the same original class in the embed-
ding batch. Obviously, as x′ is generated as an adversarial
example, c′(x) ̸= c∗(x). Thus, we can consider the ideal
mapping from the adversarial classes to the original labels

Algorithm 2: Signature Embedding

Require: F , L, Ki ⊂ Dk, Dv , ϵp
1: construct an auxiliary graph G′(V ′, E′)
2: V ′ ← c ini, c outi, ∀ci
3: if ∃x′ ∈ Dk, s.t. c∗(x) = ci, c

′(x) = cj then
4: E′ ← (c outi, c inj),with a weight of 1
5: end if
6: E′ ← (c outi, c ini), ∀ci,with a weight of 0
7: G∗(V ∗, E∗)←Weighted Max Matching(G′)
8: for ∀(c outi, c inj) ∈ E∗ do
9: Ki ← Select(x′ ∈ Dk) s.t. c∗(x) = ci, c

′(x) = cj
10: end for
11: Ki ← Balance Class(Ki,Dv)
12: for ∀x′ = x′

t ∈ Ki do
13: {De, ce}←{x′

t, c
∗(x)}{x′

t−1, c
∗(x)}{x′

t+1, c
′(x)}

14: end for
15: Fi ← F
16: while Prob

x∈Dv

(Fi(x) ̸= F (x)) ≤ ϵp do

17: Fi ← argmin
{x,y}∈{De,ce}

L(Fi(x), y)

18: end while
19: return protected model Fi

to be a complete permutation that no object is in its original
place. If a complete permutation over all the classes does
not exist, the goal is to find a subset of classes with the max-
imum cardinality that a complete permutation can be found.
Fortunately, this problem can be solved in polynomial time
with a weighted bipartite graph maximum matching, which
is outlined in Lines 1-10 of Algorithm 2.

Then, we pick x′ with a desired c∗(x) to c′(x) mapping,
according to the obtained vertex disjoint cycles on G. In fact,
our key sample generation process with large perturbations
can yield many more possible classes than the conventional
adversarial example settings. In our experiments, we are al-
ways able to find a matching that covers all the labels in C
(i.e., a perfect matching). In practice, if a complete permuta-
tion over the entire C cannot be found, we can complement
the result of weighted graph maximum matching with the
set of adversarial classes C′ by natural inputs from the re-
maining classes, i.e., x ∈ C \ C′, to balance the labels in the
embedding batch Ki (Line 11 of Algorithm 2).

Bounding the Decision Boundary Shift. A successful
signature embedding is achieved by altering the predictions
of selected key samples x′ ∈ Ki as intended. To this end,
we need to change the label of x′ from the adversarial class
c′(x) to the original label c∗(x) for retraining, similar to the
concept of adversarial training (Goodfellow, Jonathon, and
Christian 2015; Madry et al. 2018). Different from the prior
works, our framework adds more samples into the embed-
ding batch to bound the unintended decision boundary shift.
The proposed framework includes samples before and af-
ter each successful key sample along the process of adver-
sarial example generation. If at the t-th iteration, an adver-
sarial example x′

t with the adversarial class c′(x) is found,
which is later discovered to have a high uncertainty score
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Dataset Lr Succ (%) Avg Epoch Avg Unchanged (%) Avg C2W (%) Avg W2C (%) Avg W2W (%)
MNIST 1e-4 100 123.40 99.51 0.24 0.22 0.03

1e-3 100 14.37 99.39 0.33 0.24 0.04
CIFAR10 1e-6 99.9 83.85 97.92 0.79 0.79 0.50

1e-5 99.8 43.38 97.61 0.94 0.88 0.57

Table 1: The effectiveness on 1024 unique signature embeddings.
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Figure 2: Left: collect the successful adversarial example x′
t

along with the samples before and after the current itera-
tion into the embedding batch. Only change the class of x′

t
from c′(x) to c∗(x) for retraining. Right: expected decision
boundary after retraining.

||Hl(x
′)||A, we will also collect the sample before this iter-

ation (i.e., x′
t−1 with class c∗(x), which is not an adversarial

example), and the sample after this iteration (i.e., x′
t+1 with

class c′(x)). During the retraining, we include all of these
samples in the embedding batch, while only changing the
class of x′

t from c′(x) to c∗(x). Consequently, the decision
boundary is expected to shift only very slightly, from be-
tween x′

t−1 and x′
t to between x′

t and x′
t+1. We illustrate an

abstract version of this concept in Figure 2. This additional
step helps ensure the fragility of the signature (i.e., the key
samples are still sensitive after embedding but on the other
side of the decision boundary), while we believe “robust”
watermarking methods seek to keep a sufficient distance be-
tween the key samples to decision boundary after embed-
ding to withstand transformation attacks. This step also re-
duces the model tweaking for embedding, making it easier
to maintain the original functionality.

We iteratively retrain the embedding batch with a small
learning rate to minimize the impact on the normal behavior
while ensuring the fragility of the signatures. We employ a
simple early-stopping scheme by measuring the changes in
classification on a small batch from the validation data. The
retraining stops when the percentage of data in the batch
change predictions, i.e., Prob(Fi(x) ̸= F (x)), reaches a
threshold of ϵp. We use 0.0005, 0.002, 0.02 for MNIST, CI-
FAR10, and ImageNet, respectively. The steps for bounding
the shift are outlined in Lines 12-18 of Algorithm 2.

Experimental Results
We leverage LeNet5 for MNIST, VGG16 for CIFAR10, and
ResNet50 for ImageNet. All with test accuracies that are
consistent to state-of-the-art. Our implementation was based
on the PaddlePaddle deep learning platform.

Effectiveness
The effectiveness of a signature embedding process is mea-
sured by the percentage of key samples that change pre-
dictions as intended, i.e., from c′(x) to c∗(x) for selected
x′
t ∈ Ki. Table 1 summarizes the performance with differ-

ent learning rates (Lr) of the embedding process, including
success rate (Succ) and prediction changes. We perform the
proposed methodology to generate 1024 uniquely protected
models. We select 10 key samples for each signature embed-
ding. Instead of only caring about the inference accuracy,
we present the average statistics for unchanged, correct to
wrong (C2W), wrong to correct (W2C), and wrong to wrong
(W2W) predictions of the validation data (i.e., natural in-
puts) after the signature embedding. The wrong to wrong
(W2W) measure, representing the scenario that a sample
with an initially wrong prediction (i.e., different from the
ground-truth label) changes to another wrong prediction, is
not considered in prior studies since it does not impact the
inference accuracy. In addition, C2W and W2C are oppo-
site measures in the accuracy calculation. For instance, on
CIFAR10, average |C2W-W2C| is small while the average
W2W is more than 0.5%, leading to a relatively large devia-
tion between the accuracy and functionality preservation. It
can be seen that our method can maintain a very high per-
centage of unchanged predictions. In comparison, if our per-
formance is measured only against inference accuracy, the
accuracy change, i.e., |C2W −W2C|, is always less than
0.1% for both MNIST and CIFAR10.

Uniqueness
A high uniqueness requires the correlation between the sig-
natures from different models to be small. In other words,
after embedding with Ki, not only the natural inputs but
also the unselected key samples x′ ∈ Dv \ Ki should not
change the predictions. Since our objective is to generate
multiple models with a unique signature for each, this prop-
erty can ensure a high entropy across the signatures of all
the models. We embed the signatures with the first set of key
samples and then test the percentage of changed predictions
on the second set. We measure the uniqueness by calculat-
ing the correlation of predictions between two sets of key
samples as shown in Figure 3. Each set consists of 10 inde-
pendent key samples. We can observe that the correlation is
very small, e.g., less than 3% unselected key samples would
change predictions for CIFAR10.

Fidelity
In the experiments above, we used a fixed ϵp for each
dataset. We showed that even if we want to guarantee a
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Figure 3: Correlation between selected key samples for em-
bedding and unselected key samples. Key samples (%) rep-
resents the percentage of key samples with the original
classes in the embedding batch.
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Figure 4: Functionality change on embedding progress.

nearly 100% effectiveness, the changed predictions in the
worst-case scenarios are still very small. We further evalu-
ate the performance of the proposed framework under vari-
ous embedding rates, which is shown in Figure 4. Note that
here we still look at the functionality instead of just the infer-
ence accuracy. As expected, there is a trade-off between the
unchanged predictions of the validation data and the success
rate of the selected key samples. By retraining with more
epochs, the signature embedding process will yield a larger
degree of model tweaking, which not only leads to more key
samples to be predicted as intended but also has more impact
on the natural inputs.

Efficiency
Our proposed framework achieves a minimal computational
overhead of the signature embedding process by only re-
training on a very small batch of Ki for generating each
model Fi. As illustrated in Table 1, embedding 10 key sam-
ples only requires to train the batch for about 10 to 150
epochs to achieve a high success rate.

In our scheme, as shown in Figure 1, one authentica-
tion process involves one communication from the server
for sending an authentication vector to the user and an-
other communication for sending the corresponding signa-
ture from the user back to the server. Thus, the communica-
tion overhead incurred by DeepAuth is very small.

Fragility
The objective of employing the proposed DeepAuth frame-
work is to ensure the model has not been tampered with. To
this end, we evaluate the effectiveness in detecting model
modifications by fine-tuning, pruning, and backdoor attack.
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Figure 5: Authentication success rate on model fine-tuning.

Although fine-tuning and pruning are not attacks, they also
maintain a similar accuracy after the processing, which can
better show the fragility of the watermarks. Our experimen-
tal results show that the protected models generated by the
DeepAuth framework cannot pass the authentication even
under such slight model modifications, hence detecting a po-
tential integrity breach or an illegitimate model/user. Before
these processes, we first test the signatures of models with a
number of authentication vectors and store the correspond-
ing signatures for later comparison. We use 10 key samples
for each authentication vector.

Fine-Tuning. We perform the fine-tuning in a layer-
freezing fashion using the validation data: the model pa-
rameters of the feature layers are frozen and only the pa-
rameters on the last fully-connected layer are trainable. We
present the authentication success rates under a range of
error-tolerance constraints ϵa, i.e., authentication is success-
ful if the percentage of error in the evaluated signature com-
pared to the enrolled one is less than ϵa. The results are
shown in Figure 5, where the learning rate is 1e−4. Note that
we deliberately examine the performance under large values
ϵa. In practice, ϵa = 30%, i.e., accepting all signatures with
less than 30% errors, is certainly too large for a reasonable
security level. However, even under such error-tolerant set-
tings, the authentication is still very likely to fail. In addition,
the authentication success rates are always 0 if we enforce
an absolute correctness requirement, i.e., ϵa = 0%.

Model Pruning. The pruning process is realized by zero-
ing out the parameters with the least magnitudes along with
a retraining process (Han, Mao, and Dally 2015), which is
designed to reduce the model size for faster inference and
smaller memory requirement. Given a pruning factor, we
sort all the parameters in the model according to their ab-
solute values and set those parameters with the least α mag-
nitudes to zero. The retraining process is performed on the
original training data. The performance is shown in Figure 6.
Compared to MNIST, signatures embedded by DeepAuth
are more fragile on CIFAR10. After pruning, almost all the
authentication will fail even under an ϵa of 30% for a CI-
FAR10 classifier with pruning rates in [50%, 95%].

Backdoor Attack. We also test the performance against
the backdoor attack, which is a type of causative adversar-
ial attack that alters the model to inject malicious behaviors.
We follow the backdoor injection attack methodology pro-
posed in BadNets (Gu et al. 2019). We simulate 1,000 trials
of backdoor attacks. All of these trials achieve high attack
success rates (> 95%), while simultaneously guaranteeing
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Figure 6: Authentication success rate on model pruning.

ϵa 40% 30% 20% 10% 0%
MNIST 24.6% 23.9% 13.7% 5.5% 2.0%
CIFAR10 0.0% 0.0% 0.0% 0.0% 0.0%

Table 2: Authentication success rate on backdoor attacks.

a high classification accuracy. We present the authentica-
tion success rates after backdoor attacks in Table 2. Simi-
lar to pruning, the signatures on the CIFAR10 classifier is
more “fragile” against backdoor attacks than those on the
MNIST classifier, i.e., 0% authentication success rates for
all ϵa ∈ [0%, 40%] on CIFAR10.

Based on the results above, DeepAuth performs better
on a more complex dataset with respect to uniqueness and
fragility. It is important to note that protecting such mod-
els is more demanded, as the corresponding model building
processes require greater resources and efforts.

Performance on ImageNet
To further evaluate the performance, we test the proposed
method on a higher dimensional dataset, i.e., ImageNet. The
results of effectiveness and fidelity are presented in Table 3
and Figure 7, respectively. It can be seen that DeepAuth can
still achieve a 100% success rate with around 100 epochs
over the embedding batch. Considering there are much more
classes (i.e., 1,000) in ImageNet such that model tweaking
will be more easily move the decision boundaries, the pro-
posed method still achieves a relatively very small accuracy
degradation. We also report the fragility performance against
fine-tuning in Figure 8. We observe that the embedded sig-
nature will disappear even with only 5 epochs of fine-tuning,
indicating an excellent fragility even on ImageNet. The re-
sults also follow the trend that the proposed method per-
forms better on more complex datasets in terms of fragility.

Comparison with Prior Works
To the best of our knowledge, DeepAuth is the first DNN
authentication framework that generates multiple protected

Lr Succ (%) Avg Epoch ∆Accuracy
1e-6 100 78.55 1.57%
5e-7 100 131.33 0.92%

Table 3: Effectiveness and fidelity on ImageNet.
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Figure 7: Fidelity on Ima-
geNet.
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Figure 8: Fragility on Ima-
geNet.

Property ∆Accuracy
Uchida et.al (2017)

Robust

∼ 0.3%
Adi et.al (2018) ∼ 0.3%

Rouhani et.al (2019) ∼ 0.5%
Le Merrer et.al (2020)1 ∼ 0.2%

DeepAuth Fragile < 0.1%

1 Le Merrer et.al (2020) only reported results on MNIST,
while the results of other published works are on CIFAR10.

Table 4: Comparison with “robust” watermarking methods.

models from a pre-trained model by embedding unique and
“fragile” signatures. Based on the unique signatures, an au-
thentication scheme can be employed to verify the user
identity and the authenticity of a model. In contrast, prior
“robust” watermarking methods (Adi et al. 2018; Uchida
et al. 2017; Darvish Rouhani, Chen, and Koushanfar 2019;
Le Merrer, Perez, and Trédan 2020) consider embedding one
ID for all the models, since the objective is to verify the IP
ownership instead of the user, which is qualitatively different
from the proposed method. Besides, as demonstrated by our
experimental results, the “fragile” signatures are extremely
effective in determining if a model has been tampered with
or not, which, different from prior methods, could serve as a
proactive defense against malicious model modifications.

Despite these differences, we compare the fidelity (i.e.,
change of inference accuracy) of the proposed “fragile”
signature to prior “robust” watermarking methods as pre-
sented in Table 4. Note that since most of these prior works
did not evaluate on ImageNet, we focus the comparison
on smaller datasets. It can be observed that the proposed
method achieves the lowest accuracy degradation.

Conclusion

We proposed a novel DNN authentication framework by em-
bedding model-unique and fragile signatures. The proposed
methods for generating key samples and embedding signa-
tures ensure high degrees of uniqueness, efficiency, fidelity,
and fragility of the signatures, which could serve as an effec-
tive tool for authenticating and verifying the trustworthiness
of deployed DNN systems.
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