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Abstract

In this paper, we propose a framework for achieving long-
term fair sequential decision making. By conducting both the
hard and soft interventions, we propose to take path-specific
effects on the time-lagged causal graph as a quantitative tool
for measuring long-term fairness. The problem of fair sequen-
tial decision making is then formulated as a constrained op-
timization problem with the utility as the objective and the
long-term and short-term fairness as constraints. We show
that such an optimization problem can be converted to a per-
formative risk optimization. Finally, repeated risk minimiza-
tion (RRM) is used for model training, and the convergence
of RRM is theoretically analyzed. The empirical evaluation
shows the effectiveness of the proposed algorithm on syn-
thetic and semi-synthetic temporal datasets.

Introduction
Fair machine learning has received increasing attention in
the past years, especially in decision making tasks such as
hiring (Caton and Haas 2020), college admissions (Zhang,
Wu, and Wu 2017a) and bank loans (Johnson, Foster, and
Stine 2016). Many algorithms for achieving fair decision
making have been proposed based on various fairness no-
tions (e.g. demographic parity (Zemel et al. 2013), equalized
odds (Hardt, Price, and Srebro 2016) and counterfactual fair-
ness (Kusner et al. 2017)). At present, the majority of stud-
ies on fair machine learning focus on the static or one-shot
classification setting. However, in practice, decision mak-
ing systems are usually operating in a dynamic manner such
that the classifier makes sequential decisions over a period
of time. In many situations, each decision made by the clas-
sifier may change the underlying data population and further
affect subsequent decisions. For example, suppose a person
applies to a bank for a loan and the bank estimates the risk
of default according to his/her credit score. Then, the bank’s
decision on the loan application (e.g., whether to grant the
loan and the interest rate assigned) may in turn affect the
default risk and change the person’s credit score (e.g., the
credit score will decrease if the loan is granted but he/she de-
faults on the loan) which will affect his/her next loan appli-
cation. If the bank’s decision leads to a long-term decrease in
the credit score, then it imposes a negative long-term effect
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on future decisions for this person. Therefore, fair decision
making should concern not only the fairness of a single de-
cision but more importantly, whether a decision model can
impose fair long-term effects on different groups. This no-
tion of fairness is referred to as long-term fairness in recent
studies (Liu et al. 2018; Hu and Chen 2018; Ge et al. 2021).

The challenge of achieving long-term fairness comes in
two folds. Firstly, different from static settings, decisions
made by models may change users’ behaviors, and/or af-
fect their status such as reputation, qualification, etc., and
impact subsequent decisions via feedback loops. Without
knowing how the population would be reshaped by deci-
sions, enforcing any fairness constraint may create negative
feedback loops and eventually harm fairness in the long run.
Recent research has demonstrated that existing fairness cri-
teria cannot guarantee fairness and sometimes undermine
fairness even if only one time step is taken into consideration
(Liu et al. 2018; Kannan, Roth, and Ziani 2019; D’Amour
et al. 2020; Creager et al. 2020). Secondly, due to the feed-
back loops, the deployment of the decision model will cause
changes in the data distribution that is originally used for
training. This can be viewed as a distribution shift problem
as the distribution of the training data (i.e., distribution be-
fore the model deployment) is different from the distribu-
tion of the test data (i.e., distribution after the model deploy-
ment). Ignoring the distribution shift will critically affect the
achievement of long-term fairness, as long-term fairness is
affected by all decisions made by the model along the time.

In this paper, we propose a framework for achieving long-
term fair sequential decision making by addressing both
above challenges. We model the dynamics of the decision-
making process by employing Pearl’s Structural Causal
Model (SCM) (Pearl 2009), in which the relations among
user features and decisions and how those decisions af-
fect the data distribution can be encoded in a probabilistic
graphical model. Specifically, we leverage the time-lagged
causal graph (Runge et al. 2019) to describe the causal rela-
tions over time, and adopt the soft intervention (Correa and
Bareinboim 2020) for modeling the model deployment and
inferring its impacts on the underlying population. Then, we
measure long-term fairness as the path-specific effect on the
time-lagged causal graph under both the hard intervention
on the sensitive attribute and the soft intervention on the
predicted decisions. A constrained optimization problem is
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formulated to strike a trade-off between long-term fairness
and model utility, as well as certain short-term fairness re-
quirement that may be stipulated by law or regulations. On
the other hand, we show that the constrained optimization
problem can be converted to a performative risk optimiza-
tion problem (Perdomo et al. 2020). Then, we employ the
repeated risk minimization (RRM) training technique (Per-
domo et al. 2020) for dealing with the distribution shift prob-
lem. The performative optimality and stability properties of
the proposed method are theoretically and empirically eval-
uated which shows its effectiveness.

To the best of our knowledge, this paper is the first to pro-
pose a causality-based long-fairness notion. The proposed
learning framework is general such that it could incorporate
different combinations of surrogate functions, utility loss
functions, as well as causal paths regarding long-term fair-
ness used to fit different applications. The experiment results
show that the proposed method can achieve long-term fair-
ness for multiple time steps, while the fairness performance
deteriorates with time if no fairness constraint or static fair-
ness constraints are used.
Related Work. Fair machine learning research in past years
has been focused on static settings with one-shot decisions
being made. To extend fair machine learning to dynamic
settings, some efforts have been devoted to a compound
decision-making process called pipeline (Bower et al. 2017;
Dwork and Ilvento 2018). In pipelines, individuals may drop
out at any stage and classification in subsequent stages de-
pends on the remaining cohort of individuals. In a more gen-
eral setting, decisions made in the past will affect the un-
derlying population, and then affect future decisions (Zhang
and Liu 2020). In this setting, a number of studies have
demonstrated the inadequacy of static fairness approaches in
various scenarios, including credit lending (Liu et al. 2018),
college admission (D’Amour et al. 2020), labor market (Hu
and Chen 2018). Creager et al. (2020) proposes to use causal
directed acyclic graphs (DAGs) as a unifying framework to
study fairness in dynamical systems, but does not propose an
approach to achieve long-term fairness. On the other hand,
some works (Jabbari et al. 2017; Zhang et al. 2020; Wen,
Bastani, and Topcu 2021) study long-term fairness in the
context of reinforcement learning. The most relevant work
to this paper is (Hu et al. 2020) on fair multiple decision
making, which also applies SCM and leverages soft inter-
ventions to model the deployment of decision models. How-
ever, (Hu et al. 2020) is still focused on the static fairness
of each decision model separately other than the long-term
fairness.

Preliminaries
Throughout this paper, variables and their values are denoted
by uppercase and lowercase letters respectively, i.e., X and
x. The sets of variables and their values are denoted by bold
letters, i.e., X and x.

Structural Causal Model
Our work is based on Pearl’s structural causal models (Pearl
2009) which describe the causal mechanisms of a system

by a set of structural equations, i.e., x = fX(paX ,uX) for
each X , where paX is a realization of a subset of endoge-
nous variables, and uX is a realization of a set of exogenous
variables. Each causal model M is associated with a causal
model graph G = ⟨V,E⟩ where V is a set of nodes and E is
a set of directed edges for representing the direct causal re-
lations. This paper assumes the Markovian model in which
all exogenous variables are mutually independent.

Quantitatively measuring causal effects is facilitated with
the (hard) intervention (Pearl 2009) which forces some vari-
ables to take certain values. Formally, the intervention that
sets the value of X to x is denoted by do(x). In a SCM,
intervention do(x) is defined as the substitution of equation
x = fX(paX ,uX) with constant x. An intervention on a
variable affects its descendants via causal paths. For an ob-
served variable Y affected by X , its variant under interven-
tion do(x) is denoted by Y (x). The distribution of Y (x),
also referred to as the post-intervention distribution of Y ,
is denoted by P (Y (x)). The soft intervention (Pearl 2009)
extends the hard intervention such that it forces variable X
to take functional relationship g(z) in responding to some
other variables Z, which is denoted by σ in (Correa and
Bareinboim 2020). The soft intervention substitutes equa-
tion x = fX(paX ,uX) with a new function x = g(z).
After performing the soft intervention, X will be associated
with a new distribution determined by function g. In this pa-
per, the function g is parameterized by θ, and we denote the
new distribution by Pθ(x|z). We also denote the distribution
of Y after performing the soft intervention by P (Y (θ)).

Fairness-aware Classification
The classification problem is to learn a functional mapping
f : X 7→ Y from the labeled training data {(xi, yi)}ni=1
where xi ∈ X , yi ∈ Y and Y = {−1, 1} , by minimizing
the 0-1 loss function EX,Y [1[f(X) ̸= Y ]] where 1[·] is an
indicator function. In general, f is made up of another func-
tion h set up in the real number domain, i.e., h : X 7→ R
and 1[f(X) ̸= Y ] = 1[Y h(X) ≥ 0]. Since directly min-
imizing the indicator is intractable, one can replace it with
a smooth and differentiable surrogate function ϕ. Then, the
loss function can can be reformulated as EX,Y [ϕ(Y h(X))].
Similarly, one can also formulate fairness constraints as
smoothed expressions using surrogate functions. As a result,
fair classification problems can be formulated as constrained
optimization problems (Wu, Zhang, and Wu 2019; Hu et al.
2020). We follow the notations used in (Wu, Zhang, and Wu
2019; Hu et al. 2020) in our formulations.

Formulating Long-term Fairness
We start by formally formulating the long-term fairness in
sequential decision making. Assume we have access to a
temporal dataset D = {(S,Xt, Y t)}lt=1 where S is a time-
invariant protected attribute, Xt is a set of time-dependent
unprotected attributes and Y t is a time-dependent class la-
bel. Note that this setting can be viewed as observing the
data of a set of individuals at all time steps, or a more gen-
eral situation where a population is subject to the decision
cycles and the data is sampled at each time step. For ease
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of discussion, we assume both class label and protected at-
tribute are binary variables, i.e., S = {s+, s−} with s+ de-
noting the unprotected group and s− denoting the protected
group, and Y = {1,−1} with 1 denoting the positive de-
cision and −1 denoting the negative decision, but proposed
concepts could be extended to multiple protected attributes
and multiple/continuous labels situations. A predictive deci-
sion model hθ(·) parameterized by θ is trained on D. Then,
it is deployed to make predicted decisions Ŷ t from (S,Xt)

repeatedly at each time, i.e., Ŷ t = 1 if hθ(s,x
t) ≥ 0 and

Ŷ t = −1 otherwise, forming a sequential decision making
process. Such sequential decision making process is com-
mon in practice. For example, a bank repeatedly makes lend-
ing decisions based on applicants’ profile such as credit
score, income, etc., and a predictive policing algorithm re-
peatedly makes decision about where to send police for pa-
trolling based on the crime discovered in the neighborhood.
The ultimate goal of long-term fair machine learning is to
ensure that the model hθ(·) is fair in a long-term stage de-
noted by t*. In this paper, we assume there is sufficient his-
torical training data such that l ≥ t∗.

Causality-based Long-term Fairness
We develop the long-term fairness notion by leveraging
Pearl’s SCM. First, we assume a time-lagged causal graph
G for describing the causal relationship among variables
over time. In recent years, structure learning algorithms have
been proposed for constructing time-lagged causal graphs
from data, including both constrained-based approaches
(Runge 2018a,b, 2020) and continuous optimization-based
approaches (Pamfil et al. 2020; Löwe et al. 2020) which can
be leveraged to learn the time-lagged causal graph from data.
Figure 1 shows a typical example of the time-lagged causal
graph in our settings: the edge from S to X0 represents the
bias in the distribution of X due to historical reasons; the
edges from S and Xt to Y t represent that S and Xt are used
as the input to compute Ŷ t; and the edges from Xt and Y t to
Xt+1 represent how the distribution of X would be reshaped
via feedback after each decision.

Next, we formulate long-term fairness as path-specific ef-
fects that are transmitted in the time-lagged causal graph
along certain paths. The path-specific effects reflect how the
intervention affects each variable on the path in a topolog-
ical order and hence are appropriate for capturing dynam-
ics in sequential decision making. Similar to the indirect
discrimination in static fair machine learning (Zhang, Wu,
and Wu 2017b; Nabi and Shpitser 2018), we can also jus-
tify the use of the path-specific effect by the need to dis-
tinguish discriminatory effects from explainable effects. We
consider discriminatory effects as those which are due to bi-
ased decisions made by the decision making system in the
past and will continue to influence future decisions. Corre-
spondingly, we consider explainable effects as those which
are attributed to external factors and cannot be eliminated
within the decision making system. To this end, we catego-
rize unprotected attributes X into two disjoint subsets: ir-
relevant attributes Xi and relevant attributes Xr. We define
irrelevant attributes as those which are justifiable in deci-

sion making, and meanwhile evolved autonomously or/and
altered by external factors only. We define the rest of at-
tributes as relevant attributes, which could be unjustifiable
in decision making or reshaped by the decision over time.
Then, we define long-term fairness as the causal effect where
the influence of the hard intervention on S is transmitted in
the causal graph by passing through relevant attributes only.
Note that the influence of the soft intervention on Y is still
transmitted through all causal paths.

Finally, we propose to adopt soft interventions as a key
technique for modeling decision model deployment and in-
ferring its impacts on the underlying population. We treat
the deployment of the decision model at each time step as
to perform a soft intervention on the decision variable. More
specifically, we force the structural equation associated with
Y t in the causal model to be replaced by the decision model
hθ(·) that outputs Ŷ t. Thus, the change to underlying popu-
lation could be inferred as the post-intervention distribution
after performing the soft intervention. Meanwhile, to quan-
tify fairness as causal effects of the protected attribute on the
decision, we perform hard intervention on the protected at-
tribute in order to answer the “what if” question, i.e., “what
would the decision be if we intervene the gender of appli-
cations to female?” As a result, we perform both hard inter-
vention and soft intervention simultaneously for measuring
long-term fairness as causal effects.

Symbolically, denote by π the set of causal paths
from S to Ŷ t∗ through relevant attributes X1

r, · · · ,Xt∗

r

and Ŷ 1, · · · , Ŷ t∗−1 but not through irrelevant attributes
X0

i , · · · ,Xt∗

i . Meanwhile, as we conduct path-specific hard
intervention on S and soft interventions on Y to deploy de-
cision model hθ(·), we denote the post-intervention distribu-
tion of Ŷ t by Ŷ t(sπ, θ) which explicitly shows that the soft
intervention depends on parameters θ. Then, we can readily
propose the quantitative notion for long-term fairness.
Definition 1 (Long-term Fairness). The long-term fairness
of a decision model hθ(·) is measured by P (Ŷ t∗(s+π , θ)) −
P (Ŷ t∗(s−π , θ)) where π is a set of paths from S to Ŷ t∗ pass-
ing through X1

r , Ŷ 1, · · · , Xt∗−1
r , Ŷ t∗−1, Xt∗

r , sπ represents
the path-specific hard intervention and θ represents the soft
intervention through all paths.

Loss Function and Short-term Fairness
In addition to long-term fairness, a desired fair decision
model should also satisfy two other requirements. Firstly, it
is a natural desire for a predictive decision model to max-
imize the institution utility, e.g., the loan granting model
of a bank certainly wants to maximize the expected return
from loans. Secondly, the decision model should also satisfy
certain short-term fairness requirement at each time step to
enforce local equality, which may be stipulated by law or
regulations. For example, the Equal Credit Opportunity Act,
1974, prohibits lending decisions from being influenced by
race, age, religion, etc. Similar to the direct discrimination
in static fair machine learning, we consider a subset of rele-
vant attributes X̃r ⊂ Xr which are unprotected but cannot
be justifiably used in the decision making either directly or
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... hθ
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Figure 1: A time-lagged causal graph for sequential decision
making. Long-term fairness is captured by paths in red, and
short-term fairness is captured by paths in green.

indirectly, referred to as the redlining attributes (Zhang, Wu,
and Wu 2017b). Then, we measure the short-term fairness
by the causal effect of S on Ŷ t along paths that pass through
X̃r, i.e., S → X̃r → Ŷ t, as well as the direct edge S → Ŷ t

at each time step t.
We note that trade-off may exist between fairness and util-

ity, as well as between long-term and short-term fairness.
The long-term fairness focuses on remedying past discrim-
ination existed in the system, but has no constraint on the
biases in the decision at each time step. The short-term fair-
ness, on the other hand, cares about fairness in the deci-
sion making process at each time step, but pays no atten-
tion in correcting past discrimination in the population. One
should combine long-term and short-term fairness to force
the decision model to take into consideration both factors
and to remove discrimination in the system gradually with
time. Therefore, we similarly propose quantitative notions
for short-term fairness and institution utility as follows.

Definition 2 (Short-term Fairness). The short-term fairness
of a decision model hθ(·) at time t is measured by the
causal effect transmitted through paths involved in time t,
i.e., P (Ŷ t(s+πt , θ)) − P (Ŷ t(s−πt , θ)), where πt = {S →
X̃r → Ŷ t, S → Ŷ t} with redlining attributes X̃r, sπ is
the path-specific hard intervention and θ represents the soft
intervention.

Definition 3 (Institution Utility). The institution utility of
decision model hθ(·) is measured by the aggregate loss given
by

∑t∗
t=1 E[L(Y t, Ŷ t)] where L(·) is the loss function.

Learning Fair Decision Models
After formulating related notions, we are ready to formulate
the fair sequential decision making problem given a time-
lagged causal graph. To ease the representation, in following
discussions we consider the simplified causal graph shown
in Figure 1 where only relevant attributes with no redlining
attributes exist. In this case, the long-term fairness is cap-
tured by paths from S to Ŷ t∗ through X1, Ŷ 1, · · · ,Xt∗ as
shown in red, and the short-term fairness is captured by the
direct edge S → Ŷ t at each time t as shown in green. How-

ever, all our discussions can be applied to our general for-
mulation that includes both relevant and irrelevant features.

The goal is to learn a functional mapping hθ : (Xt, S) 7→
Y t parameterized with θ, i.e., Ŷ t = hθ(X

t, S). Based on the
discussions above, we formulate a constrained optimization
problem which minimizes the loss while subject to long-
term fairness and short-term fairness constrains simultane-
ously. The thresholds τl and τt control the strictness of con-
straints.
Problem Formulation 1. The problem of fair sequential de-
cision making is formulated as the constrained optimization:

argmin
θ

t∗∑
t=1

E
[
L(Y t, Ŷ t)

]
s.t. P

(
Ŷ t∗(s+π , θ)=1

)
− P

(
Ŷ t∗(s−π , θ)=1

)
≤ τl,

P
(
Ŷ t(s+πt , θ)=1

)
− P

(
Ŷ t(s−πt , θ)=1

)
≤ τt,

t = 1, · · · , t∗

where τl and τt are thresholds for long-term fairness and
short-term fairness constraints, respectively.

Formulating as Performative Risk Optimization
Solving the optimization problem in Problem Formulation 1
is not trivial. According to the path-specific effect inference
(Avin, Shpitser, and Pearl 2005) and the definition of soft in-
tervention (Correa and Bareinboim 2020), post-intervention
probability P (Ŷ t∗(s+π , θ) = 1) is given by∑

X1,Y 1,··· ,Xt∗

{
P (x1|s+)Pθ(y

1|x1, s−) · · ·

· · ·P (xt∗ |xt∗−1, yt
∗−1)Pθ(Y

t∗ =1|xt∗ , s−)
}
,

(1)

where Pθ(y|x, s−) is a probabilistic function determined by
hθ(·). As a result, P (Ŷ t∗(s+π , θ) = 1) is a complex nonlin-
ear function of θ, making Problem Formulation 1 difficult to
solve. In the following, we show how Problem Formulation
1 is converted to a performative risk optimization problem
and then propose an optimization algorithm by leveraging
repeated risk minimization.

Following the notation of convex optimization of classi-
fication, we denote by ϕ a convex surrogate function. Then,
we can formulate the loss function as
L(Y t, Ŷ t) = 1

[
Y thθ(X

t, S) < 0
]
= ϕ

(
Y thθ(X

t, S)
)
.

We can also apply the surrogate function to the fairness
constraints. For any t, we have

P
(
Ŷ t(s+π , θ)=1

)
=

∑
Xt

P
(
xt(s+π , θ)

)
Pθ(Y

t=1|x, s−).

Similar to (Hu et al. 2020), we estimate Pθ(Y
t = 1|x, s−)

by first treating it as 1 [hθ (x
t, s−) ≥ 0] and then replacing

the indicator function by ϕ(·):

P
(
Ŷ t(s+π , θ)=1

)
=

∑
Xt

P
(
xt(s+π , θ)

)
ϕ
(
−hθ

(
xt, s−

))
= E

Xt ∼ P (Xt(s+π , θ))

[
ϕ
(
−hθ

(
Xt, s−

))]
.
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Similarly, we have

− P
(
Ŷ t(s−π , θ)=1

)
= P

(
Ŷ t(s−π , θ)=0

)
− 1

= E
Xt ∼ P (Xt(s−π , θ))

[
ϕ
(
hθ

(
Xt, s−

))]
− 1.

Then, we define utility loss lu(θ), long-term fairness loss
ll(θ), and short-term fairness loss ls(θ) as follows.

lu(θ) =
t∗∑
t=1

E
S,Xt, Y t ∼ P (S,Xt, Y t)

[
ϕ
(
Y thθ(X

t, S)
)]

,

ll(θ) =
1

2

{
E

Xt∗ ∼ P
(
Xt∗(s+π , θ)

)
[
ϕ
(
−hθ

(
Xt∗ , s−

))]
+ E

Xt∗ ∼ P
(
Xt∗(s−π , θ)

)
[
ϕ
(
hθ

(
Xt∗ , s−

))]
− 1− τl

}
,

ls(θ) =
1

t∗

t∗∑
t=1

{
E

Xt ∼ P
(
Xt(s−πt , θ)

)
[
ϕ
(
−hθ

(
Xt, s+

))]
+ E

Xt ∼ P
(
Xt(s−πt , θ)

)
[
ϕ
(
hθ

(
Xt, s−

))]
− 1− τt

}
.

By adding the long-term and short-term fairness losses as
regularization terms into the objective function, we obtain
an unconstrained optimization problem as given in Problem
Formulation 2. The general formulation of the performative
risk optimization can be given by argminθ E

Z∼D(θ)
l(Z; θ)

where Z represents the set of all attributes and outcome (Per-
domo et al. 2020). Thus, Problem Formulation 2 can be con-
sidered as a performative risk optimization problem as all
terms in the objective function are represented as expecta-
tions of the loss function over the distributions that depend
on the loss function parameters. Compare with Problem For-
mulation 1, Problem Formulation 2 relaxes the fairness con-
straints and certain amount of violations to the constraints
are allowed. However, Problem Formulation 2 can be solve
more efficiently by leveraging the repeated risk minimiza-
tion technique as shown in the next subsection.
Problem Formulation 2. The problem of fair sequential de-
cision making is reformulated as the performative risk opti-
mization:

argmin
θ

l(θ) = λulu(θ) + λlll(θ) + λsls(θ) (2)

where λu, λl and λs are weight parameters and satisfy λu+
λl + λs = 1.

The Algorithm of Repeated Risk Minimization
Repeated risk minimization (RRM) is an iterative algorith-
mic heuristic for solving the performative risk optimization
problem. The procedure of the RRM is to start from an ini-
tial model and repeatedly find a model that minimizes the
loss function on the distribution resulting from the previous
model, which can symbolically represented as the update

Algorithm 1: Repeated Risk Minimization
Input : Dataset D = {(S,Xt, Y t)}lt=1, time-lagged

causal graph G, convergence threshold δ
Output: The stable model hθ

1 Train a classifier on D according to Eq. (2) without the
soft intervention to obtain the initial parameter θ0;

2 i← 0;
3 repeat
4 Sampled the post-intervention distributions

P
(
Xt∗(s+π , θi)

)
and P

(
Xt∗(s−π , θi)

)
;

5 Sampled the post-intervention distributions
P
(
Xt(s+π , θi)

)
and P

(
Xt(s−π , θi)

)
for each t;

6 Minimize l(θ) according to Eq. (2) to obtain θi+1;
7 △ = ∥θi+1 − θi∥2;
8 i→ i+ 1;
9 until△ < δ;

10 θ ← θi;
11 return hθ;

rule θi+1 = argminθ E
Z∼D(θi)

l(Z; θ) (Perdomo et al. 2020).

The RRM converges if the model that minimizes the loss re-
mains unchanged from the previous model, i.e., θi+1 = θi.

To implement the RRM algorithm in our context with
three different loss terms, we sample different distributions
at each iteration. For computing lu(θ), the data distribu-
tion does not change with the deployment of new mod-
els, and we always use the original dataset D to com-
pute lu(θ). For computing ll(θ), the data distribution fol-
lows the post-intervention distribution P (Xt∗(s+π , θ)) (resp.
P (Xt∗(s−π , θ))). Thus, we sample the data according to the
inference formula that is similar to Eq. (1) where a smooth
probabilistic function Pθ(y|x, s) is used. Specifically, we
first sample X1 according to the distribution P (X1|s+)
(resp. P (X1|s−)), and sample the decision for each sam-
ple according to Pθ(Y

1|x1, s−). Then, we sample X2 ac-
cording to the distribution P (X2|X1, Y 1) upon the samples
obtained at the first time step. We repeat this process un-
til time t∗ to obtain samples for Xt∗ for computing ll(θ).
For computing ls(θ), we similarly sample the distributions
P (Xt(s+πt , θ)) and P (Xt(s−πt , θ)) for each time step t. The
procedure of our algorithm starts from an initial model hθ0
directly trained on D, and repeatedly train the model on the
re-sample data at each iteration, until the model converges
to performative stability. The pseudocode of this procedure
is described in Algorithm 1.

Convergence Analysis of RRM
We now conduct performative stability analysis for our algo-
rithm. The convergence of the RRM algorithm depends on
the smoothness and convexity of the loss function, as well as
the sensitivity of the distribution to the parameters (Perdomo
et al. 2020). Specifically, given a general RRM formulation
θi+1 = argminθ E

Z∼D(θi)
l(Z; θ), if loss function l(·) is β-

jointly smooth and γ-strongly convex, and distribution D(θ)
is ε-sensitive, then the RRM converges to a stable point if
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ε < β
γ . We similarly analyze these factors for our problem

and then give the theoretical convergence result.
Lemma 1. If the surrogated loss function (ϕ ◦ h)(·) is γ-
strongly convex, then l(·) is γ-strongly convex.

Lemma 1 can be directly proven according to the sum rule
of the gradient.

Next, we study the sensitivity of the distributions. Con-
sider the distribution P (Xt(sπ, θ)) for any t. Its sensitivity
to θ depends on to what extend the decisions will impact
the attributes via the feedback loop. By assuming that the
change of the distribution over the attributes in respond to
the change of θ is bounded by a constant, we present follow-
ing lemma. Please refer to the appendix for detailed proof.
Definition 4. For any t, attributes Xt+1 are c-sensitive if

∥
∑
Y t

∇θPθ(y
t|xt, s)P (xt+1|xt, yt)∥

≤ c
∑
Y t

P (xt+1|xt, yt).

Lemma 2. For any t, suppose that Xt+1 are c-sensitive,
then distribution P (Xt(sπ, θ)) is ε-sensitive with ε ≤
2mc(t − 1), where m is the maximum ground distance be-
tween two values of Xt.

After introducing the above two lemmas, we now present
our main theoretical result.
Theorem 1. Suppose that surrogated loss function (ϕ◦h)(·)
is β-jointly smooth and γ-strongly convex, and suppose that
Xt+1 are c-sensitive for any t, then the repeated risk min-
imization converges to a stable point at a linear rate, if
2mc(t∗ − 1) < β

γ .
The proof of Theorem 1 is based on Theorem 3.5 in (Per-

domo et al. 2020). Please refer to the appendix for details. In
practice, this theoretical criterion of convergence may be dif-
ficult to meet. However, our experimental results show that
our algorithm can converge under reasonable conditions.

Experiments
We conduct experiments on both synthetic and semi-
synthetic temporal datasets to evaluate the proposed algo-
rithm. We show that our algorithm is effective in achieving
both long-term and short-term fairness, while previous fair
algorithms that do not consider the dynamics in sequential
decision making actually do not mitigate or even exacer-
bate the short-term or long-term fairness. We consider three
baselines in the experiments which treat the whole tempo-
ral dataset as a static dataset and train the decision model
on it. Fairness constraints are added following the technique
proposed in (Wu, Zhang, and Wu 2019).
• Logistic Regression (LR): An unconstrained logistic re-

gression model which takes user features and labels from
all time steps as inputs and outputs.

• Fair Model with Demographic Parity (FMDP): On the
basis of the logistic regression model, fairness constraint
is added to achieve demographic parity.

• Fair Model with Equal Opportunity (FMEO): On the
basis of the logistic regression model, fairness constraint
is added to achieve equal opportunity.

Datasets
Synthetic Data. We simulate a process of bank loans fol-
lowing the time-lagged causal graph depicted in Figure 1,
where S is the protected attribute like race, Xt represents
the financial status of applicants, and Y t represents the deci-
sions about whether or not to grant loans. At t = 1, we gen-
erate samples where both values of S are sampled with the
equal probability, and the values of X1 are sampled using
two different Gaussian distributions according to the value
of S. Then at each time t, we sample predicted decisions
Ŷ t and the values of Xt+1 as follows. Consider a ground-
truth decision model hθ∗(·) for deciding the probability of
whether an individual would default on a loan, given by
σ(hθ∗(·)) where σ(·) is the sigmoid function. Then, we sam-
ple the predicted decision Ŷ t (as well as the actual repay-
ment Y t which is sampled separately) from σ(hθ∗(·)) as:

P (Ŷ t) = σ(hθ∗(Xt, S)), Ŷ t ∼ 2 · Bernoulli(P (Ŷ t))− 1.

Then, Xt+1 is generated according to the update rule below:

Xt+1 =


Xt − ϵ · θt + b Ŷ t = 1, Y t = −1

Xt + ϵ · θt + b Ŷ t = 1, Y t = 1

Xt + b Ŷ t = −1

(3)

where ϵ is a parameter that controls the sensitivity of the
update to the predicted decisions, and b = S ·b1+(1−S)·b0
is a small base increment at each time step. In the simulation
process, we generate a 5-step synthetic dataset with 5000
samples where parameters are set as ϵ = 0.5, b0 = 0.2,
b1 = 1.0.
Semi-synthetic Data. We use the Taiwan credit card dataset
(Yeh and Lien 2009) as the initial data at t = 1. To form a
balanced dataset, we extract 3000 samples and choose two
features PAY AMT1 and PAY AMT2 that are appropriate
in fitting into our update rule. Then, we generate a 4-step
dataset using the same update rule as shown above.

Training and Evaluation
We conduct the training process following the RRM algo-
rithm. At each iteration, we sample the data according to the
current decision model and the causal graph. Similar to the
data generation process, predicted decisions are sampled ac-
cording to the probability given by σ(hθ(·)), and the feature
values are sampled according to Eq. (3). In our experiments,
we assume that the true update rule is known in order to
remove errors introduced by causal graph construction. In
practice, the causal graph learned from data may introduce
additional errors.

We then design an evaluation process which simulates the
real model deployment procedure and feedback loops. At
each time step t, we use the trained decision model hθ(·) to
make decisions Ŷ t, and use the ground-truth model hθ∗(·) to
determine the repayment Y t. The accuracy is measured by
comparing Ŷ t and Y t, the long-term fairness is measured
based on the distribution of Ŷ t∗ in the evaluation, and the
short-term fairness is measured based on the distribution of
Ŷ t at different time steps according to proposed definitions.
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Alg. Metric
Time steps

t=1 t=2 t=3 t=4 t=5

RL
Acc 0.912 0.894 0.917 0.921 0.917

Short 0.152 0.160 0.166 0.164 0.174
Long 0.058 0.117 0.173 0.246 0.340

FMDP
Acc 0.735 0.706 0.704 0.708 0.725

Short 0.212 0.216 0.224 0.220 0.232
Long 0.180 0.306 0.376 0.431 0.481

FMEO
Acc 0.829 0.790 0.795 0.800 0.814

Short 0.010 0.010 0.010 0.014 0.020
Long 0.080 0.122 0.190 0.276 0.352

Ours
Acc 0.801 0.754 0.729 0.707 0.692

Short 0.012 0.008 0.012 0.008 0.002
Long 0.040 0.024 0.020 0.012 0.002

Table 1: Accuracy, short-term and long-term fairness of dif-
ferent algorithms on the synthetic dataset.

Alg. Metric
Time steps

t=1 t=2 t=3 t=4

RL
Acc 0.828 0.826 0.841 0.816

Short 0.015 0.018 0.021 0.012
Long 0.038 0.088 0.243 0.433

FMDP
Acc 0.830 0.843 0.846 0.841

Short 0.063 0.066 0.075 0.069
Long 0.038 0.076 0.223 0.397

FMEO
Acc 0.824 0.830 0.830 0.813

Short 0.072 0.075 0.087 0.078
Long 0.006 0.045 0.156 0.295

Ours
Acc 0.648 0.648 0.680 0.687

Short 0.006 0.006 0.003 0.006
Long 0.064 0.043 0.016 0.003

Table 2: Accuracy, short-term and long-term fairness of dif-
ferent algorithms on the semi-synthetic dataset.

Implementation Details.1 For baselines FMDP and FMEO,
they are formulated as constrained optimization forms which
are directly solved by the CVXPY package (Diamond and
Boyd 2016). For our algorithm, we use the logistic loss func-
tion for the surrogate function ϕ and the linear model for
the decision model. All algorithms use the l2-regularization
which can equip the logistic loss function with strong
convexity. In our algorithm, ReLU activation function is
adopted to ensure that the fairness constraints are always
non-negative, and we adopt PyTorch (Paszke et al. 2019) to
implement optimization with Adam optimizer.

Results
The results of the accuracy and fairness of the baselines and
our algorithm on the synthetic dataset are shown in Table 1.
As can be seen, our algorithm achieves the short-term fair-

1The code and hyperparameter settings are available online:
https://github.com/yaoweihu/Achieving-Long-term-Fairness.

Figure 2: The convergence results for different values of ϵ
on the synthetic dataset.

ness at all time steps. More importantly, the long-term fair-
ness is improved with time and approaches zero at t = 5.
For other baselines, there is a clear trend that the long-term
fairness continuously accumulates with time. This demon-
strates that static fairness notions may harm fairness in the
long run. The short-term fairness remains stable with time as
it shows the bias in the model that is related to the protected
attribute. The experiments on the semi-synthetic dataset pro-
duce similar results as shown in Table 2. We also observe a
trade-off between accuracy and fairness meaning that some
accuracy needs to be sacrificed in order to achieve fairness.

We also plot in Figure 2 the convergence results of our
algorithms for different ϵ values. As mentioned earlier, the
value of ϵ controls the sensitivity of Xt+1 to the update of θ.
Figure 2 shows that our algorithm converges when the value
of ϵ is reasonably small, which is consistent with the results
in (Perdomo et al. 2020). We observe similar results on the
semi-synthetic dataset.

Conclusions and Future Work
We proposed a framework to achieve long-term fairness in
sequential decision making. The decision-making process
was modeled by a time-lagged causal graph, in which the
hard intervention was performed on the protected attribute
and soft interventions were performed on the decisions. We
measured both long-term and short-term fairness as path-
specific effects. The problem of fair sequential decision
making was formulated as a performative risk optimization
problem, and repeated risk minimization is adopted to train
the model on the datasets sampled from post-intervention
distributions. The convergence of the proposed algorithm is
analyzed theoretically. Finally, we verify the effectiveness of
the proposed framework and algorithm by comparing it with
the baselines on two synthetic datasets.

Path-specific effects may be unidentifiable from the ob-
servational data if the “kite structure” presents in the causal
graph (Avin, Shpitser, and Pearl 2005). The long-term
fairness loss term ll(θ) cannot be accurately estimated if
P (Xt∗(s+π , θ)) is unidentifiable if the paths in π form a
“kite structure”. We will adopt the bounding technique pro-
posed in (Zhang, Wu, and Wu 2018) for unidentifiable path-
specific quantify, compute the lower and upper bounds of
P (xt∗(s+π , θ)) for each x, and then obtain the upper bound
of ll(θ). We leave this to our future work.
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Ethics Statement
Our research could benefit decision makers for achieving
long-term fairness and balancing the trade-off between fair-
ness and accuracy. The proposed method relaxes the con-
strained optimization problem (Problem Formulation 1) to
an unconstrained optimization problem (Problem Formula-
tion 2). There may be gaps between the two problems, i.e.,
the optimal solution to the unconstrained optimization prob-
lem may not be the optimal solution to the original con-
strained one. This may potentially result in solutions that
achieve compromised fairness which is lower than user re-
quirements.
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