The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Incorporating Item Frequency for Differentially Private Set Union

Ricardo Silva Carvalho, Ke Wang, Lovedeep Singh Gondara

School of Computing Science, Simon Fraser University, Canada
rsilvaca@sfu.ca, wangk @cs.sfu.ca, lgondara@sfu.ca

Abstract

We study the problem of releasing the set union of users’ items
subject to differential privacy. Previous approaches consider
only the set of items for each user as the input. We propose in-
corporating the item frequency, which is typically available in
set union problems, to boost the utility of private mechanisms.
However, using the global item frequency over all users would
largely increase privacy loss. We propose to use the local item
frequency of each user to approximate the global item fre-
quency without incurring additional privacy loss. Local item
frequency allows us to design greedy set union mechanisms
that are differentially private, which is impossible for previous
greedy proposals. Moreover, while all previous works have to
use uniform sampling to limit the number of items each user
would contribute to, our construction eliminates the sampling
step completely and allows our mechanisms to consider all of
the users’ items. Finally, we propose to transfer the knowledge
of the global item frequency from a public dataset into our
mechanism, which further boosts utility even when the public
and private datasets are from different domains. We evaluate
the proposed methods on multiple real-life datasets.

1 Introduction

The set union is a basic operation that provides a global view
of the data from all of the users involved in a study. It is one
of the most fundamental building blocks in many data-related
problems, such as vocabulary extraction, data integration and
SQL queries (Kannan et al. 2016; Lenzerini 2002; Chen et al.
2019). However, when the data contains sensitive information
of users, this operation may breach users’ privacy. For exam-
ple, releasing a vocabulary disclosing just a single word is
enough to impact a user’s privacy, as it may represent a pass-
word, disease diagnosis or political preference. Recent works
(Carlini et al. 2019, 2020) have used extraction attacks to
successfully reveal sensitive text. Therefore, algorithms that
provide privacy guarantees are highly desirable. Differential
Privacy (DP) (Dwork et al. 2006) is the most often used stan-
dard for privacy, implemented by Google (Fanti, Pihur, and
Erlingsson 2016), Microsoft (Ding, Kulkarni, and Yekhanin
2017), the US Census Bureau (Abowd 2018; Kuo et al. 2018),
etc. A randomized mechanism M is (g, §)-differentially pri-
vate, or (e, 6)-DP, if for all neighboring datasets D and D’

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

9504

that differ in the addition or removal of one user’s data, and
all sets .S of possible outputs, we have:

PrM(D) € S] < e PrM(D') € S] + 6

Since neighboring datasets differ by the data of one user, the
inequality above ensures that the outputs of a mechanism M
satisfying DP will have only a small impact if we remove
or add any single user from the dataset used to generate the
output. Thus, such outputs will not be tightly related to any
individual user, effectively protecting users’ sensitive data.

1.1 Differentially Private Set Union

The problem of Differentially Private Set Union (DPSU) was
formalized by (Gopi et al. 2020).

Problem 1 (Differentially Private Set Union (DPSU)). Let U
be some universe of items, possibly of unbounded size. Given
a database D of users, each user i has a set of items W; C U,
we want an (€, 9)-DP mechanism M that outputs a subset
S C U;W; such that the size of S is as large as possible.

The goal is to output the largest possible subset of the union
while meeting DP. Previous work related to DPSU (Korolova
et al. 2009; Wilson et al. 2020) designed mechanisms with
two phases, as shown in Figure 1. Phase 1 builds a histogram
on U; W; by iterating over the users and getting their contri-
butions in terms of items. To provide DP, the contribution
of every single user is bounded. That means the maximum
number of items a user may contribute is fixed, denoted by
Ay, and the updates to items’ weights in the histogram given
by each user sum to a total weight budget of 1. In Phase 2,
only items with a noisy weight above the threshold p will be
outputted. Basically, the threshold is used to limit the prob-
ability of outputting the items only contributed by the user
present in just one of the neighboring data D or D’.

1.2 Contributions

This work addresses several limitations in the previous DPSU
mechanisms, detailed below.

Introducing item frequency: All previous works treat W;
as a set of distinct items, ignoring items’ frequencies for the
user ¢ when available. For example, for vocabulary extraction
the data for each user can be a text document where terms are
allowed to occur multiple times, but previous works represent
each user by a set of distinct terms in the user document. Our



4 Phase 1: Iterate through every user to build a histogram H

Phase 2: Add noise and compare to p \

STEP 1: Sample W;

STEP 2: Update W; in H

STEP 3: Add noise to H | STEP 4: Output

For example: | ! : PO : |
ltems of Usperi: i tolimitto Ag items | with weight budget = 1: , items with noisy
! Ag = 2 ! weight[b] + weight|c] = 1 53 : weight above p
Wi tang | EsferBo =2 i Tl 2 T b s
t el ' W; = {b, ¢} '\ H[b] = H[b] + weight|[b] 34 ' Inthis example:
\_ : i =Abe i Hic] = H|c] + weight][c] ol 12 b‘ c[d]e] » . Output {a, ¢}

Figure 1: Overview of all previous DPSU mechanisms. Phase 1 builds a histogram user by user. STEP 1 samples items from W
into W; to limit user contribution to at most A items. To further limit contributions, in STEP 2 a total weight budget of 1 is
distributed among the items in W; and the histogram is updated for each item in W, with the corresponding weights defined by
the DPSU mechanism in use. These first two steps are done for all existing users and a final histogram is built. Finally, Phase 2
adds noise to the total weights of the items in the final histogram, and outputs items with noisy weight above the threshold p.

first contribution is introducing an item frequency array C;
associated with the items in W; and using this information to
return more items in the set union output while meeting DP.

Eliminating sampling: All previous works implement
STEP 1 in Figure 1 using uniform sampling, which tends
to waste the weight budget on updating items that occur
among many users, as such items do not require many up-
dates to reach the threshold p. We introduce a mechanism
that eliminates the need for sampling in STEP 1, so each
user 7 moves on to STEP 2 with all items W;. This allows us
to tailor the updates by choosing the most promising items
available for each user. Another positive consequence from
this is that, unlike previous work, we do not need to set the
A parameter, which would cost additional privacy budget
to choose privately. To the best of our knowledge, this is the
first work that eliminates the sampling step.

DP greedy update: (Gopi et al. 2020) shows that some well
thought greedy update for STEP-2 does not satisty DP. We
propose an update algorithm for STEP 2 that follows a greedy
approach guided by the item frequency C; for each user i, but
our greedy update provably satisfies DP and enables a smaller
threshold p compared to (Gopi et al. 2020). The reduced
threshold increases the probability of outputting more items.

Knowledge transfer: Looking at the data of each individual
user ¢ to get the frequency array C; may not reflect the global
frequency distribution for all users. On the other hand, getting
C; by aggregating all users’ sensitive data would not satisfy
DP. To address this issue, we propose a variant of our mecha-
nism that uses the frequency of items in the histogram built
from a public dataset, leveraging the fact that even datasets
from different domains could have a significant overlap of
items. For example, such overlap happens often in English
documents across different domains (Vodrahalli et al. 2018).

Empirical evaluation: Extensive empirical evaluation
shows our method with a utility increase of up to 10% com-
pared to previous works. For knowledge transfer we see
utility improvements of up to 25%, showing benefits of the
approach even when the public dataset is from a completely
different domain than the sensitive data.

In the rest of the paper, we first review related work in Sec-
tion 2. Our Greedy mechanism without sampling is detailed
in Section 3, Knowledge transfer is described in Section 4,
and the empirical evaluation is reported in Section 5.

9505

Algorithm 1: Meta framework for DP Set Union

Input: D: Database of n users s.t. each user ¢ has W; C U.
Ag: Maximum allowed contribution of items per user.

7: Sampling technique.

JF: Algorithm to determine weights of items in a user’s set.
&: Noise distribution (Lap(0, A) or N'(0, 02)).

p: threshold for outputting items.

Output: Set of items.

1: Let H = be an empty histogram

2: Consider the users follow a global order {1, ...,n}.
— Phase 1: Iterate over the users, to build H
3: foreachi = 1ton do
4: Let W; be the set of items of user i;
5: Let C; be a dictionary with items only from W;,
where C;[w] is the count of item w for w € W;;
STEP 1: Random sampling to limit number of items
6: W; < Sample at most A items from W; using n

STEP 2: Update histogram for selected items
Update H [u] for each u € W, using F
8: Let S = ) be an empty set.
— Phase 2: Iterate through the items, to output S

9: for each v € U;W; do

STEP 3: Add noise to the items in the histogram
10 Hlu] + Hlu] + ¢

STEP 4: Output items with noisy weight above p
11:  if H[u] > p then
12: S=SUu
13: return S

2 Related Work

In general, a DPSU mechanism follows the flow in Algo-
rithm 1 and proves DP guarantees for carefully chosen Ay, n
(sampling technique), F (weight update algorithm), £ (noise
distribution) and p (threshold for outputting items).

All previous works employed uniform sampling' 7 to se-
lect items W, from W, in STEP 1 of Algorithm 1. In terms
of the weight update strategy F, there exist three approaches,
denoted as COUNT, WEIGHTED and POLICY mechanisms.

'We also highlight the work of (Desfontaines, Voss, and Gipson
2020) that gives optimal results for the special case of fixed Ag = 1.



Mechanism  Sampling  User View  Updates KT
COUNT Yes Independent 1/A No
WEIGHTED Yes Independent  1/|W;| No
POLICY Yes Dependent GaptoI' No
This work No Dependent Greedy  Yes

Table 1: Differences between our mechanisms and previous
work. We are the first to remove the need for sampling A
items, add greedy updates and Knowledge Transfer (KT).

In COUNT mechanisms (Korolova et al. 2009; Wilson et al.
2020), the histogram is updated using a weight? of Aio for
each item. The drawback is that, when a user ¢ has less than
Ag items, i.e. |[W;| < Ag, the budget of 1 is not fully utilized
for the user. WEIGHTED mechanisms (Gopi et al. 2020) ad-
dress this issue by weighting each item in W; uniformly by
the factor> of ﬁ However, in both COUNT and WETGHTED
mechanisms, each user’s update is independent of the other
users’ updates. This may waste the budget if some items are
already above the threshold p.

With this in mind, POLICY mechanisms (Gopi et al. 2020)
consider that the user view of an item is dependent on the pre-
vious updates. In other words, they define the update weight
of an item based on the previous updates to the item already
made by other users. These algorithms use a cutoff, denoted
as I, above the threshold p, and if an item has reached a total
weight of I" in the histogram, the item will not be updated
anymore, effectively leaving more budget to the other items
below I'. Additionally, POLICY mechanisms increase the
weights of the items in W; proportionally to each item’s gap
to reach I in the histogram. Thus, POLICY mechanisms may
take longer to reach I' due to distributing the weight among
all the items in W;.

Our mechanisms address the limitations of previous works
with the differences summarized in Table ??. We eliminate
the need for sampling users’ items, instead of using uniform
sampling, to consider all of the items for each user ¢ in Al-
gorithm 1, i.e. W; = W;. As for the update strategy F, we
select one item at a time guided by the local item frequency
C; for the user ¢ and greedily spend the weight budget as
needed on the item, instead of distributing the weight among
all items in W;. This effectively lowers the threshold p for
outputting items, compared to previous work.

Finally, our Knowledge Transfer (KT) approach boosts
utility by incorporating public data distribution into DPSU
mechanisms. Even though there is a growing line of research
that leverages public data to support private computations
(Liu et al. 2021; Bassily et al. 2020; Bassily, Moran, and
Nandi 2020; Ji and Elkan 2013), to the best of our knowledge
this is the first work in this area for DPSU. Similar to the most
recent works in this direction, we do not rely on the public
and private datasets coming from the same distribution.

?For Laplace-based COUNT mechanisms the updates are 1/a,,
but for Gaussian-based they are 1/1/a, (Korolova et al. 2009).

3For Laplace-based WEIGHTED mechanisms the updates are
1/|w;, |, but for Gaussian-based they are \/1/|w;| (Gopi et al. 2020).

9506

3 Main Algorithms

Following the framework in Algorithm 1, here we present
two of our main contributions: eliminating the need for sam-
pling 7 on STEP 1, which allows all items to be considered
without costing additional privacy, and the greedy update
F on STEP 2, which lowers the threshold p for outputting
items.

3.1 Eliminating Sampling

For the first time we have STEP 1 of Algorithm 1 returning
all items instead of sampling Ag. In other words, we have
W; = W, in line 6 of Algorithm 1, and we do not use A.
By taking all items into STEP 2, we avoid randomly los-
ing promising items, giving the following update step more
items to consider in order to increase utility. The need for the
sampling step in previous work came from the threshold p
definition. The threshold is used to avoid outputting items
that come only from the differing user between neighboring
D and D', as that would affect privacy. For this, previous
work would distribute the weight among a fixed number of
items, Ao, which needed to be known, and used uniform sam-
pling to select Ay items when users had more than A items.
On the other hand, in our update algorithm, which we
detail next in Section 3.2, for any set of items only coming
from the differing user, it chooses just a single item to spend
all of the weight budget on. The reason is that, before the
update, the histogram had no previous contribution to such
items — because only the differing user has them — and the
cutoff I" to be reached is > 1. Thus our greedy approach will
use all of the weight budget of 1 on just one of them to get
closer to the cutoff I'. This way, irrespective of how many
items are only seen in the differing user, we will update just
one. Thus we already know the number of items we have to
limit outputting with the threshold p, not needing to set Ag.

3.2 Greedy Update

Our algorithm GU, used to update the items in the histogram
following a greedy approach, is described in Algorithm 2.
Recall that C; : W; — Z is an associative item frequency
array for each individual user ¢ with a set of items W.

GU starts by selecting the items from W; that have not
reached the threshold I" in the histogram, denoted by S. Using
I" has been introduced by (Gopi et al. 2020) to allow user
dependency when building the histogram H of items. GU
selects the item with the largest C; in S (i.e., line 8), hoping
other users have a similar distribution, so that such items
have the highest chances of reaching p sooner. This is the
first greedy aspect of GU. After that, the second greedy aspect
of GU comes from using the weight budget on the selected
item until either spending all of the budget or reaching T.
If there is still budget left, the process is repeated for the
remaining items (i.e., line 7).

The key aspect of any greedy update is how to define which
item is updated first from the set of possible items. Previous
work (Gopi et al. 2020) designed a greedy mechanism that
updates the item being closest to the cutoff I'. However, that
leads to a potentially huge difference in the resulting his-
tograms for neighboring datasets, thus not satisfying DP, as



Algorithm 2: GU: Greedy update algorithm for each user 1.

Input: H: Current histogram.

W Selected set of items for user .

C;: Dictionary with items only from user ¢ where C;[w] is
the count of item w for w € W;.

T': Cutoff parameter.

Output: Updated histogram H.

1: budget =1 > Each user has a total weight budget of 1
2: S=10 > Set for items with weight below I'.
O =0 v Set for items updated in a previous iteration.
Filtering: Will only update items below cutoff I".
for u € W; do
if H[u] < T then
S+ SUu
while budget > 0 do
Item Selection: Choose the best item to update
8: u* = argmax C;[u]
ueS\O
Greedy update: Allocate as much as possible to u*
9: cost=T" — H[u*]
10: if cost < budget then > Use budget until reaching I"

e

AN A

11: Hu*] = H[u*]+ cost

12: budget = budget — cost

13: O =0U{u*}

14: else > Budget not enough to reach I, use it all
15: H[u*] = H[u*]+ budget

16: break

17: return H

explained in their paper. We noticed that this ordering step
being based on all previous updates of multiple users was
the factor breaking the privacy. Our greedy update eliminates
this problem because the order of items to be updated for a
user ¢ is defined by this user’s own internal item distribution,
i.e., C;, hence not being impacted by other users’ items.

Comparison to POLICY mechanisms. POLICY updates
(Gopi et al. 2020) have to sample A items, being subject
to more randomness, and update the items’ weights propor-
tionally to the gap to the cutoff I'. This means they distribute
the weight budget (thus, not greedy) and give more of the
budget to the items further from the cutoff, not closer. (Gopi
et al. 2020) suggests various methods to select a value for Ag
that either discard some of the private data or cost additional
privacy budget, such as (Liu and Talwar 2019). Even though
in our experiments we select the best A for the POLICY
mechanisms without charging extra privacy, in real-world
applications that cost needs to be taken into account. In con-
trast, our update algorithm GU does not need to charge extra
privacy budget in this case, as it does not need to set A.

3.3 Putting All Together: GW

Our DPSU mechanism, GW for Greedy updates Without
sampling, is obtained from the meta framework in Algo-
rithm 1 without any sampling method 7, i.e. W, = W, in

line 6, with the update method 7 = GU(W;, C;,T') given

by Algorithm 2, noise distribution* ¢ = Lap(0,)\) with
A=1/e,e >0,T'>1,0 < § < 1, and the threshold

p=1—X-log2d (1)

To prove the (e,d)-DP guarantees of GW, which will be
stated in Theorem 1, we first prove two related Lemmas.

Let D and D’ be neighboring datasets, and let O be any set
of possible outputs returned by GW on D where an output is
a set of items. Let H and H' be the histograms built by the
first phase (see Algorithm 1) of GW respectively on D and
D’. W.lo.g. let D’ be D plus one user’s data. Additionally,
let E be the event that O € supp(H ) for any possible output
O of GW.

Lemma 1. For any pair of neighboring datasets D and D' :
Pr[GW(D) € O] < e Pr[GW(D') € O|E]  (2)

Proof. To show Equation (2) we will need to show that
[|[H" — H||¢, < 1.Since O conditioned by E only contains
outputs with items that can be returned by both GW (D) and
GW(D'), and with ||H' — H||e, < 1, by adding Laplace
noise with A = 1/¢ to the histograms, we get the result in
Equation (2) as a consequence of the Laplace mechanism
with sensitivity of 1 (see Theorem 3.6 in (Dwork, Roth et al.
2014)). Now, in the rest of proof, we show ||H' — H||s, < 1.

First, note that, every user ¢ present in both D and D’ has
the same greedy order of items in both datasets, which in our
case is deterministic and based on C;. That is because we do
not have random sampling of A items and C; is the same on
D and D’ for any such user . Similar to (Gopi et al. 2020),
we assume that users follow a global order. W.l.o.g. let D’
be D plus one user’s data, denoted as user x, at position p in
the global order. As we have the same first p — 1 users on D
and D', at time p — 1 we have H), ; = H), ;. After that, as
the new user z adds a weight budget of at most 1 to only H’,
we have ||H), — H, 1|, < 1. Now we need to show that
this inequality remains true after processing the remaining
users after x. This can be done by induction on the number
of remaining users f processed after z. || H,, — Hj, 1|[¢, <1
is our base case. Let H; and H be the histograms after the
updates from f users after x respectively on HI’, and H,_;.
For the inductive step, we assume, for f > 1, ||H }_1 —
Hy_1]le, <1, and we prove that, after the updates from one
additional user y, [|[H} — Hylle, < 1.

Let o’ and « be the updates from user y respectively on
H% ) and Hy_;. Let S be the set of all items updated so far,
including those from user y. Since updates are always positive
and items in H }71 can only be closer to the cutoff than the
items in Hy_; (due to the extra differing user x), H } [u] >
Hy[u] (Property P1) for any u € S. Also ), qa'[u] <
> ues @[u] (Property P2), i.e. the total updates from user y
in H }_1 is no more than in Hy_1, as some item may reach
the cutoff in H }71 before this happens in H;_;. Therefore:

| H} = Hylle, = Xues Hylu] = > ,es Hylu]  (From P1)

*Our greedy updates do not allow Gaussian noise due to the ad-
ditive property on histogram distances not being satisfied by the L2
distance used by the Gaussian mechanism (Balle and Wang 2018).



= 2ues(Hy o [u] +o'[u]) =32, c(Hya[u] + aful)
<|Hp = Hpalley + 2 s o'[u] = 25 alul
< |[Hj_y—Hylle, (From P2)
Then, as we assumed ||H} | — Hy_1[|¢, < 1in our in-
ductive step, replacing this above completes the proof. [

Lemma 2 below bounds the probability of £.

Lemma 2. For any neighboring D and D', A = 1/e, € > 0,
I'>1,0< < 1and pfrom Equation (1): Pr[E] < 4.

Proof. To have E we need outputs with at least one item
that can be returned by GW(D) but not GW(D’). For an
item like that to exist, it should be added only by the single
differing user that exists in one of the neighboring datasets
but not the other. And if such an item is added by a single user,
it only has a single/first contribution. Also note that even if
the differing user has multiple such items, it will only update
one of them, as they all have zero total weight previously to
the update and our greedy mechanism uses all of the weight
budget of 1 to get closer to the cutoff I' > 1.

So to prove the § bound above, on the event F, the output
must have at least one item u that comes from the differing
user and passes the threshold p. The discussion above implies
that there is only one such item u in the output. Thus, for
X, ~ Lap(1/e) and p from Equation (1):

Pr[E] = Pr[H|[u] > p]
=1 —Pr[H[u] < p] =1—Pr[H[u] + X, < p]
=1-Pr[X,<p—H[u]] <1-Pr[X, <p-1]

:1—(1—%exp(—€(p—1)))

The last step is a consequence of the Laplace distribution.
Simplifying the above we get 0.5 - exp(e — €p), which for p
in Equation (1) becomes Pr[E] < 4. O
Finally, the DP guarantees for GW are stated as follows.
Theorem 1. The DPSU mechanism GW is (g,d)-DP for
A=1/e,e>0,T >1,0< 6 < 1and pfrom Equation (1).

Proof. Let O be any set of possible outputs from GW on D
where an output is a set of items. For neighboring D and D’
differing in one user’s data, we want to show that:

Pr[GW(D) € O] < ¢e®-Pr[GW(D') € O] +6  (3)

To achieve this we start from Lemma 1:

Pr[GW(D) € O] < e* Pr[GW(D’) € O | E]

o Pr[GW(D’) € O] < Pr[GW(D’) € O]

- Pr[E] - 1-9

e Pr[GW(D') € O]

)
<e*Pr[GW(D') € O] +§

If the expression in parentheses is < 1 the result above
is direct, otherwise the opposite implies e° Pr[GW(D’) €
O] > 1—94,giving 1 < e Pr[GW(D’) € O] + 4, that

with Pr[GW(D) € O] < 1 and transitivity gives the same
result. O

(Lemma 1)

(Lemma 2)

= e* Pr[GW(D') € O] + 5(

9508

Comparison of p for DPSU mechanisms

35
—— GW
301 —e— Policy Gaussian
—a— Policy Laplace
Q 25
el
3 20
G
© 15
e
10

o ol

05 1.0 1.5 2.0 25 3.0 3.5 4.0
£

Figure 2: Threshold p comparison between DPSU mecha-
nisms, for various € and 6 = exp(—10). Smaller is better.

3.4 Threshold Comparison

Here we show that our threshold formulation in Equation (1)
gives a p never larger than those used by previous work (Gopi
et al. 2020). Since only items with noisy weights above a
threshold p are outputted, smaller values are better for DPSU.

Although (Gopi et al. 2020) proposed two POLICY mech-
anisms, here we compare our threshold with their mechanism
that has the smallest p formulation: the Policy Laplace, which
has the threshold given by:

1 1
Prap = 1%‘%}50 7 + Alog (2(1 —(1- 5)1/t)> “)

Theorem 2. Denoting pgw as the threshold from Equa-
tion (1), and p1,.p from Equation (4), we have:

PGW < PLap (5)
Proof. If we replace t = 1 in Equation (4), we get:

1
1 1 -
+ 210t (==
:1+)\log% = 1-X-log26 = paw

Thus, with ¢ = 1, p1., becomes pgyw . Since Equation (4) is
a max statement for all 1 < ¢ < Ay, the result of p; ., can
never be smaller than that of pgyy .

Theorem 2 formally shows that pgyy is never larger than
the threshold from the POLICY mechanisms (Gopi et al.
2020). To further illustrate the comparison, in Figure 2 we
show the concrete threshold values for the mechanisms ana-
lyzed. Basically we see GW with considerably smaller thresh-
old than POLICY mechanisms, especially for smaller €.

4 Knowledge Transfer

As discussed in Section 1.2, looking only at the data from a
single user i to get C; gives a limited view of the most fre-
quent items in D, as it may not reflect the global distribution
for all users. However getting C; by aggregating all users’
sensitive data would not satisfy DP, due to the increasingly
different probabilities of outputting items on neighboring



datasets. So we propose to use C; built from the global distri-
bution of a public dataset to get more robust weight updates.

The public data is not required to have the same distribu-
tion as the sensitive data; as long as the items in the public
data have some overlap with those of the sensitive data, C;
built using the public data will be useful for increasing the
size of the DP set union. Importantly, note that the usage of
the public data is free in terms of privacy budget.

More precisely, we first build the public histogram HP"?
of item counts using a public dataset. Then, for each user
i, for every item u in W, if u is in HP"® we set C;[u] to
the count of u in HP“?, otherwise, we set C;[u] = 1. We
use this new C;, denoted by C”*?, to replace the input C; in
Algorithm 2 for F. This means that the most frequent items
considering the counts from the public dataset will tend to
be updated sooner, increasing their chances of being part of

the output. Note that the scale of the frequency from C? ub
does not impact our algorithms, as only the order given by
the item frequency vector matters. Finally, note that our goal
still is to optimize the set union coverage of private data: we
use public data to gauge the common items in the private data
and reach the cutoff quicker for such items, leaving more
budget to output the remaining items in the private data.

Our resulting mechanism is GW-KT, for GW with
Knowledge Transfer.

Theorem 3. Let GW-KT be GW with C; being replaced with
CP" in Algorithm 2. GW-KT is (&, §)-DP.

K2

Proof. GW-KT uses GW plus public data. Thus, it is also
(e,0)-DP, as public data is the same on D and D’. O

S Experiments

In the empirical evaluation we focus on natural language
data, due to their large availability and the frequent use of
knowledge transfer in the text domain. In this context we
consider the ubiquitous problem of building a vocabulary,
which is equivalent to releasing the set union of n-grams for
n = 1 (unigrams). Our goal is to output the largest vocabulary
possible while satisfying user-level DP.

5.1 Datasets

We use three sources as sensitive datasets for the DPSU, as
shown in Table 2. Each user ¢ has one or more observations
in a dataset, and W, is the set of unique words from the
aggregated observations from each user, with C; as the cor-
responding word frequency array. Reddit is a text dataset
collected from the subreddit r/AskReddit, and was the only
dataset used by (Gopi et al. 2020) for DPSU. We include two
other general NLP datasets available on Kaggle: 1) Twitter,
with natural conversations between major companies and
costumers on Twitter; and 2) Finance, with daily financial
news headlines. We use the same pre-processing of (Gopi
et al. 2020) for all datasets, such as tokenizing and cleaning.

We also include other five datasets as public datasets for
knowledge transfer, with various vocabulary sizes, as shown
in Table 3. To emphasize the generality of our approach, we
select public datasets that are from different domains. “imdb”
comes from IMBD reviews, “covid” from Covid-19 medical

9509

Dataset Users Observations | Vocabulary
Reddit | 223,388 373,983 153,701
Twitter | 702,682 2,811,774 1,300,123
Finance | 1,400,465 1,400,465 267,256

Table 2: Overview of the sensitive datasets: the number of
users, observations and vocabulary size.

Reddit Twitter | Finance

Dataset Vocabulary A Com| A Coml N Corr
imdb 194,532 |31% 0.87 |5% 0.70 [13% 0.39

covid 784,699 |26% 0.42|6% 0.33|23% 0.24
songs 222,074 |32% 0.70 |6% 0.56 (14% 0.27
wiki 631,866 [33% 0.69|7% 0.52(24% 0.41

enron 989,560 [35% 0.21 (9% 0.15{30% 0.12

Table 3: Overview of the public datasets, with their vocabu-
lary size. Column “N” shows the percentage of the sensitive
dataset that is present in the public dataset, while column
“Corr.” shows the correlation between such common items.

papers, “songs” from lyrics of English songs, “wiki” from
Wikipedia abstracts, and “enron” from Enron internal e-mails.
Thus note that we have domains such as medical, musical,
movie and e-mails. Table 3 also shows the intersection (col-
umn “N”) between the sensitive and public datasets. The
percentage shows how many items of each sensitive dataset
are present in the public datasets, also adding the correlation
(column “Corr.”) of the counts of such intersection items.
All of the code and datasets are publicly available’.

5.2 Settings

We compare our algorithms GW and GW-KT with the cur-
rent state-of-the-art in DPSU: Policy Laplace and Policy
Gaussian (Gopi et al. 2020). To define the cutoff I we follow
the approach from (Gopi et al. 2020), using a new parameter
a. Given each corresponding p, A and o, for Laplace-based
algorithms we set I' = p + a, for « € [0, 6], similarly, for
Gaussian-based algorithm we set T' = p + a0, for « € [0, 6].
Note that A and o are defined from € and 6 by each individual
mechanism. Moreover, unless otherwise stated, we use the
base values of ¢ = 3, « = 3 and § = exp(—10).

While GW is free from setting Ag to bound users’ contri-
butions, the POLICY mechanisms given by (Gopi et al. 2020)
still require choosing a value for Ag. In the experiments we
try Ag € {1, 10,20, 30, 50, 100, 200, 300} and report only
the best result overall. Although in practice this costs privacy,
we do not account for the privacy loss of choosing Aq for the
POLICY mechanisms, which gives them an advantage.

53

In the experiments utility is measured by the set union size,
thus the larger the better. The general results are shown in
Table 4. The main conclusions obtained from such results
and the next sections can be summarized as follows:

Main Conclusions

Shttps://github.com/ricardocarvalhods/diff-private-set-union.



Dataset Policy Lapl. Policy Gaus. GW GW-KT GW-KT GW-KT GW-KT GW-KT
(best Ag) (best Ag) (imdb) (covid) (songs) (wiki) (enron)
Reddit | 15485 +63 16958 =37 17051 +51 | 18968 =76 18811 +£36 18979 +£48 19057 =14 19012 £ 41
Twitter | 33757 =15 34332 +49 37697 +22 | 40910 =41 41332+32 41739£7 42060 =63 42808 + 26
Finance | 45323 £ 75 40724 +62 49868 + 23 | 50451 =98 51059 +43 50409 +55 50934 +64 51070 + 99

Table 4: Average results with standard error of set union output size over 5 independent trials, for e = a = 3, § = exp(—10),
and the best results for Aq € {1, 10, 20, 30, 50, 100, 200, 300} for the POLICY mechanisms. Our mechanism GW consistently
outperforms previous work, and GW-KT shows considerable boost in utility by using public data even from diverse domains.

* GW consistently outperforms POLICY mechanisms
(Gopi et al. 2020) by around 10% for Twitter and Finance
datasets, whereas for Reddit it gets equivalent utility.

¢ GW-KT shows even larger improvements than GW, with
the best results being 12%, 25% and 13% better than
(Gopi et al. 2020) respectively for Reddit, Twitter and
Finance.

* For knowledge transfer, all of the public datasets tested
were beneficial to DPSU, even those from very diverse
domains. Moreover, the larger the intersection between
public and sensitive vocabularies, the better.

5.4 Impact of The Cutoff I

As explained above, to define the cutoff I' we use the param-
eter a € [0, 6]. The first column of Figure 3 shows the results
of the mechanisms compared for various values of o on the
three sensitive datasets analyzed. We see that, for all of the
mechanisms, the set union size increases sharply until o = 3
and remains approximately constant after.

5.5 Impact of Privacy Budget

Here we analyze how the value of the privacy budget € im-
pacts the results, since in Table 4 we only used € = 3. The
second column in Figure 3 shows the utility improving as €
becomes larger, as expected. Additionally, overall GW per-
forms better than previous work (Gopi et al. 2020). With the
only exception being with small € and specifically for the
Reddit dataset. However, note that we did not charge privacy
budget (¢) to choose A for the POLICY mechanisms.

5.6 Impact of Public Dataset

From Table 4 we see that the public datasets used for knowl-
edge transfer have slightly different results. However, they
all consistently improve on previous work.

Cross-referencing the utility results with the overview of
the public data from Table 3 shows that generally the largest
the intersection of sensitive and public vocabularies, the better
utility results. On the other hand, the correlation between the
common items does not seem to directly impact the results.
Therefore, as a general rule, we consider good practice to use
a public dataset as large as possible. Nonetheless, even when
the intersection is very small, e.g. 5% for Twitter dataset,
using knowledge transfer is still beneficial. We note that
even in these cases the absolute number of common items is
reasonably large, which can help to improve DPSU.

Finally, we note that the domain of the dataset does not
have a large impact on utility. For example, for the sensitive

9510

Set union size for a on Reddit dataset Set union size for € on Reddit dataset

N
N}

-
o
S

14

w

12

©

—— oW
—e— Policy Gaussian
—=— Policy Laplace

Set union size (x103)
Set union size (x103)

—— oW
—e— Policy Gaussian
—=— Policy Laplace

0 1 2 3 4 5 6 05 1.0 15 20 25 3.0 35 4.0
a 3

Set union size for a on Twitter dataset Set union size for £ on Twitter dataset

w
S

—— GW
—e— Policy Gaussian
—=— Policy Laplace

—— GW
—e— Policy Gaussian
—=— Policy Laplace

Set union size (x103)
Set union size (x103)

6
0 1 2 3 4 5 6 05 1.0 15 20 25 30 35 4.0
a £

Set union size for a on Finance dataset Set union size for € on Finance dataset

w
©

w
@

w
S

Set union size (x103)
Set union size (x103)

—— oW
—e— Policy Gaussian
—=— Policy Laplace

—— oW
—e— Policy Gaussian
—=— Policy Laplace

N

o
N
S

N
S
=)

0 1 2 3 4 5 6 05 1.0 15 20 25 3.0 35 4.0
a €

Figure 3: Comparison of mechanisms for varying a (first
column) or € (second column). Each row has results for a
dataset. For o, results improve until reaching a = 3 and

remain nearly constant after. Across all of the ¢ tested, im-
provements are generally similar.

Finance dataset, we see the public dataset “covid” with medi-
cal text from Covid-19 papers as one of the best performing.

6 Conclusion

We proposed DPSU mechanisms that incorporate item fre-
quency in a novel greedy update step. The first main advan-
tage of our methods is eliminating the sampling step that was
employed by all previous works to limit the number of items
contributed by a single user in order to satisfy DP. Moreover,
our proposed greedy mechanisms satisfy differential privacy
and have a threshold for outputting items that is formally
proved to never be larger than those of previous work. Fi-
nally, we include a version of our algorithm with knowledge
transfer, which empirically shows an additional utility boost,
even when using a public dataset from a very diverse domain.



Acknowledgements

This research is in part supported by a CGS-D award for
Lovedeep Singh Gondara and a discovery grant for Ke Wang
from Natural Sciences and Engineering Research Council of
Canada.

References

Abowd, J. M. 2018. The US Census Bureau adopts differ-
ential privacy. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data
Mining, 2867-2867.

Balle, B.; and Wang, Y.-X. 2018. Improving the Gaussian
Mechanism for Differential Privacy: Analytical Calibration
and Optimal Denoising. arXiv:1805.06530.

Bassily, R.; Cheu, A.; Moran, S.; Nikolov, A.; Ullman, J.; and
Wu, S. 2020. Private query release assisted by public data.
In International Conference on Machine Learning, 695-703.
PMLR.

Bassily, R.; Moran, S.; and Nandi, A. 2020. Learning from
mixtures of private and public populations. arXiv preprint
arXiv:2008.00331.

Carlini, N.; Liu, C.; Erlingsson, U.; Kos, J.; and Song, D.
2019. The secret sharer: Evaluating and testing unintended
memorization in neural networks. In 28th {USENIX} Secu-
rity Symposium ({USENIX} Security 19), 267-284.

Carlini, N.; Tramer, F.; Wallace, E.; Jagielski, M.; Herbert-
Voss, A.; Lee, K.; Roberts, A.; Brown, T.; Song, D.; Erlings-
son, U.; et al. 2020. Extracting Training Data from Large
Language Models. arXiv preprint arXiv:2012.07805.

Chen, M. X.; Lee, B. N.; Bansal, G.; Cao, Y.; Zhang, S.;
Lu, J.; Tsay, J.; Wang, Y.; Dai, A. M.; Chen, Z.; et al. 2019.
Gmail smart compose: Real-time assisted writing. In Pro-
ceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2287-2295.

Desfontaines, D.; Voss, J.; and Gipson, B. 2020. Dif-
ferentially private partition selection.  arXiv preprint
arXiv:2006.03684.

Ding, B.; Kulkarni, J.; and Yekhanin, S. 2017. Collecting
telemetry data privately. In Neur IPS, 3571-3580.

Dwork, C.; McSherry, F.; Nissim, K.; and Smith, A. 2006.
Calibrating noise to sensitivity in private data analysis. In
Theory of cryptography conference, 265-284. Springer.
Dwork, C.; Roth, A.; et al. 2014. The algorithmic founda-
tions of differential privacy. Foundations and Trends® in
Theoretical Computer Science.

Fanti, G.; Pihur, V.; and Erlingsson, U. 2016. Building a
rappor with the unknown: Privacy-preserving learning of
associations and data dictionaries. Proceedings on Privacy
Enhancing Technologies, 2016(3): 41-61.

Gopi, S.; Gulhane, P.; Kulkarni, J.; Shen, J. H.; Shokouhi,
M.; and Yekhanin, S. 2020. Differentially private set union.
International Conference on Machine Learning (ICML).

Ji, Z.; and Elkan, C. 2013. Differential privacy based on
importance weighting. Machine learning, 93(1): 163-183.

9511

Kannan, A.; Kurach, K.; Ravi, S.; Kaufmann, T.; Tomkins,
A.; Miklos, B.; Corrado, G.; Lukacs, L.; Ganea, M.; Young,
P; et al. 2016. Smart reply: Automated response suggestion
for email. In Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, 955-964.

Korolova, A.; Kenthapadi, K.; Mishra, N.; and Ntoulas, A.
2009. Releasing search queries and clicks privately. In
Proceedings of the 18th international conference on World
wide web, 171-180.

Kuo, Y.-H.; Chiu, C.-C.; Kifer, D.; Hay, M.; and Machanava-
jjhala, A. 2018. Differentially private hierarchical count-of-
counts histograms. arXiv preprint arXiv:1804.00370.

Lenzerini, M. 2002. Data integration: A theoretical per-
spective. In Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database sys-
tems, 233-246.

Liu, J.; and Talwar, K. 2019. Private selection from private
candidates. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, 298-309.

Liu, T.; Vietri, G.; Steinke, T.; Ullman, J.; and Wu, S. 2021.
Leveraging Public Data for Practical Private Query Release.
In Meila, M.; and Zhang, T., eds., Proceedings of the 38th
International Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, 6968—6977.
PMLR.

Vodrahalli, K.; Chen, P--H.; Liang, Y.; Baldassano, C.; Chen,
J.; Yong, E.; Honey, C.; Hasson, U.; Ramadge, P.; Norman,
K. A.; et al. 2018. Mapping between fMRI responses to
movies and their natural language annotations. Neurolmage,
180: 223-231.

Wilson, R. J.; Zhang, C. Y.; Lam, W.; Desfontaines, D.;
Simmons-Marengo, D.; and Gipson, B. 2020. Differentially

private sql with bounded user contribution. Proceedings on
Privacy Enhancing Technologies, 2020(2): 230-250.



