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Abstract

In addition to reproducing discriminatory relationships in the
training data, machine learning systems can also introduce
or amplify discriminatory effects. We refer to this as intro-
duced unfairness, and investigate the conditions under which
it may arise. To this end, we propose introduced total vari-
ation as a measure of introduced unfairness, and establish
graphical conditions under which it may be incentivised to
occur. These criteria imply that adding the sensitive attribute
as a feature removes the incentive for introduced variation un-
der well-behaved loss functions. Additionally, taking a causal
perspective, introduced path-specific effects shed light on the
issue of when specific paths should be considered fair.

1 Introduction
It is often said that “unfair data leads to unfair models”,
because machine learning systems tend to learn biases present
in the training data. However, sometimes a model can produce
unfair predictions even when the training labels are fair. More
generally, a model can amplify the unfairness present in
training labels.

To quantify this effect, which we refer to as introduced
unfairness, we propose computing a suitable measure of dis-
parity for the training labels and the model predictions, and
then comparing the two values. One such measure is the total
variation (Zhang and Bareinboim 2018b), a generalisation
of demographic disparity that describes the strength of the
statistical relationship between a sensitive variable (such as
gender) and an outcome (such as the score given to an ap-
plicant’s resume). If the total variation of the predictions is
greater than that of the training labels we say that there is
introduced total variation (§3).

Introduced total variation is distinct from existing mea-
sures of unfairness like separation and sufficiency, which
generalise equalised odds and predictive parity respectively
(§4). For binary classifiers, separation prevents introduced
total variation, while sufficiency prevents reduced total varia-
tion. In contrast, absence of introduced total variation guar-
antees neither separation or sufficiency.

Introduced unfairness would seem to be avoidable, since it
is never present for a perfectly accurate predictor. This raises
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the questions: why and when does introduced unfairness
occur, and how can it be removed? To answer these questions,
we use structural causal models and their associated graphs to
represent the relationships between the variables underlying
the training data (§2). We also build on influence diagrams, by
including the predictor and the loss function of the machine
learning system in the same graph. This allows us to reuse
results for predictors that are optimal given the available
features.

Our key contributions are establishing conditions for in-
troduced total variation, and insight into why it can occur
(§5). We find that predictors can be unfair in spite of fair
labels because a feature they depend on is statistically de-
pendent with the sensitive attribute. We also show that the
class of loss function influences the conditions under which
introduced total variation is incentivised (§5.2). In particular,
we consider P-admissible loss functions (Miller, Goodman,
and Smyth 1993) — those for which it is optimal to output
the expected label given the input features — such as mean
squared error and cross-entropy. Predictors that are optimal
with respect to a P-admissible loss function can introduce un-
fairness because they are unable to disentangle information
that they have about the sensitive attribute from the infor-
mation they have about the target label. Indeed, making the
sensitive attribute available as a feature is always enough to
prevent introduced total variation being incentivised under
P-admissible loss. We discuss benefits and limitations of this
approach to preventing introduced unfairness.

The notion of introduced unfairness can be applied to
causal definitions of fairness as readily as statistical ones (§6).
In particular, path-specific effects (Pearl 2001) can help with
understanding and addressing complex unfairness scenarios
that are relevant to many real-world applications (Kilbertus
et al. 2017; Chiappa 2019; Nabi and Shpitser 2018). We
define path-specific introduced effects as the difference in
some particular path-specific effect on labels and predictions.
Building on this measure, we present some new considera-
tions for how to determine whether paths should be labelled
fair.

The prevalence of introduced total variation is analysed in
simulation in Section 7. Finally, we review related work (§8)
and discuss findings, limitations, and how these results can
be applied (§9).
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2 Setup
Our fairness analysis focuses on supervised learning algo-
rithms used to make predictions about individuals, specifi-
cally regression and classification, and uses structural causal
models (SCMs) to represent relationships among variables.
Note that Section 6 relies upon the causal nature of SCMs,
whereas the results of Sections 3, 4, 5 could also be translated
into Bayesian Networks (Pearl 1986; Koller and Friedman
2009).
Definition 1 (Structural causal model (SCM); Pearl 2009;
Pearl, Glymour, and Jewell 2016). A structural causal model
M is a tuple 〈E ,V ,F , P (E)〉, where E is a set of exogenous
(unobserved or latent) variables and V is a set of endogenous
(observed) variables. F is a set of deterministic functions
F = {fV }, where fV determines the value of V ∈ V based
on endogenous variables PaV ⊆ V \ {V } and exogenous
variables EV ⊆ E , that is, V ← fV (PaV ,EV ). P (E) is
a joint distribution over the exogenous variables, which is
assumed to factorise.

An SCMM may be associated with a directed graph G
which has a node for each variable B and an edge A → B
for every A ∈ PaB ∪ EB . Paths from V1 to V2 of arbitrary
length are denoted V1 99K V2. We only consider SCMs for
which the graph is acyclic. We refer to G as the associated
graph, and say thatM is compatible with G. We often omit
the exogenous variables from the graphs.

We define an SL SCM to be an SCM containing endoge-
nous variables Y, Ŷ , U , representing the outcome variable,
model prediction, and the loss of some SL model. Specifically,
the loss function fU is real-valued and has two arguments Y
and Ŷ (we consider the mean squared error fU = −(Y −Ŷ )2

and zero-one loss fU = 0 if Y = Ŷ ; −1 otherwise). The
parents of Ŷ represent the input features. It may be the case
that inputs to Ŷ are descendants of Y . The associated graph
is called an SL graph. An SL SCM (or graph) includes a sen-
sitive variable A if it has an endogenous variable A, which
represents a sensitive attribute such as sex, race, or age. We
assume the possible values for A always include a0 and a1,
representing a baseline group and a marginalised group, re-
spectively, though the domain of A may contain more values.
For example, if A represents racial category, A may take
k ≥ 2 values, with a0, a1 representing individuals cate-
gorised as white and black respectively.

Following the influence diagram literature (Howard and
Matheson 1984), we represent Ŷ with a square node and U
with an octagonal node, since Ŷ can be viewed as a decision
optimising the function fU . We also adopt the term utility
variable to refer to U .

An example of SL graph representing a hiring test predic-
tion setting is given in Figure 1. The training data consists
of one input feature D, which represents the candidates de-
gree, and a label Y , which represents whether the candidate
passes or fails. The graph also include a variable that is not
accessible to the predictor, namely a sensitive attribute A,
which represents gender. This reflects a scenario in which
the sensitive attribute is not available to the developer, or the
developer has chosen not to include it as in input, for example
due to legal reasons. In this example, all inputs to Y are also

inputs to Ŷ , but in general this may not be the case (see later
examples).

For an SL SCMM, we can consider different predictors
π : dom(PaŶ )→ dom(Ŷ ) (where dom denotes the possible
outcomes of a set of variables) by replacing the structural
function fŶ with π, which results in a modified SCMMπ . A
predictor π is optimal if it maximizes the expected value of
the utility variable E(fU (Y, Ŷ )) given the available features.

3 Defining Introduced Unfairness
We propose quantifying introduced unfairness with the fol-
lowing approach: (i) select an appropriate measure of unfair-
ness applicable to both Ŷ and Y , and (ii) calculate the differ-
ence in unfairness between Ŷ and Y . A natural choice of un-
fairness measure is total variation, a generalisation of demo-
graphic disparity, which measures the difference in average
outcome between different values of the sensitive attribute.
Definition 2 (Average total variation; Zhang and Bareinboim
2018b). The average total variation (ATV) on a real-valued
variable V is the difference in the expected value of V be-
tween the baseline and marginalised group:

ATV (V ) = E(V | A = a1)− E(V | A = a0).

We define the new concept introduced total variation as
the difference in magnitude of ATV between Ŷ and Y .
Definition 3 (Introduced total variation). In an SL SCM with
real-valued Y and Ŷ , the introduced total variation (ITV) is:

ITV = |ATV (Ŷ )| − |ATV (Y )|.
When ITV is positive/zero/negative we will say that there is
introduced, reproduced, or reduced total variation.

We illustrate ITV on a hiring test prediction example rep-
resented by the SL graph of Figure 1.

Example: Hiring test prediction. A model predicts job
applicants’ outcomes on a hiring test using their degree D
— either ‘maths’ or ‘statistics’. Degree is in turn affected by
the sensitive attribute gender (A). The loss U depends on the
target label Y ∈ {0, 1} (representing fail/pass) and on its pre-
diction Ŷ . Suppose that 80% of male applicants have degrees
in maths (20% in statistics), while 20% of female applicants
have degrees in maths (80% in statistics). Performance on
the test is such that P (Y = 1 | D = maths) = 51%,
P (Y = 1 | D = stats) = 49% (otherwise Y = 0). This
gives |ATV (Y )| = 0.012.

Version 1: For an example with ITV = 0, suppose mean
squared error were used, and Ŷ is a value in [0, 1] represent-
ing the probability of passing the test. The optimal predictor
would be fŶ (maths) = 0.51, fŶ (stats) = 0.49, yielding
|ATV (Ŷ )| = 0.012 and therefore ITV = 0.

Version 2: Suppose instead that zero-one loss is used. Then
the optimal predictor is fŶ (maths) = 1, fŶ (stats) = 0,
yielding |ATV (Ŷ )| = 0.6, and therefore a high introduced
total variation ITV = 0.588, since while female applicants
perform only slightly worse than male applicants with respect
to Y , their predictions Ŷ are vastly lower.

The existence of models with ITV > 0 (including in cases
where ATV (Y ) = 0, as in the later music example) offers a
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Degree (D)

Predicted pass/fail (Ŷ ) Test pass/fail (Y )

Gender (A)

Loss (U)

Figure 1: SL graph representing hiring test prediction.

new perspective on the adage that unfair labels lead to unfair
models: unfair labels may lead to an unfair model, but some-
times, unfairness may originate exclusively, or predominantly
from other parts of the training process.

4 ITV, Separation, and Sufficiency
Another way to think about introduced disparities is to ask
about reproduced and introduced dependencies. These are
captured by the existing notions of sufficiency and separa-
tion. Indeed ITV is related to the absence of separation, a
generalization of equalized odds to non-binary variables.
Definition 4 (Separation; Barocas, Hardt, and Narayanan
2019). The random variables (Ŷ , A, Y ) satisfy separation if
Ŷ is independent of A conditioned on Y , i.e. Ŷ ⊥ A | Y.

Absence of separation means that the model has added a
dependence between A and Ŷ , that was not present between
A and Y . In contrast, ITV asks whether the model has added
to the disparity in Ŷ (as measured by total variation), com-
pared to that in Y . Thus, they both detect whether some effect
has been introduced by the model. While lack of separation
indicates that the model has introduced some new depen-
dence, ITV captures whether this manifests as an increase
(or decrease) in variation between groups. That is, ITV mea-
sures the group level impact resulting from the introduction
of some new dependency by the model.

For example, in the test prediction examples (Figure 1),
separation is not satisfied in either version. But in version 2
(where all statisticians are rejected), we see a large introduced
variation. In version 1 (where statisticians are given slightly
lower scores), we have ITV = 0.

In the binary case, separation prevents introduced variation,
as established next by Proposition 5. The converse is not true:
it is possible for a model to lack separation while there is a
reduced or reproduced variation. For example, version 1 of
Figure 1 lacks separation and has ITV = 0.
Proposition 5. Let dom(Y ) = {0, 1}, dom(Ŷ ) ⊆ [0, 1],
and dom(A) ⊇ {a0, a1}, where a0, a1 are the baseline and
marginalised groups. Then separation implies ITV ≤ 0, i.e.
there is not introduced total variation.

Proof. |ATV (Ŷ )|

= |E(Ŷ |a1)− E(Ŷ |a0)|
= |
∑
y P (y|a1)E[Ŷ |a1, y]−

∑
y P (y|a0)E[Ŷ |a0, y]|

= |
∑
y P (y|a1)E[Ŷ |a1, y]−

∑
y P (y|a0)E[Ŷ |a1, y]|

(by separation)

= |
(
P (Y = 1|a1)− P (Y = 1|a0)

)
E[Ŷ |a1, Y = 1]

−
(
P (Y = 1|a1)− P (Y = 1|a0))

)
E[Ŷ |a1, Y = 0]|

(Y is binary)

= |
(
P (Y = 1|a1)− P (Y = 1|a0)

)
.
(
E[Ŷ |a1, Y = 1]− E[Ŷ |a1, Y = 0]

)
| (factor)

≤ |P (Y = 1 | a1)− P (Y = 1 | a0)| (as 0 ≤ Ŷ ≤ 1)

= |ATV (Y )|.

We also establish the relationship between sufficiency and
ITV. Sufficiency generalises the notion of predictive parity,
and is closely related to the notion of calibration by group
(Barocas, Hardt, and Narayanan 2019). Sufficiency means
that the predictor Ŷ fully captures the dependencies between
A and Y (but does not prohibit additional dependencies being
introduced by the model).
Definition 6 (Sufficiency; Barocas, Hardt, and Narayanan
2019). The random variables (Ŷ , A, Y ) satisfy sufficiency if
Y is independent of A conditioned on Ŷ , i.e. Y ⊥ A | Ŷ .

If sufficiency holds, a model may still introduce additional
variation. In fact, sufficiency prevents reduced variation in
the binary case:
Proposition 7. Let dom(Ŷ ) = {0, 1}, dom(Y ) ⊆ [0, 1],
and dom(A) ⊇ {a0, a1}, where a0, a1 are the baseline and
marginalised groups. Then sufficiency implies ITV ≥ 0, i.e.
there is not reduced total variation.

Proof. Swap Y and Ŷ in the proof of Proposition 5.

In the supplementary material,1 we consider a related mea-
sure, introduced mutual information, which can be applied to
cases where Ŷ and Y are categorical or continuous. Analo-
gous results to Propositions 5 and 7 hold in this more general
setting. A corollary of these results is that it is often impos-
sible to even approximately satisfy sufficiency and indepen-
dence requirements simultaneously.

5 Incentives for ITV
Under what circumstances will introduced variation arise?
Since an arbitrary predictor can introduce variation in almost
any setting, we focus on predictors that have been trained to
optimality in their given setup. In other words, we ask when
introduced variation is incentivised.

To specify the graphical criteria, we use the well-known
concept of d-separation, which identifies conditional inde-
pendencies based on the paths between variables.
Definition 8 (d-separation; Verma and Pearl 1988). A path
V1 --- Vk is a sequence of distinct nodes V1, ..., Vk, k ≥ 0
such that every pair of consecutive nodes is connected by
an edge Vi → Vi+1 or Vi ← Vi+1. When three consecutive
nodes in a path have converging edges Vi−1 → Vi ← Vi+1,
we call Vi a collider. A path p is said to be blocked by the
conditioning set Z ⊆ V if p contains a non-collider W in
Z or a collider W that is neither equal to, nor an ancestor
of, any Z ∈ Z. For disjoint sets X , Y , Z, the conditioning

1https://arxiv.org/abs/2202.10816
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set Z is said to d-separate X from Y , if and only if Z blocks
every path from a node in X to a node in Y . Sets that are
not d-separated are called d-connected.

If X and Y are d-separated by Z, then X and Y are condi-
tionally independent given Z in any SCM compatible with
the graph, i.e. P (X | Y,Z) = P (X | Z) (Verma and Pearl
1988). A consequence of d-separation of particular value to
us, is that it can be used to establish which features can be
useful to an optimal predictor.
Definition 9 (Requisite feature; Lauritzen and Nilsson 2001).
In an SL graph, a feature W ∈ PaŶ is requisite if it is
d-connected to U conditional on PaŶ ∪ {Ŷ } \ {W}. Let
req(PaŶ ) denote the set of requisite features.
Lemma 10 (Fagiuoli and Zaffalon 1998; Shachter 2016).
Every SL SCM has an optimal predictor π that only depends
on requisite features, i.e. P (Ŷ | PaŶ ) = P (Ŷ | req(PaŶ )).

5.1 Arbitrary Loss Functions
We begin with a graphical criterion for when ITV may be
incentivised under arbitrary loss functions.
Theorem 11 (Introduced total variation criterion). An SL
graph G is compatible with an SCMM in which all optimal
predictors have ITV > 0 iff there is a requisite feature
W ∈ PaŶ that is d-connected to A.

Proof. We first show that the criterion is sound. Suppose that
A is not d-connected to any requisite feature. By Lemma 10,
there exists an optimal predictor π that only responds to
requisite features. Then

Eπ(Ŷ | a) = E(E(Ŷ | PaŶ , a) | a) (total expectation)

= E(E(Ŷ | PaŶ ) | a) (since Ŷ ⊥ A | PaŶ )

= E(E(Ŷ | req(PaŶ )) | a) (by Lemma 10)

= E(E(Ŷ | req(PaŶ ))) (by assumption)

= E(Ŷ ). (total expectation)

Therefore ATV (Ŷ ) = 0. It follows that ITV ≤ 0, i.e. there
is no introduced total variation.

For the completeness direction of the proof, we construct
a compatible SCM with ITV > 0 for any SL graph in which
A is d-connected to a requisite feature (see supplementary
material).

For example, in Figure 1, D ∈ PaŶ is d-connected to A
and is requisite, and thus the graph satisfies the ITV criterion.
This graph is therefore compatible with an ITV incentive, as
verified for the particular model stated in version 2, where
ITV = 0.588 > 0 for the only optimal predictor.

The ITV criterion can be broken down into two conditions,
each with an easily interpreted meaning. The first condition
says that it is only possible for a predictor to introduce total
variation if some feature W can statistically depend on the
sensitive attribute A. Otherwise, the total variation of Ŷ will
be zero (even if the labels Y are strongly dependent on A),
and so ITV cannot be positive. The second condition says that

ITV can only be incentivised if such a featureW is important
for optimal predictions. Indeed, if A is only connected to
features that are unimportant for predicting Y , then an opti-
mal predictor may avoid any dependency with A. Note that
these conditions can be stated purely in terms of conditional
independencies rather than d-separation, so the “only if” part
of the theorem can be adapted to settings where we know the
joint distribution rather than the graph.

While it is relatively easy to see that both conditions are
necessary, the theorem also establishes the converse: that
jointly satisfying the conditions is sufficient for an introduced
total variation incentive under some model compatible with
the graph. This latter completeness direction of the proof
is related to the corresponding completeness proof for d-
separation (Geiger, Verma, and Pearl 1990). However, our
result is not a corollary of the d-separation result. In particular,
the completeness results of d-separation rely on being able
to freely specify conditional probability distributions for all
nodes. This is not possible here since we are concerned with
optimal predictors, and so the distribution at Ŷ cannot be
independently selected (Everitt et al. 2021).

Theorem 11 thus gives some insight to the question posed
by the title of this paper: predictions can be unfair in spite of
fair labels, because an optimal predictor may need to depend
on some feature that is correlated with A. The fact that the
conditions of the ITV criterion theorem are easily satisfied
indicates that introduced unfairness is possible in a wide
range of scenarios.

5.2 P-admissible Loss Functions
Ideally, we would not just quantify disparities introduced by a
system, but would understand what components of the system
may be controlled to reduce them. One such component is
the training loss function.

As a simple example, if zero-one loss is used, this can
lead to a large ITV, because small group differences can be
amplified into large differences in “all or nothing” predic-
tions (recall version 2 of the hiring test prediction example).
Can this amplification be prevented by choosing a “better be-
haved” loss function? We investigate an existing class of loss
functions that incentivise the predictor to output the expected
value of Y given the system inputs.

Definition 12 (P-admissible; Miller, Goodman, and Smyth
1993). For an SL SCMM with utility variable U , we say that
fU is a P-admissible loss function if π(PaŶ ) := E(Y | PaŶ )
is an optimal predictor.

Examples of P-admissible loss functions include mean
squared error and cross-entropy loss (Miller, Goodman, and
Smyth 1993). For some graphs, using a P-admissible loss
function rules out the possibility of an ITV incentive.

Theorem 13 (P-admissible ITV criterion). An SL graph G
is compatible with an SCMM for which fU is P-admissible
and all optimal predictors have ITV > 0 only if in addi-
tion to the conditions of Theorem 11, A /∈ PaŶ and A is
d-connected to U conditioned on PaŶ .
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Proof. If the Theorem 11 conditions do not hold, then we
already know that ITV = 0 for at least one optimal pol-
icy under any loss function, including P-admissible ones.
Consider therefore an SL graph G in which the extra graph-
ical condition of Theorem 13 does not hold. Then for any
a ∈ dom(A):

E(Ŷ | a) = E(E(Y | PaŶ ) | a) (by P-admissibility)

= E(E(Y | PaŶ , a) | a) (see below)

= E(Y | a). (law of total probability)

The second equality holds if either (a) A ∈ PaŶ , or (b)
A is d-separated to Y conditioned on PaŶ . Since we have
assumed that the the extra condition of Theorem 13 does not
hold, either (a) or (b) must be true. Thus the second equality
follows, and we have established that E(Ŷ | a) = E(Y | a)
for all a. From this it follows that ITV = 0.

This establishes that if the graphical conditions of The-
orem 13 do not hold and the loss is P-admissible, then
ITV = 0 for an optimal policy.

Compared to Theorem 11, Theorem 13 adds the extra con-
dition that A has to be a non-parent of Ŷ and d-connected to
U . This is the graphical condition for A to provide additional
value of information (Everitt et al. 2021, Thm. 9). That is, a
predictor with access to A can have lower loss than one with-
out access. Since adding A as an observation prevents ITV,
knowing A must help the predictor disentangle information
about A and Y . In other words, predictors with P-admissible
loss can become unfair in spite of fair labels because they are
unable to disentangle information about A and Y .

For example, Figure 1 does not satisfy the extra condition
of Theorem 13 as the only paths from A to Y are blocked by
D. Conceptually, the predictor therefore lacks incentive to in-
fer A. Indeed, if a P-admissible loss function is used, the opti-
mal policy becomes fŶ (maths) = 0.51, fŶ (stats) = 0.49
which gives ITV = 0, as we saw in version 1.

We now present a case that satisfies the conditions of The-
orem 13, and allows for ITV > 0 even under P-admissible
loss.

Predicted score (Ŷ ) Test score (Y )

Initial test (T )

Gender (A) Music aptitude (M)

Loss (U)

Figure 2: SL graph representing music test prediction.

Example: Music test prediction. Consider the SL graph
in Figure 2, which represents a music test scenario in which
a model is trained to predict the outcome Y ∈ {0, 1} of a test
taken at the end of a music course (adapted from Chiappa and
Isaac 2019). The prediction is based only on an initial test

T A Ŷ (0-1) Ŷ (P-adm) Ŷ (P-adm+A feature)
0 0 0 0.1 0.01
0 1 0.14
1 0 1 0.905 0.907
1 1 0.903

0-1 P-adm P-adm+A feature
ITV 0.05 0.04 0

Table 1: Impact of losses and features on the music example.
The final column gives the values attained if A was also
added as a feature.

outcome T ∈ {0, 1}, which has a gender bias. Assume equal
numbers of females and males, both with equal numbers of
low and high musical aptitude (represented by M = 0, 1
respectively), take tests T and Y . Suppose that 95% of in-
dividuals with high aptitude (M = 1) pass the final test
(Y = 1), compared to 5% of individuals with low aptitude
(M = 0). Suppose that 90% of high aptitude females pass
the initial test (T = 1), compared to 100% of males. Low
aptitude individuals also pass test T with 5% probability.

In this scenario, the predictor has an incentive to learn
A, since learning A would enable it to better understand
what the biased test T says about true aptitude M . Formally,
the conditions of Theorem 13 are satisfied, since A is d-
connected to the requisite feature T , and conditioning on
T opens the path from A /∈ PaŶ to U (via T , M , Y ). As
expected, we find that the optimal predictor does have an
introduced total variation under both zero-one loss and under
mean squared error (see Table 1).

This shows that an introduced variation can arise even
when the training labels are completely unbiased, i.e. when
A is independent of Y and ATV (Y ) = 0. Wang et al. (2019)
describe a similar dynamic in the context of image classifica-
tion.

Removing an ITV incentive. The good news is that pre-
venting the predictor from trying to infer A is often as simple
as providing A as a feature to the predictor. We state this
important insight as a corollary of Theorem 13.

Corollary 14. If the sensitive variable A is available as a
feature to the predictor, then G is not compatible with an ITV
incentive under P-admissible loss functions.

This result generalises the observation by Chiappa and
Isaac (2019) (revisited from Kusner et al. 2017) that a linear
least-squares predictor with access to the sensitive variable
A will “strip off” the bias in T from Ŷ when the data gener-
ating process consists of linear relationships. This challenges
the notion of “fairness through unawareness”, as it suggests
that making the sensitive attribute available as a feature can
improve fairness when labels are fair. Corollary 14 reveals
that a similar dynamic holds even when the data generating
process is nonlinear. Indeed, adding A as feature in our mu-
sic example results in ITV = 0 under the optimal policy
described in Table 1.

As with any technique to ensure fairness, making A avail-
able as a feature should not be done without an understanding
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of the context. In particular, since ITV = 0 is a specific
group-level measure, it does not come with individual-level
guarantees. In the music test example, as the initial test has
lower accuracy for women, women who pass the initial test
receive a slightly lower prediction when A is used explicitly
compared to when it is not (0.903 instead of 0.905, see Ta-
ble 1). Even though this negative effect is offset by the higher
score given to women who failed the test (0.14 instead of
0.1), this may still be perceived as unfair by the high aptitude
women who passed the test T .

We note that in the case of classification, requiring a dis-
crete deterministic prediction will mean that a P-admissible
loss function cannot be used. For instance, if mean squared
error is used to produce Ŷ = p ∈ [0, 1], but a binary accep-
t/reject is required, then thresholding (e.g. at 0.5) reduces
to the zero-one loss case, and may give ITV > 0, even
if the Theorem 13 criteria are met. In this case, randomis-
ing the result (accepting with probability p) preserves the
result. However, our results do not rely on randomness in
general. E.g. consider situations where the prediction task
is inherently continuous, such as a sum of money paid out
to an insurance customer. Then there would be no need to
randomise (or threshold) and the results would be preserved.

6 Path-specific Introduced Effects
In previous sections, we have examined introduced unfair-
ness for statistical definitions of unfairness. However, causal
definitions can offer a richer understanding of unfairness
(Pearl 2009; Kusner et al. 2017; Zhang, Wu, and Wu 2017;
Loftus et al. 2018; Chiappa 2019; Chiappa et al. 2020; Oneto
and Chiappa 2020). In this section, we consider a notion of
introduced unfairness based on causal effects restricted to
certain paths, referred to as path-specific effects (PSEs). We
first recap causal interventions and path-specific effects, and
then adapt the idea of introduced unfairness to define intro-
duced path-specific effects, and illustrate how they may be
used to examine the source of an introduced effect.

6.1 Background on Path-Specific Effects
As well as allowing us to investigate the result of condition-
ing on a particular variable, SCMs also allow us to investigate
the result of intervening on a particular variable, to answer
causal questions. Formally, an intervention in an SCMM
consists in setting a variableX to the value x by replacing the
structural function fX with a constant function fX = x. The
variables in the modified model are referred to as Vx. Inter-
ventions on X only alter the values of variables descending
from X , so Vx = V for non-descendants of X . Path-specific
interventions are a more targeted type of intervention, that
only propagate along specific paths. While global interven-
tions allow us to reason about the total causal effect of a
variable, for example to answer the question, “What effect
did being male have on being hired in a job application?”,
path-specific interventions enable us to reason about the ef-
fect along a subset of paths, for example to answer a more
fine-grained question, “What effect did indicating male as-
sociated hobbies on resumes have on being hired in a job
application?”.

Definition 15 (Path-specific effect; Pearl 2001). For a given
edge-subgraph P specifying a set of paths in an SCM M,
letMP be a modified version ofM in which all function
inputs not in P are kept fixed at a baseline value A = a0.
That is, replace each structural function fX(V 1, . . . , V k)
in M with the function (fX)′, equal to fX , except that if
V i → X is not in P , then when evaluating at ε the argument
V i is replaced with the constant V ia0(ε). The path-specific
response VP(a0→a1) is defined as Va1 in the modelMP . The
path-specific effect (PSE ) on a real-valued variable V is:

PSE (V ) = E(VP(a0→a1))− E(Va0).

6.2 Auditing ML System Outputs for Fairness – A
Risk When Labelling Paths to Ŷ as Fair

Path-specific effects can be used to inform judgements
about whether a decision policy is unfair. For example,
in the case of Berkeley’s alleged sex bias in graduate ad-
missions, the original analysis considered direct effects
(Gender → Outcome) to be unfair, but indirect effects via
(Gender → Department → Outcome) to be fair (Bickel,
Hammel, and O’Connell 1975; Pearl 2009). This approach
assumes that societal considerations can be used to label
paths between the sensitive variable A and the outcome as
fair (or “justified”) or unfair, and outcomes are declared un-
fair if (significant) effects are found along any unfair path.

Suppose instead that the aim is to audit the fairness of
a trained machine learning (ML) system, by investigating
the system outputs. While understanding which paths are
responsible for disparate Ŷ is crucial, here we show that
the training process must also be taken into account before
attempting to label paths from a sensitive variable A to Ŷ as
fair or unfair.

Degree (D)

Predicted score (Ŷ ) Resume score (Y )

Gender (A)

Loss (U)

Figure 3: Penalising female degrees example.

Example: Penalising female dominated degrees. In the
SL graph of Figure 3, a system Ŷ is used to score resumes
based on the applicant’s degree D. The system is trying to
emulate scores Y given by humans, that also directly depend
on applicant’s gender A.

If we deem degree to be a reasonable decision criterion
for the job in question, it is tempting to label the path A→
D → Ŷ as fair, and therefore to conclude that the decision
given by Ŷ must be fair.

Assume for simplicity that there are only two degrees,
maths and statistics, and that they are equally valuable,
with reviewers giving them both a score of 5. In addition,
suppose that male and female applicants are (unfairly) given
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an additional score of 1 and −1 respectively. Moreover,
suppose that 80% of mathematicians are male, while 80%
of statisticians are female, and that mean squared error is
used as the loss function. Then the optimal predictor is
fŶ (maths) = E(Y | D = maths) = 5 + 0.6 = 5.6 and
fŶ (stats) = E(Y | D = stats) = 5− 0.6 = 4.4.

Thus statistics is given a lower score by the model, even
though it is just as valuable as mathematics, because it has a
higher percentage of women. Knowing this, we may instead
conclude that these decisions at Ŷ are not fair, because the
path-specific effect of A on Ŷ via D is stronger than the
corresponding path-specific effect on Y . To formalise this
type of situation, we define path-specific introduced effects.

Definition 16 (Path-specific introduced effect). LetM be an
SL SCM with real-valued variables Y and Ŷ . Let P denote
an edge-subgraph with paths from A to Y and A to Ŷ . Then
the path-specific introduced effect (PSIE) is defined as

PSIEP = |PSEP(Ŷ )| − |PSEP(Y )|.

In particular, if P consist of all directed paths of the form
A 99K X 99K Ŷ and A 99K X 99K Y , then PSIEP is the
path-specific introduced effect via variable X .

For example, in Figure 3, let P := {A → D → Ŷ ,
A→ D → Y }. If we compute PSIEP with man as the base-
line group for A, we find that PSIEP = 0.72 − 0 = 0.72
and conclude that there is a PSIE via D. In other words, D is
carrying a (problematic) amplified effect, as a result of the
path partially reproducing the spurious effect along the path
D← A→ Y . As the effect along A→ D → Y may be con-
sidered fair in this example, we may say that the effect of A
on Ŷ via D is greater than that justified by the corresponding
path to Y . Note that looking at the introduced total variation
would not identify this phenomena, as ITV = −1.28 < 0 in
this example.

In this example, the training labels Y are unfair. However,
a PSIE via a variable X can also occur in cases where Y
is considered fair. For example, assume that, in Figure 3,
A → Y is replaced with A → Coding Experience → Y
and that coding is deemed fair (despite more men having
coding experience) since it is relevant for the job. Then D
can nonetheless still carry a problematic PSIE exactly as
before – statistics will be still be penalised for having a higher
percentage of women.

These examples highlight the importance of taking PSIE
into account when deciding whether an effect along a path is
fair or unfair.

Relationship to proxy unfairness. Kilbertus et al. (2017)
define proxy discrimination as arising if a causal path from
A to a decision is blocked by a variable deemed to be a proxy
(e.g. someone’s name may be considered a proxy for their
gender), but does not describe how to ascertain whether a
variable should be considered a proxy. PSIE gives informa-
tion that can help judge whether a variable is a (problematic)
proxy, namely whether it carries an amplified effect from
A. In the examples described above, the seemingly harmless
degree carries an amplified effect; it thus acts as a harmful
proxy for gender.

6.3 Enforcing ML System Outputs to be Fair - A
Risk When Reducing Unfair PSEs

Several approaches in the literature are based on enforcing
path-specific effects or counterfactual extensions that are
considered problematic in the data not to be transferred to the
system (e.g. Nabi and Shpitser 2018; Chiappa 2019). These
approaches implicitly assume that the prediction model and
training data share the same underlying causal structure, and
ensure that the effect on any path corresponding to an unfair
path underlying the data is reduced, either by constraining
the objective during training (Nabi and Shpitser 2018) or
by performing a path-specific counterfactual prediction at
test time (Chiappa 2019). However, the discussion above
indicates that effects on paths that are deemed fair also need
to be considered. Specifically, consider Figure 3, but with an
additional direct path A → Ŷ , so that the causal structure
underlying Y and Ŷ are the same. Ensuring that the effect
along the harmful path A→ Y is not reproduced as A→ Ŷ
is not sufficient to ensure fairness: the effect via A→ D →
Ŷ needs to also be understood. Any method that constrains
the learning to reduce the effect along “unfair” paths risks
transferring this effect to a “fair” path, such as the one through
D. Methods that only learn the causal model underlying the
data without such constraints might still carry some risk.
PSIE can be used to formalise these risks. In addition, our
formalism can be used to understand when such an amplified
effect (naturally) arises as a consequence of optimality, i.e.
when such an effect is incentivised.

6.4 Incentives for PSIE
As we did for ITV in the previous section, here we ask: when
may PSIE be incentivised by a training setup? The conditions
are very similar to Theorem 11.

Theorem 17 (PSIE graphical criterion). An SL graph G is
compatible with an SCMM in which all optimal predictors
have PSIEP > 0 iff there is some path p ∈ P of the form
A 99KW → Ŷ where W ∈ req(PaŶ ) is a requisite feature.

Proof. Let G be an SL graph G and P an edge-subgraph that
includes no path A 99K W → Ŷ via a requisite feature W .
By Lemma 10, for any compatible SCM there is an optimal
predictor that only depends on requisite features. Under this
predictor PSEP(Ŷ ) = 0. Since PSIEP ≤ |PSEP(Ŷ )|,
we have established that the graphical criterion is sound. A
proof of completeness can be found in the supplementary
material.

For certain edge-subgraphs P , the conditions for PSIE un-
der P-admissible loss are identical to Theorem 17: for exam-
ple when P contains only paths to Ŷ and none to Y . Whether
less degenerate choices of P yield a stronger condition for
P-admissible loss functions is an open question.

7 Empirical Results
Our graphical criteria give conditions under which a graph is
compatible with ITV, or PSIE. But do these arise in practice?
For random distributions, d-connectedness almost always
implies conditional dependence (Meek 1995). Therefore the
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requisite feature W required by Theorems 11, 13 and 17 will
almost always have a dependency with A and U when the
criteria are satisfied (under random distributions). However,
this does not necessarily imply positive ITV. In particular, our
completeness results establish the existence of some model
where ITV is positive, but not how common positive ITV is.
We address this second question empirically.

PyCID is an open source Python library for graphical mod-
els of decision-making (Fox et al. 2021). Using PyCID’s
method for generating random graphs, we sample SL SCMs
with 6 nodes that satisfy the graphical criteria of Theorems 11
and 13, and used a Dirichlet distribution to assign random
distributions to each node. Out of 1000 samples for each,
we found that 20% of the models satisfying the graphical
criteria of Theorem 11 have ITV greater than 0.01 under
zero-one loss, while 16% of the models satisfying the graphi-
cal criteria of Theorem 13 have ITV greater than 0.01 under
P-admissible loss. The results did not appear particularly sen-
sitive to variations in the number of nodes or the edge density
of the random graph. The results can be reproduced via the
linked colab2, which also shows how the examples discussed
above can be analysed using PyCID.

8 Related Work
Statistical approaches. In Section 3, we discuss the re-
lationship between ITV and separation and sufficiency, for
example that lack of separation means that a dependency has
been introduced (in the binary case), whereas ITV measures
an increased (or decreased) disparity.

Causal approaches. The ability to account for the complex
patterns that underlie the data generation process makes
causal models a powerful tool for reasoning about fairness.
As such, causal models are increasingly used both for mea-
suring and alleviating unfairness in ML systems (Chiappa
and Isaac 2019; Creager et al. 2020; Loftus et al. 2018; Nabi,
Malinsky, and Shpitser 2019; Plecko and Meinshausen 2020;
Qureshi et al. 2016; Russell et al. 2017; Zhang and Barein-
boim 2018b; Zhang, Wu, and Wu 2017). The idea of inferring
the presence of unfairness in data with path-specific effects
and counterfactuals dates back to Pearl (2009) and Pearl, Gly-
mour, and Jewell (2016). Kilbertus et al. (2017); Kusner et al.
(2017) and Nabi and Shpitser (2018) develop approaches
for training ML systems that achieve a coarse-grained
version of path-specific fairness, counterfactual fairness, and
path-specific fairness respectively. The following work of
Chiappa (2019) and Chiappa et al. (2020) introduces general
methods for achieving path-specific counterfactual fairness,
while Wu et al. (2019) discuss identification issues, and how
to compute path-specific counterfactuals.

Attempts to describe the relation between the data and
model outputs Y and Ŷ have appeared in some of these
works, with the goal of elucidating limitations of statistical
fairness definitions at a high level (Chiappa and Isaac 2019;
Kilbertus et al. 2017). Zhang and Bareinboim (2018a) is the

2https://github.com/causalincentives/pycid/blob/master/
notebooks/Why fair labels can yield unfair predictions AAAI
22.ipynb

first work to more thoroughly characterise the causal connec-
tion between the two variables, by linking the equalised odds
criterion to the underlying causal mechanisms. This work dif-
fers from ours in several ways. Our goal in characterising the
relation between Y and Ŷ is not to connect statistical fairness
definitions to the underlying data generation mechanisms,
but to formalise the notion that models may introduced or
amplify causal effects not present in the training labels. In
addition, rather than reasoning about a trained model for Ŷ ,
we also incorporate the training mechanism by considering
the necessary behaviour of optimal predictors (Everitt et al.
2021). This enables us to characterise when policies are in-
centivised to introduce or amplify disparities that were not
present in the training labels.

Amplified disparity in context. There is also a broader
literature that investigates the relationship between biased
labels and biased models for particular applications, such
as object recognition (Wang et al. 2019; Zhao et al. 2017).
For example, this may result from the fact that even if Y
and A are independent, some features X might be correlated
with both A and Y , inducing a correlation between A and Ŷ
(Wang et al. 2019). This can be seen as an example of ITV.
In contrast to these works, we seek a theoretical understand-
ing of when introduced disparity will arise, particularly in
decision-making settings about individuals.

9 Discussion
Applicability of incentive criteria. The graphical criteria
can be used to analyse the potential incentives of a system
that is yet to be built, or for which we lack access to model
outputs for other reasons (e.g. a proprietary system). The
necessary graphical knowledge may come from domain ex-
pertise, previous studies, or data. For example, a developer or
auditor may know that Ability is a joint ancestor of Test score
and Job performance, even if they are unable to measure this
directly. Using only this qualitative, “graphical” knowledge,
our results establish how potential incentives for ITV and
PSIE can be assessed. A weakness is that incentives can only
be excluded, not confirmed. For the latter task, access to the
data distribution is needed.

Measuring introduced unfairness. When we have access
to the model’s outputs, we may wish to measure its introduced
unfairness. This is usually possible for ITV given appropriate
data, as it is defined in terms of conditional probabilities,
which can be easily estimated if the variables are observed.
Measuring PSIE is often more challenging, as it is defined in
terms of PSEs, whose calculation typically require knowledge
of the causal graph, and sometimes even the exact structural
functions. The exact conditions for identifying the PSEs are
given by Theorems 4 and 5 of Avin, Shpitser, and Pearl (2005)
for Markovian models (i.e. models in which every exogenous
variable is independent and in the domain of at most one
function fV ), and in Theorems 3 and 4 of Shpitser (2013)
for non-Markovian models. Alternative definitions for PSE
can also be used in the PSIE definition. See (Shpitser 2013)
for details of a more readily estimated (though less general)
variant.
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Limitations and risks. In addition to the limitations of
graphical models (e.g. the sensitivity of results to assump-
tions), our graphical criteria results pertain to optimal policies.
Trained models may be substantially suboptimal, if the model
class is insufficiently powerful, or insufficient training data
is used (Miller, Goodman, and Smyth 1993). In addition,
our graphical criteria give conditions for compatibility with
some incentive – meeting the criteria does not guarantee an
incentive for all parameterisations. That said, our empirical
results show that an incentive does arise a large proportion
of the time. Similarly, failing to meet the criteria guarantees
that optimal policies without the property exist, but does not
guarantee this for all optimal policies.

It is especially important to take account of the limitations
of fairness measures because if inappropriately applied, they
could cause a failure to recognise and address actual injus-
tices. We highlight four limitations, starting with the most
general: 1) Fairness definitions require us to define and for-
malise group membership, an exercise that is fraught with
practical and ethical difficulties (West, Whittaker, and Craw-
ford 2019; Kohler-Hausmann 2018; Hanna et al. 2020). 2)
Narrow definitions of unfairness are liable to miss manifes-
tations of injustice, and aspects of what we mean by unfair-
ness (Kohler-Hausmann 2018). 3) Group fairness definitions
may overlook (un)fairness to individuals (Dwork et al. 2012;
Kleinberg, Mullainathan, and Raghavan 2017). 4) Translating
a causal effect into a normative fairness judgement is often
complex. While we aim to assist with this as in the discussion
around Figure 3, this problem is far from resolved.

Findings. In this paper we have proposed new definitions
for introduced total variation (ITV) and introduced path-
specific effects (PSIE) for supervised learning models, and
established their graphical criteria. Key takeaways include:

• Models can be incentivised to introduce unfairness. A
predictor can be unfair in spite of fair labels if a feature
it depends on is statistically dependent on the sensitive
attribute A. In the case of P-admissible loss, disparity
may still be introduced if the predictor needs to know A
to properly interpret its features.

• Incentives depend on the loss function and the
features. In some scenarios in which introduced total
variation is incentivised, replacing the loss function with
a P-admissible loss function is enough to remove the
incentive. If additionally the sensitive attribute is (made)
available as a feature, an incentive for introduced total
variation is always avoided.

• Path-specific introduced effects can help labelling
paths as fair or unfair. A path from A to Ŷ that looks
fair at a first glance, may no longer seem fair if it is
revealed that it carries an unwanted amplified effect.

• It is difficult to rule out introduced disparity/effects.
The graphical criteria for ITV and PSIE are easily met.

• Fair training labels do not always yield a fair model.
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