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Abstract

This paper presents a novel collaborative generative model-
ing (CGM) framework that incentivizes collaboration among
self-interested parties to contribute data to a pool for train-
ing a generative model (e.g., GAN), from which synthetic
data are drawn and distributed to the parties as rewards com-
mensurate to their contributions. Distributing synthetic data
as rewards (instead of trained models or money) offers task-
and model-agnostic benefits for downstream learning tasks
and is less likely to violate data privacy regulation. To realize
the framework, we firstly propose a data valuation function
using maximum mean discrepancy (MMD) that values data
based on its quantity and quality in terms of its closeness to
the true data distribution and provide theoretical results guid-
ing the kernel choice in our MMD-based data valuation func-
tion. Then, we formulate the reward scheme as a linear op-
timization problem that when solved, guarantees certain in-
centives such as fairness in the CGM framework. We devise a
weighted sampling algorithm for generating synthetic data to
be distributed to each party as reward such that the value of its
data and the synthetic data combined matches its assigned re-
ward value by the reward scheme. We empirically show using
simulated and real-world datasets that the parties’ synthetic
data rewards are commensurate to their contributions.

Introduction
For the state-of-the-art deep learning models, training with
a large quantity of data is important to prevent overfitting
and achieve good generalization. So, when there are mul-
tiple parties with each owning a dataset sampled from the
same distribution, pooling their datasets and training on the
pooled dataset would yield an improved machine learn-
ing (ML) model for every participating party. For example,
banks that use ML models to predict their customers’ credit
ratings (Tsai and Chen 2010) would benefit from pooling
their datasets as every bank can now train its ML model on a
much larger dataset with more unique customers. This ben-
efit would be even more pronounced in applications where
data is difficult/costly to obtain and every party has limited
data, such as in medical imaging (Sandfort et al. 2019).

However, data sharing/pooling is challenging in practice
due to issues of data privacy (Devereaux et al. 2016) and
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possibly inequitable benefits from such a form of collabora-
tion (Lo and DeMets 2016). To elaborate on the latter, par-
ties would be more willing to participate in the collabora-
tion if fairness is guaranteed. For example, if only one party
contributes high-quality data but all parties receive equal re-
wards, then clearly the other parties benefit disproportion-
ately from the collaboration and that contributing party has
no incentive to participate, especially when all parties are
self-interested. One may define fairness as every party re-
ceiving a reward commensurate to its contribution (however
contribution is measured), which incentivizes not only par-
ticipation but also non-trivial contributions from all parties.

To resolve the above issues, the notion of collaborative
ML (also referred to as multi-party ML (Chen et al. 2020))
allows multiple self-interested parties to mutually benefit
from collaboration in data sharing/pooling by incentiviz-
ing non-trivial contributions from them while accounting
for fairness and data privacy. A prior work of collabora-
tive ML (Sim et al. 2020) has focused on the supervised
learning setting where every party contributes training data
and receives a model as reward with predictive performance
commensurate to its contribution, while another work (Ohri-
menko, Tople, and Tschiatschek 2019) has developed a mar-
ketplace where parties pay money for better performing ML
models on their specific learning tasks and receive money
when their contributed data improve the ML models of other
parties. A key limitation of these works is that trained ML
models are distributed to the parties as rewards, which limits
each party’s flexibility to experiment with different model
architectures and hyperparameters. If more competitive ar-
chitectures emerge in the future, the parties cannot take ad-
vantage of these new architectures without reinitiating the
collaboration. Another limitation of distributing trained ML
models as rewards is that it precludes the possibility of per-
forming a different learning task on the same dataset as the
ML model is tied to a specific task.

One way of overcoming the above limitations is to dis-
tribute synthetic data to the parties as rewards (in short,
synthetic data rewards) instead of trained models. It has
been demonstrated that augmenting real data with synthetic
data can improve model performance: For example, some
works (Bowles et al. 2018; Frid-Adar et al. 2018; Sand-
fort et al. 2019) have used generative adversarial networks
(GANs) for data augmentation to improve classification per-
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formance on various medical imaging applications such as
liver lesions or brain scan segmentations. Distributing syn-
thetic data as rewards is less likely to violate data privacy
regulations, unlike sharing real data directly. Also, there is
no assumption on whether all parties share a common down-
stream learning task, the task of interest to each party (e.g.,
supervised or unsupervised, classification or regression), or
the type of ML model used by each party. In particular, with
the synthetic data reward, each party can now optimize over
model architectures and hyperparameters, train new model
architectures emerging in the future, and train separate ML
models for different learning tasks.

As a departure from the restriction to supervised learn-
ing, this paper presents a novel collaborative generative
modeling (CGM) framework that incentivizes collaboration
among self-interested parties to contribute data to a pool for
training an unsupervised generative model (e.g., a GAN),
from which synthetic data are drawn and distributed to the
parties as rewards (i.e., commensurate to their contributions)
instead of sharing real data directly. Like previous works
on collaborative ML (Ohrimenko, Tople, and Tschiatschek
2019; Sim et al. 2020), our CGM framework only requires a
trusted mediator to train the generative model on the pooled
dataset but differs in offering the above-mentioned task- and
model-agnostic benefits of synthetic data rewards. Our work
here provides the following specific novel contributions:
• We propose a task- and model-agnostic data valuation

function using maximum mean discrepancy (MMD) that
values (real and/or synthetic) data based on its quantity
and quality in terms of its closeness to the true data distri-
bution, and provide theoretical results guiding the choice
of the kernel in our MMD-based data valuation function;

• We formulate the reward scheme as a linear optimization
problem that when solved, guarantees certain incentives
such as fairness in the CGM framework;

• We devise a weighted sampling algorithm for generating
synthetic data to be distributed to each party as reward
such that the value of its data and the synthetic data com-
bined matches its assigned reward value by the reward
scheme, and empirically show using simulated and real-
world datasets that the parties’ synthetic data rewards are
commensurate to their contributions.

Related Work. Collaborative ML is a rich and novel field
which uses solution concepts from cooperative game theory
and mechanism design. The Shapley value is a commonly
adopted solution concept to formalize a notion of fairness in
quantifying the contributions of self-interested parties (e.g.,
via their shared data) (Ohrimenko, Tople, and Tschiatschek
2019; Sim et al. 2020). This line of research inspires sev-
eral data valuation methods using the Shapley value (Ghor-
bani, Kim, and Zou 2020; Ghorbani and Zou 2019; Jia et al.
2020; Wang et al. 2020), the core (Yan and Procaccia 2021),
and volume (Xu et al. 2021b). Previous works have used
concepts from mechanism design to elicit truthful report-
ing (Chen et al. 2020; Richardson, Filos-Ratsikas, and Falt-
ings 2020) and to incentivize sharing data and/or model pa-
rameters in federated learning (Cong et al. 2020; Kang et al.
2019a,b; Lyu et al. 2020; Yu et al. 2020; Zhan et al. 2020; Xu

et al. 2021a). Other works have addressed data privacy (Ding
et al. 2021; Hu et al. 2019), adversarial robustness (Hayes
and Ohrimenko 2018; So, Guler, and Avestimehr 2020),
communication efficiency (Ding et al. 2021), and fairness in
Bayesian optimization (Sim et al. 2021). Compared to exist-
ing works which have mainly focused on supervised learn-
ing, our work investigates a novel task- and model-agnostic
setting through the CGM framework that distributes syn-
thetic data as rewards, which to the best of our knowledge
has not been considered in the literature.

Problem Statement and Notations
The CGM framework comprises a set of honest, non-
malicious parties N := {1, . . . , n} and their correspond-
ing datasets D1, . . . , Dn. Let D be the true data distribution
s.t. each party i may only be able to sample its dataset Di

from a restricted subset of the support of D. Every party i
sends Di to a trusted mediator who trains a generative model
(e.g., GAN, variational autoencoder, or flow-based model)
on the pooled dataset

⋃
i∈N Di to produce a distribution G

from which the mediator is able to draw samples. Informally,
G represents an approximation of D. The mediator then gen-
erates a large synthetic dataset G s.t. each synthetic data
point in G is drawn i.i.d. from G. The reward to each party i
will be a subset Gi (of synthetic data points) of G and is thus
said to be freely replicable.1 In this paper, we use the follow-
ing definitions from cooperative game theory (Chalkiadakis,
Elkind, and Wooldridge 2011): A coalition C is a subset of
parties (i.e., C ⊆ N ). The grand coalition is the set N of all
parties. A coalition structure CS is a partition of the parties
into disjoint coalitions s.t.

⋃
C∈CS C = N , C ∩ C ′ = ∅ for

all C,C ′ ∈ CS and C ̸= C ′, and each party cooperates only
with parties in the same coalition. A characteristic function
vc : 2N → R maps each coalition to a (real) value of the
coalition. Finally, the reward vector (r1, . . . , rn) ∈ Rn de-
notes the final reward values assigned to parties 1, . . . , n.

Our work here considers the problem of CGM defined as
follows: Given the parties’ datasets D1, . . . , Dn and an ap-
propriate data valuation function v (quantitatively capturing
the practical assumptions A, B, and C in on the desired qual-
ities of a dataset), determine the reward vector (r1, . . . , rn)
that guarantees certain incentives, and then distribute subsets
of synthetic data points G1, . . . , Gn ⊆ G to the respective
parties 1, . . . , n as rewards s.t. v(Di ∪Gi) = ri.

Data Valuation with Maximum Mean
Discrepancy (MMD)

Existing metrics for evaluating the approximation quality of
generative models do so by measuring some form of dis-
tance between the generated and the true distributions (Borji
2019). One such distance measure is the maximum mean dis-
crepancy (MMD) which is a statistic to test whether two
distributions D′ and D are different by measuring the dif-
ference of their expected function values based on samples

1Like digital goods, model or data reward can be replicated at
no marginal cost and given to more parties (Sim et al. 2020).
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drawn from these distributions (Gretton et al. 2012):

MMD(F ,D′,D) :=supf∈F (Ex∼D[f(x)]−Ex′∼D′ [f(x′)])

where F is the class of functions f in the unit ball of
the reproducing kernel Hilbert space associated with a ker-
nel function k. We defer the discussion on kernels appro-
priate for use with MMD to (Tay et al. 2021), and will
discuss the choice of kernel function k later. Note that
MMD(F ,D′,D) = 0 iff D′ = D (Gretton et al. 2012).
Let the reference dataset T := D1 ∪ . . . ∪ Dn ∪ G de-
note a union of the pooled dataset with the synthetic dataset
and hence represents all available data in our problem set-
ting. Let t := |T | and S be any arbitrary subset of T where
s := |S|. The unbiased estimate MMD2

u(F , S, T ) and bi-
ased estimate MMD2

b(F , S, T ) of the squared MMD can be
obtained in the form of matrix Frobenius inner products, as
shown in (Gretton et al. 2012):

MMD2
u(F , S, T ) = ⟨(s(s− 1))−11[x,x′∈S,x ̸=x′] −

2(st)−11[x∈S,x′∈T ] + (t(t− 1))−11[x,x′∈T,x ̸=x′],K⟩

MMD2
b(F , S, T ) = ⟨s−21[x,x′∈S] −

2(st)−11[x∈S,x′∈T ] + t−21[x,x′∈T ],K⟩
(1)

where 1A is a matrix with components 1(x, x′) for all
x, x′ ∈ T such that 1(x, x′) is an indicator function of value
1 if condition A holds and 0 otherwise, and K is a matrix
with components k(x, x′) for all x, x′ ∈ T .

Our data valuation function exploits the negative
MMD2

b(F , S, T ) (1) w.r.t. reference dataset T :2

v(S) :=
〈
t−21[x,x′∈T ],K

〉
− MMD2

b(F , S, T )

=
〈
2(st)−11[x∈S,x′∈T ] − s−21[x,x′∈S],K

〉 (2)

which is a reasonable choice for our problem setting under
the following practical assumptions:
(A) Every party benefits from having data drawn from D be-
sides having just its dataset Di since Di may only be sam-
pled from a restricted subset of the support of D. We discuss
its validity in (Tay et al. 2021).
(B) The empirical distribution associated with the reference
dataset T (i.e., the pooled dataset and synthetic dataset) ap-
proximates the true data distribution D well. This princi-
ple of approximating the ground truth with an aggregate has
precedence in multi-party ML (Blanchard et al. 2017).
(C) Having more data is at least never worse off, which is
generally true for ML problems (precluding cases such as
excessively noisy data or adversarial data) and investigated
in computational learning theory in the form of sample com-
plexity (Bousquet, Boucheron, and Lugosi 2003).

We will now show that under such practical assumptions,
v(S) (2) w.r.t. reference dataset T is a reasonable choice for
data valuation:
Proposition 1. Let k∗ be the value of every diagonal com-
ponent of K s.t. k∗ := k(x, x) ≥ k(x, x′) for all x, x′ ∈ T ,

2A similar form to (2) is considered in another work with a dif-
ferent focus on interpretable ML (Kim, Khanna, and Koyejo 2016).

and σS :=
〈
s−21[x,x′∈S],K

〉
. Then, v(S) (2) can be re-

expressed as

v(S) = (s− 1)−1(σS − k∗)− MMD2
u(F , S, T ) + c (3)

where c is a constant (i.e., independent of S).

Since σS is an average of kernel components k(x, x′) for
all x, x′ ∈ S, σS ≤ k∗. It follows that the value v(S) (3)
of dataset S appears to weakly increase as s increases
(hence satisfying assumption C) and/or as MMD2

u(F , S, T )
decreases (thus satisfying assumptions A and B, since
MMD2

u(F , S, T ) is an unbiased estimate of the squared
MMD between the distributions associated with S and T ).
But, this interpretation is not entirely correct as the value
of σS may fluctuate with an increasing s, which depends
on what data points are added to S. The result below gives a
more precise interpretation if the value of every off-diagonal
component of K can be bounded:

Corollary 1. Suppose that there exist some constants γ and
η s.t. γ ≤ k(x, x′) ≤ η ≤ k∗ for all x, x′ ∈ T and x ̸= x′.

s−1(γ − k∗)− MMD2
u(F , S, T ) + c ≤ v(S)

≤ s−1(η − k∗)− MMD2
u(F , S, T ) + c . (4)

Since γ ≤ η ≤ k∗, as s increases and/or MMD2
u(F , S, T )

decreases, the upper and lower bounds of v(S) in (4) both
weakly increase. So, given that the above practical assump-
tions hold, v(S) is a reasonable choice for data valuation
as it accounts for both the dataset quantity s and quality
in terms of closeness to the empirical distribution associ-
ated with reference dataset T via MMD2

u(F , S, T ). Also,
v(S) is downstream task-agnostic (i.e., no assumption on
how each party uses its synthetic data reward) and model-
agnostic (i.e., no restriction to the type of ML model adopted
by each party) which are desirable properties as they afford
flexibility to the parties. We will discuss in a later section
how γ and η can be set to guarantee a non-negative and
monotone v(S).

Finally, our characteristic function for data valuation is
defined as vc(C) := v(

⋃
i∈C Di) which will be used to

determine the expected marginal contributions of parties
1, . . . , n to CGM via the Shapley value and in turn their re-
ward values (r1, . . . , rn), as detailed next.

Reward Scheme for Guaranteeing Incentives
in CGM Framework

To incentivize collaboration among all parties in the grand
coalition, their assigned rewards have to satisfy certain in-
centive conditions established in cooperative game theory.
However, classical cooperative game theory cannot be di-
rectly applied to our problem setting involving freely repli-
cable synthetic data reward1. Inspired by the reward scheme
of Sim et al. (2020) for Bayesian supervised learning that is
designed to guarantee certain incentives under freely repli-
cable model reward1, we will propose here a novel reward
scheme that meets appropriately modified incentive condi-
tions to suit our CGM framework.
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We begin by considering the Shapley value ϕi of party i,
which quantifies its expected marginal contribution when it
joins the other parties preceding it in any permutation:

ϕi := (1/n!)
∑

π∈ΠN
[vc(Cπ,i ∪ {i})− vc(Cπ,i)] (5)

where the characteristic function vc for data valuation was
previously defined, ΠN is the set of all possible permuta-
tions of N , and Cπ,i is the coalition of parties preceding
i in permutation π (Chalkiadakis, Elkind, and Wooldridge
2011). The notion of marginal contribution (and hence Shap-
ley value) plays a significant role in the properties of (F3)
strict desirability and (F4) strict monotonicity that define
the (R5) fairness incentive in (Sim et al. 2020):3 In our
work, the implication of F3 is that if the marginal contri-
butions of parties i and j only differ for coalition C (i.e.,
vc(C ∪ {i}) > vc(C ∪ {j})), then it is only fair for party
i to be assigned a larger reward value ri; its effect on our
modified F4 will be discussed in a later section.

Besides R5, the reward scheme of Sim et al. (2020)
has considered other desirable incentives when forming the
grand coalition N : (R1) Non-negativity: ∀i ∈ N ri ≥
0; (R2) Feasibility: ∀i ∈ N ri ≤ vc(N); (R3) Weak ef-
ficiency: ∃i ∈ N ri = vc(N); (R4) Individual rationality:
∀i ∈ N ri ≥ vc({i}); (R6) Stability: ∀C ⊆ N ∀i ∈
C (ϕi = maxj∈C ϕj) ⇒ vc(C) ≤ ri; and (R7) Group
welfare involves maximizing

∑
i∈N ri. Intuitively, R4 says

that the reward value assigned to each party i should be at
least the value of its dataset Di, which makes it prefer col-
laboration in N than working alone. R6 states that the grand
coalition is stable if for every coalition C ⊆ N , the reward
value assigned to the party with largest Shapley value is at
least the value of datasets

⋃
i∈C Di, which prevents all par-

ties in coalition C from simultaneously breaking away and
obtaining larger reward values. We will describe the intu-
ition underlying our modified R2 and R3 in a later section.

Given that vc is non-negative and monotonically increas-
ing (a later section will show sufficient conditions that guar-
antee these properties), the reward scheme of Sim et al.
(2020) exploits the notion of ρ-Shapley fair reward values
ri := (ϕi/ϕ

∗)
ρ × vc(N) for each party i ∈ N with an

adjustable parameter ρ to trade off between satisfying the
incentives. For your convenience, we reproduce their main
result and full definitions in (Tay et al. 2021).

A Modified Reward Scheme with Rectified
ρ-Shapley Fair Reward Values
Under the CGM framework, each party i initially has dataset
Di and would thus be assigned at least a reward value of
ri = vc({i}) = v(Di), i.e., when Gi = ∅. This is a subtle
yet important difference with the reward scheme of Sim et al.
(2020), the latter of which allows a party to be assigned a
reward value of 0. So, we introduce a rectified form of the

3The other two properties: (F1) uselessness and (F2) symmetry
defining R5 in (Sim et al. 2020) are standard axioms of Shapley
value (Shapley 1953) and commonly used in works on data valu-
ation (Ghorbani and Zou 2019; Jia et al. 2020; Ohrimenko, Tople,
and Tschiatschek 2019). Due to lack of space, we have reproduced
the formal definitions of properties F1 to F4 in (Tay et al. 2021).

above ρ-Shapley fair reward values:
ri := max {vc({i}), (ϕi/ϕ

∗)
ρ × v∗} (6)

for each party i ∈ N where v∗ is the maximum reward value
(i.e., v∗ ≥ ri for any party i ∈ N ), as discussed below
(notice from Theorem 1 that v∗ = vc(N) in (Sim et al.
2020)). When the grand coalition N forms, R4 is trivially
satisfied since each party i has at least its dataset Di, hence
distinguishing our modified reward scheme from that of Sim
et al. (2020) whose R4 may be violated. So, for our reward
scheme, no party will be worse off by participating in the
collaboration. However, other non-trivial issues ensue:
Proposition 2. If v∗ = vc(N) and ρ satisfies (ϕi/ϕ

∗)
ρ ×

v∗ < vc({i}) for some party i ∈ N , then (r1, . . . , rn) (6)
may not satisfy R5 due to possibly violating F3.

Furthermore, recall that under the CGM framework, the
mediator generates a synthetic dataset G from which sub-
sets of synthetic data points are sampled to distribute to the
parties as rewards. This leads to a few important implica-
tions. Firstly, since every party can at most be rewarded the
entire synthetic dataset G, the largest possible reward value
v(Di ∪ G) may differ across parties i = 1, . . . , n. In con-
trast, for the reward scheme of Sim et al. (2020), the largest
possible reward value vc(N) is the same across all parties.
Note that in our work, v(Di ∪ G) > vc(N) is possible. All
these motivate the need to consider a generalized notion of
the maximum reward value v∗ (i.e., v∗ ≥ ri for any party
i ∈ N ) in our modified reward scheme; we will discuss be-
low how v∗ can be optimized via a linear program. As a
result, R2 and R3 have to be redefined to reflect the possi-
bility of v(Di ∪ G) > vc(N) and ensure at least one party
being assigned the maximum reward value v∗ instead of the
possibly smaller vc(N), respectively:
Definition 1 (R2: CGM Feasibility). No party in the grand
coalition should be assigned a reward value larger than that
of its dataset and the synthetic dataset combined:

∀i ∈ N ri ≤ v(Di ∪G) .

Definition 2 (R3: CGM Weak Efficiency). At least a party
in the grand coalition should be assigned the maximum re-
ward value: ∃i ∈ N ri = v∗ .

We need to redefine property F4 defining R5 to account
for the notion of maximum reward value v∗:
Definition 3 (F4: CGM Strict Monotonicity). Let vc and
v′c denote any two characteristic functions for data valuation
with the same domain 2N , ri and r′i be the corresponding
reward values assigned to party i, and v′∗ be the maximum
reward value under v′c. If the marginal contribution of party i
is larger under v′c than vc (e.g., by including a larger dataset)
for at least a coalition, ceteris paribus, then party i should
be assigned a larger reward value under v′c than vc:
∀i ∈ N [∃C ⊆ N \ {i} v′c(C ∪ {i}) > vc(C ∪ {i})]
∧ [∀B ⊆ N \ {i} v′c(B ∪ {i}) ≥ vc(B ∪ {i})]
∧ [∀A ⊆ N \ {i} v′c(A) = vc(A)]∧ (v′∗ > ri) ⇒ r′i > ri .

The following result verifies that the rectified ρ-Shapley
fair reward values (6) in our modified reward scheme satisfy
the above redefined incentive conditions R2, R3, R5 and pre-
viously defined ones by selecting appropriate ρ and v∗:
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Proposition 3. Let 0 ≤ ρ ≤ 1. Using the new definitions
of R2, R3, and F4 in Definitions 1, 2, and 3, the rectified ρ-
Shapley fair reward values (r1, . . . , rn) (6) satisfy
(a) R1 to R4 if ρ and v∗ are set to satisfy
∀i ∈ N (vc({i}) ≤ v∗) ∧ ((ϕi/ϕ

∗)
ρ × v∗ ≤ v(Di ∪G)) ,

(b) R1 to R5 if ρ > 0 and v∗ are set to satisfy
∀i ∈ N vc({i}) ≤ (ϕi/ϕ

∗)
ρ × v∗ ≤ v(Di ∪G) , and

(c) R1 to R6 if ρ > 0 and v∗ are set to satisfy
∀i ∈ N vc(Ci) ≤ (ϕi/ϕ

∗)
ρ × v∗ ≤ v(Di ∪G) .

On the other hand, R7 (i.e., group welfare) may not be
achieved since

∑
i∈N ri is maximized by ri = v(Di ∪ G)

for each party i ∈ N which may not be satisfied by any pair
of feasible values of ρ and v∗ given some synthetic dataset
G ̸= ∅. We will instead do our best to increase

∑
i∈N ri

while giving precedence to satisfying the other incentive
conditions in Proposition 3, as detailed next.
Optimizing ρ and v∗ via a Linear Program. After
computing the Shapley value ϕi of each party i (5), we
have to optimize the values of ρ and v∗ before assign-
ing the resulting rectified ρ-Shapley fair reward values
(r1, . . . , rn) (6) to parties 1, . . . , n. Let αi := ϕi/ϕ

∗ denote
the normalized Shapley value of party i, vmin

i := vc({i}),
and vmax

i := v(Di ∪ G). We desire v∗ to be as large
as possible to increase

∑
i∈N ri (group welfare). Also,

if we like (r1, . . . , rn) (6) to be closer in proportion to
(α1, . . . , αn) (i.e., expected marginal contributions of
parties 1, . . . , n) or purely Shapley fair (i.e., ρ = 1),
then ρ should be as close to 1 as possible.4 Together
with Proposition 3b, it follows that the optimization
problem can be framed as maxv∗,ρ(log v

∗ + ϵρ) subject
to the constraints of ∀i ∈ N vmin

i ≤ v∗αρ
i ≤ vmax

i
and 0 ≤ ρ ≤ 1 where ϵ is a weight controlling the
relative importance of ρ. To additionally satisfy R6 (i.e.,
Proposition 3c), we can set vmin

i := vc(Ci) instead.
Such a problem can be formulated as a linear program
(LP) in inequality form that can be solved using stan-
dard LP solvers: minx c

⊤x subject to the constraint of
Ax ⪯ b where x := (log v∗, ρ)⊤, c := (−1,−ϵ)⊤, b :=
(log vmax

1 , . . . , log vmax
n ,− log vmin

1 , . . . ,− log vmin
n , 1, 0)⊤,

and A is a matrix of size 2n + 2 by 2 with the first
column (1, . . . , 1,−1, . . . ,−1, 0, 0)⊤ and the second col-
umn (logα1, . . . , logαn,− logα1, . . . ,− logαn, 1,−1)⊤.
This formulation also informs us of a suitable choice of
the synthetic dataset G: A sufficient but not necessary
condition for the feasible set of the LP to be non-empty
is mini∈N vmax

i ≥ maxi∈N vmin
i . When generating the

synthetic dataset G, we may thus increase the size of G
until this condition is satisfied; we provide an intuition for
why this works in (Tay et al. 2021).

Distributing Synthetic Data Rewards to Parties via
Weighted Sampling
After assigning the rectified ρ-Shapley reward value ri to
each party i ∈ N , we greedily sample synthetic data points

4Alternatively, one may consider decreasing ρ to increase∑
i∈N ri (i.e., group welfare).

from G to be distributed to each party i as reward until the
resulting v(Di ∪ Gi) reaches the reward value ri.5 Specif-
ically, let ∆x := v(Di ∪ Gi ∪ {x}) − v(Di ∪ Gi) denote
the marginal increase in the value v(Di ∪ Gi) of its dataset
Di combined with its current synthetic dataset Gi by sam-
pling the synthetic data point x. In each iteration of our
weighted sampling algorithm for distributing synthetic data
reward to party i (Algo. 1) in (Tay et al. 2021)), we firstly
perform min-max normalization to rescale ∆x to ∆̄x for all
synthetic data points x ∈ G \ Gi to lie within the [0, 1] in-
terval. We compute the probability of each synthetic data
point x being sampled using the softmax function: p(x) =
exp (β∆̄x)/

∑
x′∈G\Gi

exp (β∆̄x′) where β ∈ [0,∞) is the
inverse temperature hyperparameter. Finally, we sample x
based on p(x) and add it to Gi. We repeat this process until
v(Di ∪Gi) reaches ri.

As β → ∞, the synthetic data points x sampled by our al-
gorithm tend to have larger ∆x. This leads to fewer sampled
synthetic points Gi as reward and thus a smaller |Di ∪ Gi|
when the resulting v(Di ∪ Gi) reaches the assigned re-
ward value ri and the sampling ends. This in turn results
in a smaller MMD2

u(F , Di ∪ Gi, T ), by Proposition 1. As
β → 0, the sampled synthetic points tend to have smaller
∆x; at β = 0, our algorithm performs random sampling
since all synthetic points are weighted equally. By the same
reasoning, this leads to a larger |Di ∪ Gi| and thus a larger
MMD2

u(F , Di ∪Gi, T ). So, β implicitly controls the trade-
off between the no. of sampled synthetic points Gi vs. close-
ness to the distribution associated with reference dataset T .

Computing v using (2) incurs O(s(s + t)) time. Instead
of naively recomputing v for every synthetic data point x,
the time needed to compute ∆x can be reduced by per-
forming a sequential update of v. By storing the values
of

〈
1[x∈S,x′∈T ],K

〉
and

〈
1[x,x′∈S],K

〉
at every iteration

where S = Di ∪ Gi (i.e., s = |Di ∪ Gi|), ∆x can be re-
computed for each x in O(s + t) time. The weighted sam-
pling algorithm overall incurs O(n|G|2(s + t)d) time. For
computational details, refer to (Tay et al. 2021).

Kernel Selection
Recall that our data valuation function (2) depends on the
choice of kernel function k which we will discuss here. The
log on v(S) for different subsets S ⊆ T being used in the LP
requires v(S) to be non-negative for all such subsets S. The
result below gives a sufficient condition on k to guarantee
the non-negativity of v(S):

Proposition 4 (Lower bound of k for non-negative v(S)).
Suppose that there exist some constants γ and η s.t. γ ≤
k(x, x′) ≤ η ≤ k∗ for all x, x′ ∈ T and x ̸= x′. Then,

∀S ⊆ T [γ = (t− 2s)(k∗ + (s− 1)η)/(2s(t− s))] ⇒
v(S) ≥ 0 . (7)

5Though v(Di ∪ Gi) may slightly exceed the assigned reward
value ri when sampling terminates due to discreteness of synthetic
data points, such a margin diminishes when sufficiently large |Gi|
and |G| are considered, as observed in our experiments.
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Ideally, we also want v(S) to be monotonically increas-
ing as the addition of a data point to a dataset should not
decrease its value, as discussed in assumption C. The work
of Kim, Khanna, and Koyejo (2016) provides a sufficient
condition on k for v to be a monotonic function:
Theorem 1 (Upper bound of k for monotone v(S) (Kim,
Khanna, and Koyejo 2016)). Suppose that there exists
some constant η s.t. k(x, x′) ≤ η ≤ k∗ for all x, x′ ∈ T
and x ̸= x′. Then,

∀S ⊆ T [η = tk∗/((s+ 1)(s(t− 2) + t))] ⇒
[∀x ∈ T \ S v(S ∪ {x}) ≥ v(S)] . (8)

We can thus set an upper bound η (8) and a lower bound
γ (7) of every off-diagonal component of K to guarantee the
monotonicity and non-negativity of v(S), respectively. Un-
fortunately, no kernel exists to satisfy both sufficient condi-
tions in Theorem 1 and Proposition 4 at the same time if the
size of S is less than half of that of the reference dataset T :
Proposition 5. Let γ and η be set according to (7) and (8).
If s < (t/2− 1), then γ > η .

We prefer to guarantee the non-negativity of v(S) (over
monotonicity) for implementing the LP and hence only sat-
isfy the lower bound of k (Proposition 4). Trivially setting
all components of K to k∗ satisfies this lower bound but is
not useful as it values all datasets S of the same size s to be
the same. Also, when the off-diagonal components of K are
large, a non-monotonic behavior of v(S) has been empiri-
cally observed, which agrees with our intuition formalized in
Theorem 1 that a monotone v(S) is guaranteed by an upper
bound η (8) of every off-diagonal component of K. To strike
a middle ground, we use a simple binary search algorithm to
find the min. length-scale of a kernel s.t. v(D1), . . . , v(Dn)
are non-negative. We have observed in our experiments that
this results in an approximately monotone v and roughly
76% of all synthetic data points added causing an increase in
v. We have also empirically observed that the synthetic data
points are more likely to result in a decrease in v as more
data points are added and s increases, which aligns with our
intuition given by Theorem 1 that the upper bound η (8) to
guarantee a monotone v(S) decreases with a growing s and
thus becomes harder to satisfy.

Experiments and Discussion
This section empirically evaluates the performance of our
CGM framework using simulated and real-world datasets:
(a) Simulated credit ratings. We simulate a scenario where
banks collaborate and share customer’s credit ratings (CR)
indirectly to improve their predictions on the likelihood of
default (Tsai and Chen 2010). The banks serve different re-
gions and hence own different subsets of the overall data
distribution, but would like to predict well on the entire pop-
ulation for future expansion. Credit ratings are simulated us-
ing a 2-D Gaussian mixture model dataset with 5 clusters
(classes) where the first dimension is the credit score and the
second dimension is a measure of the likelihood of default.
(b) Credit card fraud dataset. We use the real-world credit
card (CC) fraud dataset (Dal Pozzolo et al. 2015) contain-

β = 1 β = 2

β = 4 β = 8

Figure 1: Synthetic data points G1 (visualized in 2-D em-
bedding using UMAP (McInnes, Healy, and Melville 2018))
as reward to party 1 with varying β in equal disjoint split.
Each cluster has majority of the MNIST digit in yellow.

ing European credit card transactions such that most vari-
ables are transformed using PCA to yield 28 principal com-
ponents as features and an ‘Amount’ variable denoting the
amount transacted. We select the first 4 principal compo-
nents to create a 4-D dataset, and separate the dataset into
5 classes according to Amount percentiles so as to simulate
collaborating banks serving different populations that tend
to make transactions within certain ranges of amounts. Syn-
thetic data are obtained by sampling from a distribution fit
to the CC dataset with kernel density estimation.
(c) Simulated medical imaging. Synthetic image data is
commonly used to improve performance on downstream
ML tasks such as in medical imaging (Bowles et al. 2018;
Frid-Adar et al. 2018; Sandfort et al. 2019). We simulate a
scenario where hospitals serving different populations share
patients’ data indirectly to improve predictions on medical
imaging classification tasks on the whole population using
the real-world MNIST (LeCun et al. 1998) and CIFAR-
10 (Krizhevsky 2009) image datasets as surrogates. Syn-
thetic data are obtained by sampling from pre-trained MMD
GANs (Bińkowski et al. 2018). We perform dimensional-
ity reduction on the surrogate MNIST and CIFAR-10 image
datasets to create 8-D datasets, detailed in (Tay et al. 2021).

CR and CC have 5 classes, while MNIST and CIFAR-10
have 10 classes. For all datasets, we simulate 5 parties, and
split the data among the 5 parties in 2 ways to simulate dif-
ferent settings of data sharing. The first split, which we refer
to as ‘equal disjoint’, is when each party has a large majority
of data in 1 class for CR and CC (2 for MNIST and CIFAR-
10) and a small quantity of data in the other classes, and
these majority classes are non-overlapping to simulate real-
world settings where every party contributes data from a dif-
ferent restricted subset of the support of the data distribution.
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(a) Equal disjoint split (b) Unequal split

Figure 2: Correlation of (negative of) metrics and |Gi| with
αi (higher is better).

The second split, which we refer to as ‘unequal’, is when
the first 2 parties have a uniform distribution of data over all
classes while the remaining 3 parties have a large majority of
data in 3 classes (6 for MNIST and CIFAR-10) and a small
quantity of data in the rest of the classes to simulate real-
world settings where some parties have ‘higher-quality’ data
than the other parties in terms of the coverage of the support
of the data distribution. However, our CGM framework is
not given these class labels to simulate real-world scenar-
ios where the class differences among parties are unknown.
We use the squared exponential kernel with its length-scale
computed using the binary search algorithm. Our full CGM
framework, which includes computing the normalized Shap-
ley values α1, . . . , αn (i.e., expected marginal contributions)
of parties 1, . . . , n, solving the LP to obtain their assigned
rectified ρ-Shapley fair reward values (r1, . . . , rn), and run-
ning the weighted sampling algorithm for generating syn-
thetic data points G1, . . . , Gn to be distributed to them as
rewards, is applied across all datasets and splits. (Tay et al.
2021) provides full details of the experimental settings, ad-
ditional results, and visualizations of the synthetic data re-
wards. As none of the prior work has previously considered
synthetic data rewards, our results below set the baseline.
Assessing contributions of parties. We assess whether our
CGM framework can appropriately quantify the expected
marginal contributions of the parties via their Shapley val-
ues. Results are reported in (Tay et al. 2021): As expected,
very large αi’s are observed for parties in the unequal split
with full class distribution, while the αi’s are typically more
evenly spread in the equal disjoint split.
Role of inverse temperature hyperparameter β. To sub-
stantiate our claim that β in the weighted sampling algo-
rithm controls the trade-off between the no. of synthetic data
points as rewards vs. negative unbiased MMD (i.e., close-
ness to empirical distribution associated with T ), we report
the correlation of β with them in (Tay et al. 2021): β is ob-
served to be highly negatively correlated with the no. of syn-
thetic data points and highly positively correlated with neg-
ative unbiased MMD, which aligns with our previous rea-
soning. Also, Fig. 1 shows that as β increases, the algorithm
samples fewer synthetic data points but they are more dis-
similar from a party’s original dataset.
Are synthetic data rewards distributed to parties and
their downstream ML task performances commensurate
to their contributions? We firstly assess whether our CGM
framework can distribute synthetic data points Gi to each
party i as reward such that the closeness of the empirical

distributions associated with Di ∪ Gi vs. reference dataset
T correlates well with its expected marginal contribution
via the normalized Shapley value αi. We quantify such a
closeness using 4 metrics (which we take the negative of so
that higher is better): (a) unbiased MMD estimate (1), (b)
an estimate of reverse Kullback-Leibler divergence based
on k-nearest neighbors (Pérez-Cruz 2008) averaged over
k = 2, . . . , 6, (c) Wasserstein-2 distance between multivari-
ate Gaussians fit to Di ∪ Gi vs. T (i.e., how Fréchet In-
ception distance for evaluating GANs is computed (Heusel
et al. 2017)), and (d) class imbalance ρ calculated with
ρi := (1/m)

∑m
y=1 p

2
y where m is the no. of classes and py

is the proportion of data points in party i’s combined dataset
Di ∪ Gi belonging to class y. In all datasets, T is equally
distributed among the classes and hence achieves a mini-
mum for ρ. We also measure the correlation of the no. |Gi|
of synthetic data points as reward to party i with αi. Fig. 2
shows results of the mean and standard error of the correla-
tions over varying β = 1, 2, 4, 8 in the weighted sampling. It
can be observed that across all splits, datasets, and metrics,
the negative of the metrics and |Gi| mostly display highly
positive correlations with αi, as desired. We defer the dis-
cussion of the few negative correlations to (Tay et al. 2021).

After distributing the synthetic data rewards to the parties,
we assess whether their performances on downstream ML
tasks (from augmenting their real data with synthetic data)
correlate well with their expected marginal contributions
via αi. We simulate supervised learning scenarios where
each party trains an SVM on its real and synthetic data and
predicts the class labels on unseen real data. For the real-
world CC, MNIST, and CIFAR-10 datasets, the correlations
of their classification accuracies with αi (averaged over β)
are, respectively, 0.523, 0.459, and 0.174 in the equal dis-
joint split, and 0.791, 0.338, and 0.835 in the unequal split.
We observe positive correlations overall, thus confirming
our hypothesis that the parties’ downstream ML task per-
formances are commensurate to their contributions.

Conclusion

This paper has described a novel CGM framework that
incentivizes collaboration among self-interested parties to
contribute data to a pool for training a generative model,
from which synthetic data are drawn and distributed to the
parties as rewards commensurate to their contributions. The
CGM framework comprises an MMD-based data valuation
function whose bounds weakly increase with a growing
dataset quantity and an improved closeness of the empiri-
cal distributions associated with the dataset vs. the reference
dataset, a reward scheme formulated as an LP for guaran-
teeing incentives like fairness, and a weighted sampling al-
gorithm with the flexibility of controlling the trade-off be-
tween no. of synthetic data points as reward vs. the close-
ness described above. For future work, we will consider
deep kernels to automatically learn useful representations
for data valuation and prove stronger guarantees on the non-
negativity and monotonicity of our data valuation function.
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