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Abstract

We propose a novel policy gradient method for multi-agent re-
inforcement learning, which leverages two different variance-
reduction techniques and does not require large batches over
iterations. Specifically, we propose a momentum-based de-
centralized policy gradient tracking (MDPGT) where a new
momentum-based variance reduction technique is used to ap-
proximate the local policy gradient surrogate with importance
sampling, and an intermediate parameter is adopted to track
two consecutive policy gradient surrogates. MDPGT provably
achieves the best available sample complexity of O(N ~*e %)
for converging to an e-stationary point of the global average of
N local performance functions (possibly nonconcave). This
outperforms the state-of-the-art sample complexity in decen-
tralized model-free reinforcement learning and when initial-
ized with a single trajectory, the sample complexity matches
those obtained by the existing decentralized policy gradient
methods. We further validate the theoretical claim for the
Gaussian policy function. When the required error tolerance e
is small enough, MDPGT leads to a linear speed up, which has
been previously established in decentralized stochastic opti-
mization, but not for reinforcement learning. Lastly, we pro-
vide empirical results on a multi-agent reinforcement learning
benchmark environment to support our theoretical findings.

Introduction

Multi-agent reinforcement learning (MARL) is an emerging
topic which has been explored both in theoretical (Nguyen
et al. 2014; Zhang et al. 2018; Qu et al. 2019; Zhang et al.
2021b) and empirical settings (Helou, Kalathil, and Xie 2020;
Mukherjee, Bai, and Chakrabortty 2020; Zhou et al. 2020).
Several appealing applications of MARL can be seen in
(Zhang, Yang, and Bagar 2019; Nguyen, Nguyen, and Naha-
vandi 2020) and relevant references therein.

While MARL can primarily be cast into two different cat-
egories, i.e., cooperative (Li, Chen, and Chen 2020; Wang
et al. 2020; Li et al. 2020) and competitive (Chen et al. 2020),
our focus is in the cooperative setting; see (Wei et al. 2021)
for details on the competitive setting. Cooperative MARL is
typically modeled as a networked multi-agent Markov de-
cision process (MDP) (Zhang, Yang, and Basar 2018; Chu,
Chinchali, and Katti 2020; Zhang et al. 2018) in which the

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

9377

agents share a centralized reward function (Simdes, Lau, and
Reis 2020; Ackermann et al. 2019). However, in practice,
this is not necessarily the case, and instead a more general
yet challenging scenario is that agents have heterogeneous
reward functions. Inherently, the ultimate goal in such a
cooperative MARL setting is for agents to maximize the
global average of local long-term returns. To address this
problem, various algorithms have been proposed, including
distributed-learning (Arslan and Yiiksel 2016; Nguyen and
Mukhopadhyay 2017) and distributed actor-critic (Li et al.
2020; Ryu, Shin, and Park 2020). More recent works have
successfully showed finite-sample analysis for decentralized
batch MARL (Zhang et al. 2021b) and leveraged advances in
analysis of descent-ascent algorithms (Lu et al. 2021).

These preliminary attempts have facilitated the theoretical
understanding of cooperative MARL by showing explicit
sample complexity bounds, which match that of standard
(vanilla) stochastic gradient descent (SGD). Additionally, re-
cent works (Huang et al. 2020; Xu, Gao, and Gu 2019) in cen-
tralized RL have revealed that with simple variance reduction
techniques, this sample complexity can be reduced to O(e~3)
to reach an e-stationary point (i.e., E[|| V.J(x)]|] < €, where J
is the return function and x € R is the decision variable to be
optimized), which has been admitted as the best complexity
in decentralized optimization (Das et al. 2020; Karimireddy
et al. 2020). However, no similar matching bounds have yet
been reported in the decentralized (cooperative MARL) set-
ting. Hence, this motivates the question:

Can we achieve a sample complexity of O(e~3) in
decentralized MARL via variance reduction?

In this paper, we answer this question affirmatively by
proposing a variance-reduced policy gradient tracking ap-
proach, MDPGT (Algorithm 1), and analyzing it in Theorem 1.
Additionally, we propose a variation (based on a different
initialization) that enables state-of-the-art (SOTA) sample
complexity for decentralized MARL (Zhang et al. 2021b; Lu
et al. 2021). See Table 1 for SOTA comparisons. Specifically:
1. We propose MDPGT, in which we use a stochastic policy

gradient surrogate, a convex combination of the vanilla

stochastic policy gradient and an importance sampling-
based stochastic recursive algorithm (SARAH) (Nguyen
et al. 2017) for the local gradient update. Instead of
directly applying the stochastic policy gradient surro-



gate in the parameter update, an intermediate param-
eter is adopted to track the difference between two
consecutive stochastic policy gradient surrogates. For
smooth nonconcave performance functions, we show that
MDPGT with the mini-batch initialization can converge
to an e-stationary point in O(N ~!e~3) gradient-based
updates which matches the best available known upper
bounds (Huang et al. 2020).

We modify the initialization of the proposed algorithm
MDPGT by using a single trajectory instead of a mini-
batch of trajectories. Surprisingly, we find that only
one trajectory results in a larger sampling complexity
O(N~1e=%), which, however, is the same as obtained by
the SOTA (Zhang et al. 2021b; Lu et al. 2021) with a lin-
ear speed up when e is sufficiently small. Additionally, our
algorithm shows that when updating the policy parameter
in MDPGT, the mini-batch size is O(1) instead of being
e-related (Xu, Gao, and Gu 2019; Qu et al. 2019), which
can significantly improve practical efficiency.

To facilitate the theoretical understanding of MDPGT, we
leverage a benchmark gridworld environment for numer-
ical simulation and compare our proposed algorithm to
a baseline decentralized policy gradient (DPG) and the
momentum-based decentralized policy gradient (MDPG,
described in the supplementary materials), which is a new
variant created in this work for the purpose of empirical
comparison. We show that our theoretical claims are valid
based on the experiments.

Related Works. Most previous decentralized MARL pa-
pers (Zhang et al. 2018; Suttle et al. 2020; Li et al. 2020;
Chen et al. 2020; Bono et al. 2018) tend to focus on conver-
gence to the optimal return. Exceptions include (Qu et al.
2019), where they proved non-asymptotic convergence rates
with nonlinear function approximation using value propa-
gation. This enables us to approximately derive the number
of stochastic gradient evaluations. However, the algorithm
involves the complex inner-outer structure and requires the
size of the mini-batch to be V'K, with K being the number
of iterations, which may not be practically implementable.
Zhang et al. (2021b) obtain O(e~*) for the cooperative set-
ting by using gradient tracking (GT), which is a bias correc-
tion technique dedicated to decentralized optimization, but
with several specifically imposed assumptions, such as sta-
tionary sample paths, which may not be realistic. Lu et al.
(2021) also utilize GT but require dual parameter updates
to achieve O(e~*); our approach is different and simpler.
In this context, we mention that centralized counterparts of
MARL (Huang et al. 2020; Xu, Gao, and Gu 2019; Papini
et al. 2018) have achieved sample complexity of O(e~3).
However, in both Xu, Gao, and Gu (2019) and Papini et al.
(2018), the size of mini-batch is e-related, which is more
computationally sophisticated than those in both (Huang et al.
2020) and our proposed method. We provide additional dis-
cussion of related work in the supplementary materials.

Preliminaries

We first formulate MARL, followed by an overview of vari-
ance reduction techniques and decentralized policy gradients.
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MARL Formulation

In this context, we consider a networked system involving
multiple agents (say IN) that collaboratively solve dynamic
optimization problems. Specifically, the system can be quan-
tified as a graph, i.e., G = (V,&), where V = {1,2,..., N}
is the vertex set and £ C V x V is the edge set. Throughout
the paper, we assume that G is static and undirected, though
in a few previous works (Lin et al. 2019; Suttle et al. 2020;
Zhang et al. 2018) G could be directed. The goal of this work
is to provide the rigorous theoretical analysis for our decen-
tralized MARL algorithm, with the property of the graph
not being the main focus. When a pair of agents ¢ and j can
communicate with each other, we have (i, j) € £. We also
define the neighborhood of a specific agent i, Nb(¢), such
that Nb(i) = {j|j € V, (i,7) € Eor j = i}. Only agents
in Nb(i) are able to communicate with the agent i. We next
present the definition of networked MARL on top of G.
With multiple agents, the networked Markov de-
cision process is thus characterized by a tuple
(8, {A%}icv, P, {r'}icv,G,v), where S indicates a
global state space shared by all agents in V with |S| < oo,
A signifies the action space specified for agent i, and
v € (0, 1] is the discount factor. Moreover, in the cooperative
MARL setting, the environment is driven by the joint
action space instead of individual action spaces. Thus,
A £ [Liev A is defined as the joint action space over
all agents in V. P : S x A x § — [0,1] represents the
probability function to transition the current state to the next
state. {r'};cy : S x A — Ris the local reward function of
agenti and r® € [-R, R|(R > 0). Additionally, states and
actions are assumed to be globally observable, while the
rewards are only locally observable. Such an assumption
corresponds to the definition of the cooperative MARL
setting and has been generic in previous works (Zhang et al.
2018; Zhang, Yang, and Basar 2018; Zhang et al. 2021b).
We next describe how agents behave in such an envi-
ronment. Suppose that the current state of the environ-
ment is s € S, where k is the time step. Each agent 4
chooses its own action a, € A’, based on the local policy,
7t 8§ x A* — [0, 1]. For a parameterized policy, we de-
note by 7, (s, a’), which indicates the probability of agent i
choosing action a’ given the current state s and x* € R% here
is the policy parameter. Stacking all local policy parameter to-
gether yields x = [(x!) T, ()7, ..., (x¥)T]T € RXiev i,
Hence, the joint policy can be denoted as 5 : Sx.A — [0, 1],
where x (s, a) £ [[,c, 7% (s,a’) and a € A. In this con-
text, the decisions are decentralized due to locally observable
rewards, locally evaluated policies and locally executed ac-
tions. To simplify the notations, we drop the x' for 7’; and
x for 7« respectively for local and joint policies through-
out the rest of the paper. With the joint policy 7 and the
state transition function P, the environment evolves from
s to s’ with the probability P(s’|s, a). Another assumption
imposed in this paper for the policy function is that for all
i€V,seS,a € A, (s, a')is continuously differen-
tiable w.r.t. all x* € R% . Such an assumption will assist in
characterizing the smoothness of the objective function.
The goal for each agent is to learn a local policy 7% such



Method Complexity Dec. Var.Red. Linear Speed Up LS.

MBPG (Huang et al. 2020) O(e™3) X v X v
Value Prop (Quetal. 2019) O(e™?) v X X X
DCPG (Zeng et al. 2020) O(e™) v X X X
Safe-Dec-PG (Lu et al. 2021) O(e™%) 4 v X X
DFQI (Zhang et al. 2021b) O(e™%) v v X X
Dec—TD (0) +GT (Lin and Ling 2021) N/A v v X X
MDPGT (ours) O(e™) v v/ v/ v
MDPGT-MI (ours) O(e73) v v v v

Table 1: Comparisons between existing and proposed approaches.

! Complexity: Sampling complexity for achieving E[|V.J(x)||] < e.

2 Linear Speed Up: If an algorithm has O(1/+v/K) convergence, then its sampling complexity of attaining
an O(e) accurate solution is € ~2. Similarly, O(1/v/ NK) corresponds to N ~'e~2, which is N times faster
than the former. Typically, K has to satisfy a certain condition.

3 MDPGT-MI is MDPGT with mini-batch initialization. We use this notation for conveniently classifying two
different initialization approaches. In the rest of paper, we still adopt MDPGT to unify these two approaches.

4 Dec.: decentralized.

that the joint policy 7, is able to maximize the global average
of expected cumulative discounted rewards, i.e.,

H .
Zv"ri], e))

1
T, = argmax, cpaJ(x) £ v > E{
h=0

i€V
where H is the horizon and d = ), ), d;. Several
works (Zhang et al. 2018; Qu et al. 2019; Zhang et al. 2021b;
Lin et al. 2019; Suttle et al. 2020) have made their attempts
to resolve this optimization problem, leading to different
algorithms. Since each agent only has access to local infor-
mation, a communication protocol needs to be introduced in
the system, as done in decentralized optimization. With that,
well-known centralized policy-based algorithms can be ex-
tended as MARL algorithms. Nevertheless, one issue that has
not been sufficiently explored is the inherent policy gradient
variance, which could even be more significant in the MARL
algorithms. Consequently, this work propose novel MARL
algorithms to investigate how to reduce the policy gradient
variance during the optimization.

Variance Reduction and Bias Correction

In stochastic optimization, variance reduction techniques
have been well studied and applied to either centralized or
decentralized gradient descent type of algorithms, such as
SVRG (Johnson and Zhang 2013), SARAH (Nguyen et al.
2017), SPIDER (Fang et al. 2018), Hybrid-SARAH (Tran-
Dinh et al. 2019) and STORM (Cutkosky and Orabona 2019).
In another line of work, the GT technique (Pu and Nedi¢
2020; Sun, Daneshmand, and Scutari 2019) was proposed
specifically for consensus-based decentralized optimization
techniques to improve the convergence rate by tracking and
correcting each agent’s locally aggregated gradients. In our
work, we leverage both Hybrid-SARAH and GT to reduce
the policy gradient variance and correct the policy gradient
bias respectively in the MARL and achieve the best con-
vergence rate. Hybrid-SARAH performs with a trade-off

5 Var. Red.: variance reduction.
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41.S. importance sampling.

parameter to balance the effect between vanilla stochastic
gradient and SARAH. More detail on these techniques are
elaborated in the supplementary materials.

So far, we are not aware of existing results that have suc-
cessfully shown SARAH or Hybrid-SARAH type of vari-
ance reduction techniques well suited for decentralized non-
oblivious learning problems, e.g., MARL. Consequently, the
regular Hybrid-SARAH technique cannot be directly ap-
plied to MARL; we address this challenge in sections below.

Decentralized Policy Gradient

Given a time horizon H, we define a trajectory specifically
for agent i, as 70 = {s¢, al, ..., Sg_1, alH_l} under any sta-
tionary policy. By following the trajectory 7°, a cumulative
discounted reward is given as R;(7") 2 S 4" such
that an individual return can be obtained as:

JZ‘(Xi) £ ETini(Ti‘xi) [RZ(TZ)] = /Ri(Ti)pi(Tilxi)dTi,

L - Q)
where p; (7°|x") is the probability distribution over 7 that
is equivalent to the following expression given the initial
distribution p}y = p*(so). Without loss of generalization, we
can assume that the initial distribution is identical for all
agents, namely p(sg). Then, we have,

H-1

pi(r'x') = po(so) [T Plsnralsn, i)' (ahlsn).  (3)
h=0

For each agent i, the goal is to find an optimal policy 7 to
maximize the return J;(x). As discussed above, the underly-
ing dynamic distribution results in a non-oblivious learning
problem, which is more significant in MARL. To resolve this
issue, the decentralized policy gradient is a decent choice. As
background knowledge of MARL, we next present how to
arrive at the local stochastic policy gradient, which will help
characterize the analysis for the proposed algorithms.



Computing the gradient of J;(x*) w.r.t x’ yields the fol-

lowing formula:
Vpi(r'[x)

/’R th pi (Tx")dT"
T"|X2)
= ]ETini(Ti‘xi) [VIngi( |X1)Rz (Tl)]

In practice, p; (7¢|x?) is typically unknown such that the accu-
rate full policy gradient for agent ¢ is difficult to obtain. Thus,
similar to decentralized stochastic gradient descent (Jiang
et al. 2017), we calculate the policy gradient by sampling a

mini-batch of trajectories B = {7}, }lB‘
tion p; (7*|x") such that

“

from the distribu-

X

> Viogp; (7}, X" ) Ri(77,)-

meB

&)

IBI
In addition, combining Eq. 3, we can observe that
Vlogp; (1, |x") is independent of the probability transition
‘P. Hence, Eq. 5 is written as

B 2_ &l
|B| meB
|B| < Z V,ilogr' ()
H-1

>
(3 ritaimm)

7"

sh )) (6)

meB
h=0

In the above equation, g; (7*|x") is the unbiased estimate of
VJi(x), ie., E[g'(rx")] = VJ;(x"). Some well-known
policy gradient estimators can be obtained through Eq. 6,
such as decentralized REINFORCE, which is the direct ex-
tension of its centralized version. We refer interested readers
to (Huang et al. 2020) for more details.

Our Proposed Approach: MDPGT
Hybrid Importance Sampling SARAH
In this subsection, we propose a hybrid importance sampling
version of SARAH, termed HIS-SARAH, for decentralized

policy gradient updates. First, we define the importance sam-
pling weight (Metelli et al. 2020) as follows:

plrlx) T
p(rx) H

As mentioned in the last section, due to the non-
oblivious learning problem, E, - |x)[g(7]x) — g(7|x)] #
VJ(x) — VJ(x'). With Eq. 7 we have E._,(-x)[g(7]x) —
u(r|x’,x)g(7|x")] = VJ(x) — VJ(x), which has been
analyzed in (Huang et al. 2020) for centralized policy opti-
mization methods and will be a key relationship in our proof.
We denote by u’ the stochastic policy gradient surrogate for
agent 7. Thus, applying Eq. 7 in a decentralized manner for
Hybrid-SARAH (See Supplementary materials for defini-
tion) gives the following update law at a time step k:

), = Bgi(rilek) + (1 - Bl + gi(rilxi)

— U7l 1, Xk )8 (k)]

T (an|sn)

v(rlx', x) = }
( | ) ) ’/Tx(ah‘sh)

(N

®)

9380

Algorithm 1: MDPGT

Result: X chosen uniformly random from {x%,i € V}£ |

Input: xj = % € Rinp € RT,8 € (0,1),W €
RNXN,VB =04,u',=04,K,BeZ k=1

Initialize the local policy gradient surrogate by sampling
a trajectory 7§ from p;(7'|x}) : uf = g:(7¢|x}), or by
sampling a mini- batch of trajectories {rim Bl from

1|t i B
pi(rxg) s wh = g oL (™ [xh)

Initialize the local pohcy gradient tracker:
Y jenb Wijvo +ug —uly

Initialize the local estimate of the policy network parameter:
X] = Zjer(i) w' (xp +nvi)

while £ < K do

for each agent do ‘ o

Sample a trajectory 7; from p;(7*|x},) and compute
the local policy gradient surrogate using Eq. 8

Update the local policy gradient tracker vi ,, =
Zjer(i) Wi Vi g —ag

Update the local estimate of the policy network pa-
rameters Xj . 1 = > ni) wij (x5, + Vi)

i _
Vi

end
k=k+1

end

The second term on the right hand side of Eq. 8 differ in
the extra importance sampling weight compared to Eq. 13
in the supplementary materials. Intuitively, v; (77 |x}_,,x})
resolves the non-stationarity in the MARL and retains the reg-
ular variance reduction property of HIS—SARAH as applied
in supervised learning problems. Clearly, each u}, is a con-
ditionally biased estimator V.J;(x%), i.e., E[ul] # V.J;(x})
typically. Nevertheless, it can be shown that E[u}]
E[VJ;(x})], which implies that u}, acts as a surrogate for
the underlying exact full policy gradient. Therefore, u}, will
be called directly the stochastic policy gradient surrogate for
the rest of analysis. With Eq. 8 in hand, we now are ready to
present the algorithmic framework in the following.

Algorithmic Framework

We first present MDPGT (in Algorithm 1), which only takes a
trajectory to initialize the policy gradient surrogate, leading
to significant randomness due to the conditionally biased
estimator property at the starting point of optimization, but
still retaining the same sampling complexity as compared to
the SOTA of MARL. To have a better initialization, we also
present another way of initialization by sampling a mini-batch
of trajectories from the distribution (in blue in Algorithm 1).
Surprisingly, we will see that with a proper size of mini-
batch initialization, the sampling complexity of our proposed
approach complies with the best result in centralized RL,
which improves the SOTA of MARL.

A brief outline of Algorithm 1 is as follows. The initializa-
tion of the policy gradient surrogate u}, can either be based
on only a trajectory sampled from p;(7*|x{,) or a mini-batch.



Subsequently, the policy gradient tracker and network pa-
rameters are initialized based on u}). The core part of the
algorithm consists of each individual update for u}, v}, and
xi. By controlling the value of 3 in Eq. 8, MDPGT can de-
generate to either vanilla decentralized policy gradient (with
B = 1) or decentralized version of SRVR-PG (Xu, Gao, and
Gu 2019) (with 8 = 0), both with the gradient tracking step.
In our work, to emphasize the impact of the trade-off on the
policy gradient surrogate, we keep 8 € (0, 1), which makes 3
act more closely as the momentum coefficient in accelerated
SGD algorithms (Singh et al. 2020).

We emphasize that we are unaware of theoretical results
for decentralized SRVR-PG. Hence, the proof techniques
presented in this paper can also apply to this case. Another
implication from Algorithm 1 is that at the beginning of each
time step k, only one trajectory is required for computing the
policy gradient, allowing for the batch size to be independent
of €, i.e., O(1), where we omit the number of agents N when
considering the whole networked system.

Theoretical Convergence

In this section, we present an analysis of MDPGT. Most of
the assumptions below are mild, and standard in the decentral-
ized optimization and RL literature. Due to space limitations,
we defer auxiliary lemmas and proofs to the supplementary
materials.

Assumption 1. Gradient and Hessian matrix of function
logr®(a’|s) are bounded, i.e., there exist constants C,, Cj, >
0 such that ||Vlogr(a’|s)|| < Cy and ||V2logr(a’|s)| <
Ch, foralli € V.

Note that we skip the subscript x* at ¢ for the notation
simplicity. In this context, we did not impose the bounded
policy gradient assumption, though it can be derived based on
the above assumption, which has been adopted in centralized
RL algorithms (Zhang et al. 2021a; Huang et al. 2020; Xu,
Gao, and Gu 2019). Additionally, it also helps derive the
smoothness of .J;(x?) that has typically been exposed as an
assumption in decentralized learning/optimization literature.

Assumption 2. The mixing matrix W € RN*N s doubly
stochastic such that A = |W — P|| € [0, 1), where X signi-
fies the second largest eigenvalue to measure the algebraic
connectivity of the graph, and P = %1T1 and 1 is a column
vector with each entry being 1.

Assumption 3. Variance of importance sampling weight
v; (78|X1,X2) is bounded, i.e., there exists a constant M > 0
such that V(v;(78|x1,x2)) < M, for any x1,x2 € R% and
Tt~ pi(Tix1), forall i € V.

Assumption 2 is generic in most previous works on de-
centralized optimization, though such a property has been
relaxed in some works (Nedi¢ and Olshevsky 2014). How-
ever, we have not been aware of any existing works in
MARL doing such a relaxation and its investigation can
be of independent interest. Assumption 3 is specifically in-
troduced for importance sampling-based methods. Such an
assumption is critical to construct the relationship between
V(vi(T%|x1,%2)) and [|x1 — x2]|?, through which the impact
of the variance of importance sampling on the convergence
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can be explicitly quantified. Another typical assumption is
for the bounded variance of stochastic gradient such that
E[|lg:(ri[x") — VJ;(x%)]|?] < o2. However, under MARL
setting, such a result can be derived from Assumption 1 and
we present the formal result in Lemma 1. In this context,
we also have 5% = 4 vazl o7, for all i € V. The explicit
expression of &2 is given in the supplementary materials.

Main Results

We present the main results to show specifically the con-
vergence rates for MDPGT when it is initialized by a mini-
batch of trajectories. We denote by L > 0 the smoothness
constant and G > 0 the upper bound of ||g;(7%|x?)| for
all i € V. We further define a constant C,, > 0 such that
V(vi(T%x1,%2)) < C2||x1 — x2||?. The explicit expressions
of these constants are derived in lemmas in the supplementary
materials. Note that in our work, G is not directly assumed,
but instead derived based on Assumption 1.

Theorem 1. Let Assumptions 1,2 and 3 hold. Let the momen-

2 2
tum coefficient 3 = %66?0“”2_ If MDPGT is initialized

by a mini-batch of trajectories with the size being B and the
step size satisfies the following condition

(1=A2%)?
M12844L2 4+ 9792G2C,’
N(1 = A2\ 1
31VL? + G2C,, 6,/6(L% + G2C,) }

then the output X satisfies: for all K > 2:

0<n§min{

~ oy A(TF = J(X0)) 452 8352
<
3402V (%02 68)252 204\23252
KNI —-X2)3 (1 223BIK | (1- 23
)

A

where J* is the upper bound of J(x) and |[VJ(Xo)|?

N _
>oit1 IV Ji(%o) 1%

Theorem 1 depicts that when K — oo, MDPGT en-
ables convergence to a steady-state error in a sublinear rate
O(1/K) if n and B are selected properly, i.e.,
8352  204)\%3%52

N (1—A2)3°

E[|IVJ (&))< (10)
By observing Eq. 10, the steady-state error is determined
by the number of agents, the variance of stochastic policy
gradient, and the spectral gap of the graph 1 — A. Increasing
the number of agents leads to a small error bound. Though
different network topologies imply different error bounds,
the higher order term of 8 can reduce the impact of the
spectral gap on the error bound. Another suggestion from
Eq. 10 is that 7 and 5 can be reduced to make the steady-
state error arbitrarily small, while in return this can affect the
speed of convergence. Surprisingly, even though we have to
adopt the bounded stochastic policy gradient derived from
Assumption 1 for analysis, the error bound in Eq. 10 only



depends heavily on the variance, which is inherently consis-
tent with most conclusions from decentralized optimization
in literature without the bounded stochastic gradient assump-
tion. While J* is essentially correlated to the upper bound
of reward R, in this context, we still adopt the implicit J*
for convenience. We next provide the analysis for the non-
asymptotic behavior, defining appropriately 7, 8, and |B]|.

Corollary 1. Let n = %,[3 = %, |B| =
[%] in Theorem 1. We have,
E[|IVJ (k) [%] <
256L3D(J* — J(Xo)) + 2048L*52 + D252
SL2D(NK)2/®
T (1D

34N2[| VI (%0) ||

\252(51D? + 69632N2/3 L4)

KN(1-\2?)3 1024(1 — A2)3K4/31L4 7
T
for all
N2DY5 29791/ N(L? 4+ G2C,)*°
K > max , ,
512L3 512L3A3(1 — A2)L5

(12844L2 + 9792G2C,, )15 N2\3
512L3(1 — A\2)6 ’
where D = 96L? + 96G>C,,.

Remark 1. An implication from Corollary 1 is that at the
early stage of optimization, before T in Eq. 11 dominates,
the complexity is tightly related to the algebraic connectivity
of the network topology in T, which is measured by the
spectral gap 1 — \. However, Ty is in a large order of 1/ K.
As the optimization moves towards the latter stage where
Ty dominates, the overall complexity is independent of the
network topology.

For the ease of exposition, with Corollary 1, when
K is sufficiently large, it is an immediate consequence
as E[|VJ(Xk)|?] < O((NK)~%/3). Thus, for achiev-
ing E[|VJ(Xk)|] < e the following relationship
is obtained: E[||VJ(xx)]] E[VIx&))? <

E[||VJ(Xk)||?] < e. Combining the last two inequalities
results in the ultimate sampling complexity, i.e., O(N ~1e=3),
which exhibits linear speed up. More importantly, this is N
times smaller than the sampling complexity of the central-
ized momentum-based policy gradient methods (Huang et al.
2020) that performs on a single node. However, we have
known from Corollary 1 that typically K has to be large,
which will in the linear speed up regime reduce 7 and .

We also investigate a worse initialization with only a sin-
gle trajectory sampled from p;(7%|x{). However, without a
mini-batch initialization, the eventual sampling complexity
is O(N~1e~%) (see results in the supplementary materials).
Though variance reduction techniques have not reduced the
order of ¢!, compared to the SOTA approaches, the linear
speed up still enables the complexity to be N times smaller
than that in (Xu, Gao, and Gu 2019; Huang et al. 2020). Ad-
ditionally, different from traditional decentralized learning
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problems, MARL has more significant variances in the opti-
mization procedure due to the non-oblivious characteristic.
Using just a single trajectory for each agent to initialize is
can be a poor scheme, but the adopted variance reduction
techniques can successfully maintain the SOTA sampling
complexity in a decentralized setting. Please refer to the sup-
plementary materials for formal results and proof.
Implication for Gaussian Policy. We study the sample
complexity when the policy function 7¢(a’|s) of each agent
is explicitly a Gaussian distribution. For a bounded action
space A" C R, a Gaussian policy parameterized by x; is

defined as
1 ex (— > (12)
Vor P ’

where £2 is a constant standard deviation parameter and
¢i(s) : S — R% is a mapping from the state space to the
feature space. Thus, the following formal result can be ob-
tained. A more formal analysis and proof can be seen in the
supplementary materials.

((x") " i(s) —a')?
2¢2

m'(a’ls)

Corollary 2. Let 7'(a’|s) be defined as a Gaussian dis-
tribution in Eq. 12 with |a'| < C,, where C,,C; > 0,
and ||¢;(s)|| < Cy, and n, 3, |B| be defined as in Corol-
lary 1. The sampling complexity of attaining the accuracy
E[[VJ(&xx)Il] < €is O((1 =) *"N"1e?).

Numerical Experiments and Results

To validate our proposed algorithm, we performed experi-
ments on a cooperative navigation multi-agent environment
that has been commonly used as a benchmark in several previ-
ous works (Qu et al. 2019; Zhang et al. 2018; Lu et al. 2021).
Our platform for cooperative navigation is derived off the
particle environment introduced by (Lowe et al. 2017). In our
modification, all agents are initialized at random locations
with a specific goal in a 2D grid world. Each agent observes
the combined position and velocity of itself and all other
agents. The agents are capable of moving up, down, left or
right with the objective of navigating to their respective goals.
The reward function of each agent is defined as the negative
euclidean distance of the agent to the goal. Additionally, a
penalty of -1 is imposed whenever the agent collides with
other agents. All agent’s policy is represented by a 3-layer
dense neural network with 64 hidden units and tanh activa-
tion functions. The agents were trained for 50k episodes with
a horizon of 50 steps and discount factor of 0.99. For brevity,
we present numerical results in only one environment setting
with five agents. Additional results with different number of
agents and a simplified environment and computing infras-
tructure details are available in the supplementary materials'.

Efficacy of MDPGT. Figure 1 illustrates the average train-
ing rewards obtained by the five agents in the cooperative
navigation gridworld environment. As observed, both MDPG
and MDPGT significantly outperforms the baseline, denoted
as DPG. Comparing MDPG with MDPGT, we observe that
while both algorithms initially have similar performance,

!Codes to reproduce results also  available

at:https://github.com/xylee95/MD-PGT

are
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Figure 1: Average rewards of MDPGT($ = 0.5), MDPG and
DPG in a cooperative navigation task for five agents (averaged
across five random seeds). The solid lines denote the mean
and shaded regions denote the standard deviation of rewards.
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Figure 2: Ablation study illustrating the effect of various
momentum coefficients, 5 on the performance of MDPGT for
five agents in the cooperative navigation environment.

MDPGT begins to outperform MDPG around the 15k iteration.
Additionally, when we compare the standard deviation of
the rewards, shown as shaded regions, we observe that stan-
dard deviation of MDPGT is also smaller than the standard
deviation of MDPG. In summary, these results validate our
theoretical findings that utilizing gradient tracking as bias
correction technique does improve the performance of the
algorithm. Additionally, the improvement in terms of sam-
pling complexity over DPG is empirically evident through the
result.

Effect of Momentum Coefficient. Next, we perform an
additional ablation study to investigate the effect of the mo-
mentum coefficient 3 on the performance of MDPGT. As
shown in Figure 2, we see that the choice of momentum
coefficient does indeed have an effect on the performance.
A [ that is low can induce a faster convergence rate, but at
the cost of a higher fluctuations in rewards, as seen by 3 =
0.2 and 0.3. Conversely, a high /3 value will cause the surro-
gate to degenerate into vanilla policy gradients and reflects
a similar performance as DPG, which matches the implica-
tion by Eq. 10. Ultimately, for this environment, 5 = 0.4 and
0.5 offers the perfect balance between convergence rate and
stability/variance of the training. Hence, /3 can be viewed
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Figure 3: Experiment results for five agents in the cooperative
navigation environment to compare the effects of different
network topologies. 3 = 0.5 for all experiments shown.

as hyper-parameter which can be tuned to trade off between
optimizing for convergence versus training stability.

Effect of Different Topologies. Finally, we provide ev-
idence which confirms the fact that our proposed method
holds under various networks topologies. To test our hypoth-
esis, we train five agents in the same cooperative navigation
environment using three different network topologies: fully-
connected, ring and bi-partite topology. As seen in Figure 3,
the five agents achieves similar rewards despite communicat-
ing via different network topologies. This validates our claim
in Remark 1.

Conclusions

This paper proposes a novel MARL algorithm that involves
variance reduction techniques to reduce the sampling com-
plexity of decentralized policy-based methods. Specifically,
we developed the algorithmic framework and analyzed it in a
principled manner. An importance sampling-based stochas-
tic recursive momentum is presented as the policy gradi-
ent surrogate, which is taken as input to a policy gradi-
ent tracker. Through theoretical analysis, we find that the
proposed method can improve the sampling efficiency in
the decentralized RL settings compared to SOTA methods.
To the best of our knowledge, this is the first work that
achieve the best available rate, O(¢~3), for generic (possibly
non-concave) performance functions. Empirical results have
shown the superiority of the proposed MDPGT over the base-
line decentralized policy gradient methods. Future research
directions include: 1) testing on more complex decentral-
ized environments to reveal potentially novel and interesting
results; 2) extending the proposed method to model-based
decentralized RL settings to improve further the sampling
efficiency; 3) theoretically analyzing the robustness of the
proposed method under adversarial attacks.
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