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Abstract

In hedonic games, a set of n agents, having preferences over
all possible coalition structures, needs to agree on a stable
outcome. In this work, we initiate the study of hedonic games
with fixed-size coalitions, where the set of possible coalition
structures is restricted as follows: there are k coalitions, each
coalition has a fixed size, and the sum of the sizes of all coali-
tions equals n. We focus on the basic model of additively
separable hedonic games with symmetric preferences, where
an agent’s preference is captured by a utility function which
sums up a contribution due to any other agent in the same
coalition. In this setting, an outcome is stable if no pair of
agents can exchange coalitions and improve their utilities.
Conditioned on the definition of improvement, three stabil-
ity notions arise: swap stability under transferable utilities,
which requires to improve the sum of the utilities of both
agents, swap stability, which requires to improve the utility of
one agent without decreasing the utility of the other one, and
strict swap stability, requiring to improve the utilities of both
agents simultaneously. We analyse the fundamental questions
of existence, complexity and efficiency of stable outcomes,
and that of complexity of a social optimum.

1 Introduction
It is social dinner time at your preferred conference. The or-
ganizers reserved the best restaurant of the city. When you
arrive at the place, you see that k tables, of various capac-
ities, have been set to accommodate the n participants. As
you are a bit late, some seats are already taken. You would
like to share your table with some friends you have not seen
for a long time, as well as with some colleagues working
on common research topics. At the same time, you would
gladly avoid a couple of annoying persons you do not like
that much. Where are you going to sit? Indeed, this exam-
ple can be recast in several other (perhaps more concrete)
settings, such as assigning desks to faculty members in a
department with multi-person offices, dividing a set of em-
ployees into project teams, assigning students to classrooms,
and so on.

All the above situations fall within the well-established
framework of hedonic games (Dreze and Greenberg 1980),
where a set of agents, having preferences over all possible
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coalition structures (i.e., partitions of agents into groups),
needs to agree on (or be assigned to) a stable outcome. Sta-
bility is interpreted as a situation that is acceptable by every-
one, either because they are all happy or because any subset
of unhappy agents cannot give life to a better outcome. There
are several notions of stability that may be defined in this
setting (e.g., individual stability (Bogomolnaia and Jackson
2002), Nash stability (Nash 1950), core stability (Banerjee,
Konishi, and Sönmez 2001), etc.), by discriminating on what
an agent or a group of agents is allowed to do when deviating
from a given outcome. All of them usually pose no restric-
tions on the number of agents that can belong to a coalition.
This freedom is not guaranteed in our social dinner example,
where the set of allowed coalition structures is restricted to
obey stringent constraints: there are k coalitions (the tables),
each coalition has a fixed size (the table capacity), and the
sum of the sizes of all coalitions equals n (exactly one seat
has been reserved for each participant).

Under these premises, classical stability notions become
infeasible. Nash stability, for instance, which allows an un-
happy agent to join a more preferred coalition, cannot be
applied, as the capacity of a table is fixed and cannot be
increased. Also core stability, which allows a group of un-
happy agents to create a new coalition, cannot be realized,
as new tables (of at least a certain capacity) cannot be added
to the current arrangement. Indeed, a given outcome can be
modified only if both the number of tables and their capac-
ities stay the same, i.e., only if a group of agents agrees
on permuting their seats. The simplest permutation, which
involves two agents only, is called a swap. Swap stabil-
ity has been considered in a variety of problems with su-
perimposed structures, such as matching markets (Alcalde
1995; Aziz and Goldwaser 2017; Damamme et al. 2015;
Gourvès, Lesca, and Wilczynski 2017; Massand and Simon
2019) and Schelling games (Agarwal et al. 2020; Bilò et al.
2020; Gross-Humbert et al. 2021). However, to the best of
our knowledge, it has not been imported yet in the general
setting of hedonic games.

In this work, we introduce and formalize the model of
hedonic games with fixed-size coalitions and embark in the
study of swap stability in additively separable games, where
an agent’s preference is captured by a utility function which
sums up a contribution due to any other agent in the same
coalition. We distinguish among three different types of
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swap stability, depending on how we define the happiness
of a pair of swapping agents. We say that an outcome is
swap stable under transferable utilities, if no pair of swap-
ping agents can improve the sum of their utilities; it is swap
stable, if no pair of swapping agents can improve the utility
of one agent without decreasing the utility of the other one;
it is strictly swap stable, if no pair of swapping agents can
improve both of their utilities simultaneously.

Our Contribution
We investigate, in additively separable hedonic games with
symmetric preferences, the fundamental questions of exis-
tence, complexity and efficiency of the three types of swap
stability defined above, and that of complexity of a social
optimum. Specifically, in Section 3, we show the following
results that hold for any of the three stability notions we are
considering. First, we prove that, given any initial starting
configuration, a swap stable assignment is always reached
after a finite number of improving swaps. This clearly im-
plies that a swap stable assignment is always guaranteed to
exist. As a further consequence, we also obtain that there
always exists a socially optimal stable assignment, i.e., the
price of stability is 1. From an algorithmic point of view,
we show that computing a swap stable assignment is PLS-
complete, while it becomes polynomially solvable in the
specific case of simple games, where agents’ preferences can
get values 0 and 1.

In Section 4, we analyse the price of anarchy and pro-
vide tight or asymptotically tight bounds for all of the three
stability notions. It turns out that the price of anarchy is un-
bounded for general games, independently of the considered
stability notion, and so is also for the case of simple games
when considering strictly swap stability. For the remaining
two notions, better and more interesting results are possible
in simple games. Our main technical results, indeed, are a
tight bound of 2k− 1 for the price of anarchy of swap stable
assignments and a tight bound up to an additive factor of at
most 1 for the price of anarchy of swap stable assignments
with transferable utilities (the upper bound is 2k − 1, while
the lower bound equals 2k − 2 + 1

k−1 ).
Finally, in Section 5, we investigate the problem of find-

ing an assignment maximizing the utilitarian social welfare
(which is defined as the sum of the agents’ utilities) and pro-
vide hardness results as well as polynomial time approxima-
tion algorithms.

Related Work
Hedonic games have been introduced in (Dreze and Green-
berg 1980) and then further developed in (Banerjee, Kon-
ishi, and Sönmez 2001; Bogomolnaia and Jackson 2002;
Cechlárová and Romero-Medina 2001). See also (Aziz and
Savani 2016) for a nice survey on the topic.

Additively separable hedonic games (ASHGs) consti-
tute a natural and succinctly representable class of hedonic
games. In these games, each agent has a value for every other
agent, and the utility she ascribes to a given coalition is sim-
ply the sum of the values she assigns to its members. ASHGs
satisfy a number of desirable properties (Aziz, Brandt, and

Seedig 2013) and are equivalent to the non-transferable util-
ity generalization of graph games studied in (Deng and Pa-
padimitriou 1994). ASHGs have been first considered in
(Bogomolnaia and Jackson 2002), where the authors pose
no restrictions on the number of agents that can belong to a
coalition and on the number of coalitions that can be created
(i.e., any partition of the agents is a feasible outcome). They
show that Nash stable outcomes may not exist in games
with asymmetric valuations. However, for symmetric val-
uations, the existence of a Nash stable outcome is guaran-
teed by a potential function argument. In (Ballester 2004)
and (Sung and Dimitrov 2010), the authors show that the
problem of checking whether an instance admits a Nash sta-
ble outcome is NP-complete and NP-complete in the strong
sense, respectively. (Olsen 2009) proves that the problem of
deciding whether a non-trivial Nash stable outcome exists in
additively separable hedonic games with non-negative and
symmetric preferences is NP-complete. (Aziz, Brandt, and
Seedig 2013) show that checking the existence of a core sta-
ble outcome is NP-hard even for symmetric valuations.

Concerning the performance of Nash stable outcomes in
ASHGs with symmetric valuations, it is easy to check that
the price of anarchy is unbounded (Bilò et al. 2019) and that
the price of stability is 1 since an optimal outcome is always
Nash stable (it can be easily proved by using the potential
function). (Flammini et al. 2021b) address the problem of
maximizing the social welfare in ASHGs in the online set-
ting. (Elkind, Fanelli, and Flammini 2020) study Pareto op-
timality in ASHGs. Finally, (Flammini et al. 2021a) propose
strategyproof mechanisms for ASHGs.

Hedonic games with coalition-size constraints have also
been addressed in the literature. (Wright and Vorobeychik
2015) investigate strategyproof mechanisms for ASHGs
with positive values. If there is no constraint on the coali-
tion size, a trivial optimal strategyproof mechanism simply
puts all agents in the grand coalition. Therefore, they assume
coalition-size constraints and (approximate) envy-freeness.
Their main contribution is a mechanism that achieves a good
experimental performance. (Peters 2016) studies the compu-
tational complexity of questions related to finding optimal
and several stable partitions (swap stability is not consid-
ered) for the roommate problem with dichotomous prefer-
ences. Finally, (Cseh, Fleiner, and Harján 2019) consider the
problem of partitioning agents into groups of fixed size and
study the complexity of deciding the existence of, and then
finding, a Pareto optimal assignment, and the complexity of
verifying Pareto optimality for a given assignment.

Swap stability has been considered in matching markets,
where agents have ordinal preferences over other agents
with whom they want to be matched with, and the goal is
to find a matching, i.e., a subset of disjoint pairs of agents,
which is swap stable. (Alcalde 1995) introduces (coalitional)
exchange stability in matching market, where there is no
subset of agents {u0, . . . , ur−1} of size r ≥ 2 such that
each agent ui prefers the partner of her successor ui+1 (in-
dex i + 1 taken modulo r) and discusses restricted pref-
erence domains, where exchange stability is guaranteed to
exist. Further results about the existence of exchange sta-
ble matchings for specific domains are shown in (Abizada
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2019). (Cechlárová and Manlove 2005) show that deciding
whether an exchange stable matching exists is NP-complete
even for the marriage case with complete preferences with-
out ties. (Aziz and Goldwaser 2017) propose several relaxed
notions of (coalitional) exchange-stability and discuss their
relations. Very recently, (Chen et al. 2021) investigate the
computational and parametrized complexity of the coali-
tional exchange stable marriage (resp. coalitional exchange
roommates) problem, which asks to decide whether a Stable
Marriage (resp. Stable Roommates) instance admits a coali-
tional exchange-stable matching.

Swap stability has been also considered in (variants of)
Schelling games (Agarwal et al. 2020; Bilò et al. 2020;
Gross-Humbert et al. 2021), which can essentially be viewed
as hedonic games with fixed-size, but overlapping, coali-
tions.

2 Definitions
Given any integer k, we denote by [k] the set {1, 2, . . . , k}.

Graph Theory Notation. Fix an edge weighted undi-
rected graph G = (V,E,w), with w : E 7→ R+. We as-
sume n = |V | and m = |E|. Given an edge {u, v} ∈ E,
we write wuv as a shorthand for w({u, v}); moreover, for a
node u ∈ V , denote by Wu(G) =

∑
{u,v}∈E wuv the sum

of the weights of all edges incident to u in G (we drop G
from the notation when it is clear from the context). For any
u, v ∈ V , we use Iu,v to denote the indicator function which
equals 1 if and only if {u, v} ∈ E. If wuv = 1 for any
{u, v} ∈ E, we say that G is unweighted.

Additively Separable Hedonic Games with Fixed-
Size Coalitions (AS-HGFSCs). An AS-HGFSC G =
(G, k, (ni)i∈[k]) is defined by an edge weighted undirected
graph G = (V,E,w) and a tuple of k positive integers
n1, . . . , nk such that n1 ≥ n2 ≥ · · · ≥ nk and

∑
i∈[k] ni =

n. Each node in the graph corresponds to an agent involved
in the game, so that V is the set of agents of cardinality
|V | = n =

∑k
i=1 ni and, for any i ∈ [k], ni is the size

of the i-th coalition.
Each agent must be assigned to one of the k coalitions.

Thus, an assignment is a vector z = (z1, z2, . . . , zn) such
that, for any u ∈ V , zu ∈ [k] denotes the index of the
coalition agent u is assigned to, and, denoted by Ci(z) =
{zu|zu = i} the set of agents assigned by z to the i-th coali-
tion, |Ci(z)| = ni for any i ∈ [k]. For an assignment z and
an agent u ∈ V , denote by Uu(z) =

∑
v∈V :zv=zu

wuv the
utility of agent u in assignment z.

We say that G is simple if the underlying graph G =
(V,E) is unweighted. In this case, given an assignment z
and two indices i, j ∈ [k], we denote by Tij(z) = |{{u, v} ∈
E : u ∈ Ci(z), v ∈ Cj(z)}| the cardinality of the cut be-
tween Ci(z) and Cj(z); moreover, for an agent u ∈ Ci(z),
we denote by Tij(z, u) = |{{u, v} ∈ E : v ∈ Cj(z)}| the
restriction of Tij(z) to all edges incident to u.

Stable Assignments. Given an assignment z and two
agents u and v, let zu↔v be the assignment obtained from
z by letting u and v swap their coalitions.

Definition 1. An assignment z is strictly swap stable, if there
is no pair of agents u, v such that Uu(zu↔v) > Uu(z) and
Uv(zu↔v) > Uv(z). We denote by SSS(G) the set of strictly
swap stable assignments of G. An assignment z is swap sta-
ble, if there is no pair of agents u, v such that Uu(zu↔v) >
Uu(z) and Uv(zu↔v) ≥ Uv(z). We denote by SS(G) the set
of swap stable assignments of G. An assignment z is swap
stable under transferable utilities, if there is no pair of agents
u, v such that Uu(zu↔v) + Uv(zu↔v) > Uu(z) + Uv(z).
We denote by SSTU(G) the set of stable assignments under
transferable utilities of G.

Notice that, for any game G, it holds that

SSTU(G) ⊆ SS(G) ⊆ SSS(G). (1)

We observe that, no matter which of the three above sta-
bility notions we are considering, if z is not stable, then there
exist two agents u and v such that Uu(zu↔v)+Uv(zu↔v) >
Uu(z) + Uv(z). In this case, we say that u and v possess an
improving swap.

Social Optimum, Price of Anarchy and Price of Stability.
Let SW be the function SW(z) =

∑
u∈V Uu(z) associating

to each assignment z its utilitarian social welfare, that is, the
sum of all agents’ utilities realized in z. For convenience,
we define, for any i ∈ [k], SW(Ci(z)) =

∑
u∈Ci(z)

Uu(z)

as the amount of social welfare contributed by coalition i, so
that SW(z) =

∑
i∈[k] SW(Ci(z)). A social optimum z∗ for

G is an assignment maximizing SW.
Given a game G, we denote by

PoA-SSS(G) = max
z∈SSS(G)

SW(z∗)
SW(z)

and by

PoS-SSS(G) = min
z∈SSS(G)

SW(z∗)
SW(z)

,

the price of anarchy and the price of stability of strictly swap
stable assignments of G, respectively. Whenever the denom-
inator equals zero in any of the two above fractions, the ratio
is assumed to be equal to infinity. The price of anarchy is the
worst-case ratio between the social welfare of a social op-
timum and that of a strictly swap stable assignment, while
the price of stability considers the best-case ratio. These two
definitions naturally extend to the other two considered no-
tions of stability, i.e., swap stability and swap stability un-
der transferable utilities, yielding PoA-SS(G), PoS-SS(G),
PoA-SSTU(G) and PoS-SSTU(G).

Being the price of anarchy a worst-case measure and the
price of stability a best-case one, for any game G, by relation
(1) it holds that

PoA-SSTU(G) ≤ PoA-SS(G) ≤ PoA-SSS(G) (2)

and

PoS-SSS(G) ≤ PoS-SS(G) ≤ PoS-SSTU(G). (3)

Computational Problems. Given a game G, we consider
the following computational problems:1

1For the sake of brevity, from now on we shall implicitly as-
sume that every game G under consideration is an AS-HGFSC.
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1. SOCIAL OPTIMUM: compute a social optimum for G;
2. STABLE: Given a notion of stability X ∈
{SSS, SS, SSTU}, compute a stable assignment be-
longing to X(G)2.

3 Preliminary Results
In this subsection, we warm-up with some preliminary re-
sults. We start by showing, via a potential function ar-
gument, that for any game G and stability notion in
{SSS, SS, SSTU}, a stable assignment is always guaranteed
to exist. This is achieved by proving that, once fixed a par-
ticular stability notion and an initial starting assignment, a
stable outcome is always reached after a finite number of
improving swaps.

Lemma 1. Fix a game G, an assignment z and two agents
u, v ∈ V . It holds that 1

2SW(zu↔v) − 1
2SW(z) =

Uu(zu↔v) + Uv(zu↔v)− Uu(z)− Uv(z).

Proof. Assume, without loss of generality, that zu = i and
zv = j. We have that:

1

2
SW(zu↔v)− 1

2
SW(z)

=
1

2
SW(Ci(z

u↔v)) +
1

2
SW(Cj(z

u↔v)) (4)

−1

2
SW(Ci(z))− 1

2
SW(Cj(z))

=
1

2

2
∑

v′∈Ci(zu↔v)

wvv′ + 2
∑

v′∈Cj(zu↔v)

wuv′ (5)

− 2
∑

v′∈Ci(z)

wuv′ − 2
∑

v′∈Cj(z)

wvv′


= Uu(zu↔v) + Uv(zu↔v)− Uu(z)− Uv(z),

where equality (4) holds because coalitions i = zu and j =
zv are the only ones that change after the swap, and equality
(5) holds because the difference in the social welfare is given
by twice the overall weight of all edges incident to u and v
before and after the swap.

Theorem 1. Fix a game G, an assignment z and a stability
notion in {SSS, SS, SSTU}. A stable assignment is always
reached after a finite number of improving swaps starting
from z. If G is simple, the number of swaps is at most n(n−1)

2 .

Proof. Fix a game G and an assignment z. By Lemma 1, any
improving swap increases the value of function 1

2SW(z).
Since SW(z) is upper bounded by

∑
u∈V Wu and there is a

finite number of possible assignments, it follows that, after a
finite number of improving swaps, a stable assignment must
be reached.

To prove the second part of the claim, observe that, if G
is simple, Wu ≤ n− 1 for each u ∈ V and each improving

2This problem is well posed, as we prove in Theorem 1 that
stable assignments always exist for any X ∈ {SSS, SS, SSTU}.

swap increases the value of function 1
2SW(z) by at least one.

Once established the existence of stable assignments, we
provide a first characterization of the complexity of STABLE
which can be derived by reinterpreting a reduction from the
local search problem MAX CUT designed in (Schaffer and
Yannakakis 1991).

Theorem 2. STABLE is PLS-complete for any stability no-
tion in {SSS, SS, SSTU}.

Another direct consequence of Lemma 1 is that, with
respect to the price of stability, all stability notions share
the same best-possible performance. Indeed, the fact that
1
2SW(z) is a potential function implies that the social op-
timum is a stable assignment under all stability notions.
Hence, the following theorem holds.

Theorem 3. For any game G, PoS-SSTU(G) =
PoS-SS(G) = PoS-SSS(G) = 1.

We end this section by discussing the meaningfulness of
AS-HGFSCs defined on directed graphs (i.e., asymmetric
games) and the relations occurring between these games and
the symmetric version we consider in this paper.

First, it is not difficult to define an asymmetric
AS-HGFSC admitting no strictly swap stable assignments
by adapting a construction given in (Gale and Shapley 1962)
for the roommate problem. For completeness, we illustrate
it in the following. There are 4 agents and two coalitions of
size 2. The edge weights are: w12 = 2, w13 = 3, w14 = 1,
w21 = 3, w23 = 1, w24 = 2, w31 = 2, w32 = 1, w34 = 3,
w41 = 1, w42 = 3, w43 = 2. In assignment {{1, 2}, {3, 4}},
agents 1 and 4 both have utility 2 and can get utility 3 by
swapping. In assignment {{1, 3}, {2, 4}}, agents 2 and 3
both have utility 2 and can get utility 3 by swapping. In as-
signment {{1, 4}, {2, 3}}, all agents get the minimum possi-
ble utility of 1 and so any two unmatched agents improve by
swapping. As no other assignments are possible, it follows
that no strictly swap stable assignments exist.

Secondly, we can show that SOCIAL OPTIMUM in asym-
metric games is computationally equivalent to its version
on symmetric games. In fact, given an asymmetric game
G = (G, k, (ni)i∈[k]) defined over a weighted directed graph
G, consider the undirected weighted graph G′ with the same
set of nodes of G and whose edges are defined as follows:
for every pair of nodes u, v, create an undirected edge {u, v}
whose weight is equal to w((u,v))+w((v,u))

2 , where w((u, v))
(resp. w((v, u))) is the weight of the directed arc (u, v)
(resp. (v, u)) in G (we assume that an arc has weight equal
to 0 if it does not exist). It can be easily checked that any
assignment realizes the same social welfare in both G and
G′ = (G′, k, (ni)i∈[k]). Therefore, any approximation result
provided for the symmetric weighted case (as our O(k2)-
approximation algorithm of Theorem 13) directly extends to
the asymmetric one.

4 The Price of Anarchy
In this section, we complete the study of the efficiency of
stable assignments by giving tight or almost tight bounds
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C1(z)

C2(z)

C1(z
∗)

C2(z
∗)

(a) (b)

Figure 1: The game considered in the proof of Theorem 4.
(a) The strictly swap stable assignment z. (b) Assignment
z∗.

on the price of anarchy of the three stability notions in
{SSS, SS, SSTU}. We start by showing that the performance
of strictly swap stable assignments is the worst-possible one,
even in simple games played on basic topologies, such as
trees.

Theorem 4. There exists a simple game G defined by an
unweighted tree such that PoA-SSS(G) is unbounded.

Proof. Consider a simple game G defined as follows: G is
an unweighted 3-node tree with two leaf nodes, and there
are k = 2 coalitions, with n1 = 2 and n2 = 1. Since no
agent swapping with the one in the singleton coalition C2

can increase her utility, assignment z in which both leaves
belong to the first coalition is strictly swap stable and has
SW(z) = 0 (see Figure 1.a). As assignment z∗ in which the
root belongs to the first coalition yields SW(z∗) = 2 (see
Figure 1.b), we obtain the claim.

A similar negative result also holds for swap stability un-
der transferable utilities (and thus, by relation (2), for swap
stability too) in games played on weighted graphs and in
simple games played on (unweighted) graphs with isolated
vertices.

Theorem 5. There exists a game G such that both
PoA-SSTU(G) and PoA-SS(G) are unbounded. Also, there
exists a simple game G, whose underlying graph has isolated
vertices, such that both PoA-SSTU(G) and PoA-SS(G) are
unbounded.

The previous theorem does not rule out the possibility
of having better performance, for assignments being swap
stable or swap stable under transferable utilities, in simple
games whose underlying graph does not contain isolated
vertices. This is indeed the case, as shown by the following
theorem that provides an upper bound on the price of anar-
chy of swap stable assignments as a function of the number
of coalitions.

Theorem 6. For any simple game G whose underlying
graph has no isolated vertex, PoA-SS(G) ≤ 2k − 1.

To show Theorem 6, we need a couple of technical lem-
mas. The first lemma lower bounds the social welfare of a
swap stable assignment as a function of the cardinality of
the largest coalition.

Lemma 2. Let z be a swap stable assignment for a sim-
ple game whose underlying graph has no isolated vertex. It
holds that SW(z) ≥ n1 − 1.

The second lemma upper bounds the size of the cut be-
tween two coalitions as a function of their contributed social
welfare.
Lemma 3. Let z be a swap stable assignment for a simple
game whose underlying graph has no isolated vertex. For
any pair of indices i, j ∈ [k] such that ni ≥ 2 and nj ≥ 1,
it holds that Tij(z) ≤ SW(Ci(z)) + SW(Cj(z)).

Proof of Theorem 6. Fix a worst-case swap stable assign-
ment z and a social optimum z∗ for G. Assume, for the mo-
ment, that nk ≥ 2. We have

PoA-SS(G)

=
SW(z∗)
SW(z)

≤ 2|E|∑
i∈[k] SW(Ci(z))

=

∑
i∈[k] SW(Ci(z)) + 2

∑
i,j∈[k] Tij(z)∑

i∈[k] SW(Ci(z))

≤ 1 +
2
∑

i,j∈[k](SW(Ci(z)) + SW(Cj(z)))∑
i∈[k] SW(Ci(z))

= 1 +
2(k − 1)

∑
i∈[k] SW(Ci(z))∑

i∈[k] SW(Ci(z))

= 2k − 1,

where the first inequality holds as, in any assignment, an
edge of G can contribute to the utility of its incident agents
only; the second equality holds as any edge of G can ex-
clusively connect either two agents in a same coalition in
z or two agents belonging to different coalitions in z and,
moreover, twice the number of edges connecting agents in a
same coalition Ci(z) equals the contribution SW(Ci(z)) of
Ci(z) to the social welfare SW(z) of z; the last inequality
comes from Lemma 3 as, by hypothesis, there is no pair of
singleton coalitions.

To show the claim also in presence of singleton coalitions,
i.e., for nk = 1, we use an inductive approach based on the
number s of singleton coalitions in G. We have just proved
that the claim holds for the base case of s = 0. Consider a
game G with s ≥ 1 singleton coalitions and fix a swap stable
assignment z for G. Let u be the agent such that zu = k and
let G be the game defined by graph G \ {u} and in which
there are k−1 coalitions mirroring the first k−1 coalitions of
G. By construction, G has s−1 singleton coalitions and thus,
for any swap stable assignment z for G, by the inductive
hypothesis, we have SW(z∗)

SW(z) ≤ 2(k − 1) − 1 = 2k − 3,
where z∗ denotes the social optimum for G.

Now, we make two simple observations. The first is that
assignment z, obtained from z by removing the last coali-
tion, is a swap stable assignment for G, and this implies that

SW(z∗)
SW(z)

=
SW(z∗)
SW(z)

≤ 2k − 3. (6)
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The second is that, by adding a singleton coalition (and so
also a new vertex to the underlying graph) to a given game,
the social optimum can increase of at most 2(n1 − 1), that
is,

SW(z∗) ≤ SW(z∗) + 2(n1 − 1). (7)

To show why (7) holds, assume, by way of contradiction,
that SW(z∗) > SW(z∗) + 2(n1 − 1). Let z′ the assignment
obtained from z∗ by removing vertex u from G: at most
n1 − 1 edges contributing to SW(z∗) can be removed from
z∗, thus implying that SW(z′) ≥ SW(z∗) − 2(n1 − 1) >
SW(z∗): a contradiction to the fact that z∗ is the social op-
timum for G.

Putting everything together, we conclude that

SW(z∗)
SW(z)

≤ SW(z∗) + 2(n1 − 1)

SW(z)

≤ 2k − 3 + 2

= 2k − 1,

where the first inequality comes from (7) and the second in-
equality comes from (6) and Lemma 2.

By showing that the upper bound provided by Theorem 6
is tight, we obtain an exact characterization of the price of
anarchy of swap stable assignments for simple games.

Theorem 7. There exists a simple game G whose underlying
graph has no isolated vertex and such that PoA-SS(G) =
2k − 1.

Proof. For any fixed k, let n be such that n− k + 1 > k− 1
and n−k+1 is even. Define r := (n−k+1)/2. Consider a
graph G defined as follows. The set of nodes V is such that
V = U ∪U ∪Û , with U = {u1, . . . , ur}, U = {u1, . . . , ur}
and |Û | = k−1. The set of edges E is the minimal one such
that there exists an edge between ui and ui for each i ∈ [r]

and every node in Û is adjacent to any other node in V .
We shall say that nodes ui and ui are twins. Finally, define
n1 = 2r = n− k + 1 and n2 = . . . = nk = 1.

First, let us observe that assignment z in which all nodes
in U ∪ U belong to the first coalition is swap stable. In fact,
each node in this coalition is getting utility 1 (being adja-
cent to its twin node only) and, by deviating to a singleton
coalition, gets zero utility. Thus, SW(z) = n− k + 1.

Now, let z∗ be an assignment constructed as follows: node
u1 is assigned to the second coalition, node u1 is assigned
to the third coalition, node u2 is assigned to the fourth coali-
tion and so on until all singleton coalitions are occupied.
All the remaining nodes are then assigned to the first coali-
tion. Observe that, by so doing, the first coalition will con-
tain all nodes in Û , as n − k + 1 > k − 1. To bound
SW(z∗), observe that, within the first coalition, any node
in Û is adjacent to n − k nodes, while any other node, ex-
cept for at most one, is adjacent to at least k nodes (the
k − 1 ones belonging to Û and its twin node). Thus, we
get SW(z∗) ≥ (k − 1)(n− k) + (n− 2k + 2)k − 1.

By letting n going to infinity, we get PoA-SS(G) ≥
2nk−n

n = 2k − 1.

By Theorem 6 and relation (2), we have that
PoA-SSTU(G) ≤ 2k − 1 for each simple game G. In
the following, we show a nearly matching lower bound that
is tight for the basic case of k = 2.

Theorem 8. For every ε > 0, there exists a simple game
G whose underlying graph has no isolated vertex and such
that PoA-SSTU(G) ≥ 2(k − 1) + 1

k−1 − ε.

Our bounds on the price of anarchy are given in terms of
the number of coalitions k. If we are interested in bounds
depending on the number of agents, we can prove the fol-
lowing asymptotically tight results.

Theorem 9. For any simple game G whose underlying
graph has no isolated vertex, PoA-SS(G) ≤ n.

Theorem 10. There exist a simple game G and a simple
game G′ (whose underlying graphs have no isolated ver-
tex) such that PoA-SS(G) ≥ (4 − 2

√
3)n > 0.53589n and

PoA-SSTU(G′) ≥ n/2.

5 Problem SOCIAL OPTIMUM: Complexity
and Approximation

In this section, we investigate the problem of finding
an assignment that maximizes social welfare. In order
to provide hardness results, we exploit reductions from
some well-known optimization problems (i.e., DENSEST t-
SUBGRAPH and BISECTION).

We emphasize that the following hardness results hold
even for unweighted graphs. We first show a hardness result
for the case of k being not constant.

Theorem 11. When k is not constant, SOCIAL OPTIMUM is
not approximable within n1/(log log n)c , where c > 0 is a uni-
versal constant independent of n, assuming the exponential
time hypothesis (ETH). Moreover, by assuming that there is
some constant ε > 0 such that no subexponential-time algo-
rithm can distinguish between a satisfiable 3SAT formula
and one which is only (1−ε)-satisfiable (also known as Gap-
ETH), SOCIAL OPTIMUM is not approximable within nf(n)

for any function f whose limit is zero as n goes to infinity
(i.e. f ∈ o(1)). Both results hold even for simple games.

We are also able to provide a weaker hardness result for
the special case of simple games with two coalitions only.

Theorem 12. SOCIAL OPTIMUM is NP-hard even for sim-
ple games with k = 2.

On the positive side, by exploiting known results for the
DENSEST t-SUBGRAPH problem, it is possible to prove
the following theorem.

Theorem 13. For any game G, there exists an O(k2)-
approximation algorithm for SOCIAL OPTIMUM.

Proof. DENSEST t-SUBGRAPH is defined as follows:
Given an undirected graph G = (V,E,w) on n vertices and
a positive integer t < n, the goal is to find a subset S ⊆ V
of t vertices of G such that the sum of the weights of the
edges contained in the subgraph induced by S is maximum.
When defined on graphs with non-negative edge weights, it
admits a polynomial time approximation algorithm A with
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approximation ratio O(n/t) (Asahiro et al. 2000) (the ex-
act approximation ratio R is

(
1
2 + n

2t

)2 − O(n−
1
3 ) ≤ R ≤(

1
2 + n

2t

)2
+ O (1/n) for t in the range n/3 ≤ t ≤ n and

2
(
n
t − 1

)
−O( 1

t ) ≤ R ≤ 2
(
n
t − 1

)
−O

(
n
t2

)
for t < n

3 ).
We can get an O(k2)-approximation algorithm for

SOCIAL OPTIMUM as follows. Given a game G =
(G, k, (ni)i∈[k]), consider the n

n1
-approximated outcome S

obtained by applying algorithm A to the instance of DENS-
EST n1-SUBGRAPH defined on the same graph G. Let S∗
be an optimal solution to the instance of DENSEST n1-
SUBGRAPH. Since n1 ≥ ni, for any i = 2, . . . , k, we
get that SW(z∗) ≤ kSW(S∗). Consider the assignment z
that assigns all the agents belonging to S to coalition 1,
i.e., zu = 1 for any u ∈ S, and assigns the other agents
to the remaining coalitions 2, . . . , n, in any feasible way
(i.e. by respecting their sizes). Notice that n

n1
≤ k since

otherwise
∑k

i=1 ni < n. We have that SW(C1(z)) is an
n
n1

-approximation on the maximum social welfare that we
can get from coalition 1. We conclude that assignment z is
O(k2) approximating.

If we focus on simple games, better approximation ratios
can be guaranteed. In fact, Theorem 6 combined with Theo-
rem 1 implies that any sequence of improving swaps starting
from an arbitrary assignment leads, in polynomial time, to a
2k− 1 approximation of the social optimum. If nk > 2, i.e.,
the size of the smallest coalition is sufficiently big, the fol-
lowing theorem provides a better approximation for SOCIAL
OPTIMUM.

Theorem 14. Given a simple game G such that nk ≥
2, there exists an

(
1 + nk

nk−1 (k − 1)
)

-approximation algo-
rithm for SOCIAL OPTIMUM.

Proof. Consider the local search algorithm in which, for
any assignment z, the neighbourhood of z is N (z) =
{zu↔v|u, v ∈ V, u 6= v} and the algorithm aims at maxi-
mizing function Ψ(z) =

∑k
i=1 ni · SW(Ci(z)).

First of all, since G is simple, the maximum value that Ψ
can assume is polynomially bounded in the size of G. Given
that, at each move of the local search algorithm, it increases
by at least 1, it follows that the algorithm is polynomial-time.

It remains to show that the social welfare of any local opti-
mum approximates the social welfare of the social optimum
by a factor

(
1 + nk

nk−1 (k − 1)
)

.
Given a local optimum z, consider a couple of vertices

u ∈ Ci(z) and v ∈ Cj(z) with i 6= j. Since Ψ(zu↔v) ≤
Ψ(z), it holds that

niUu(z) + njUv(z)

≥ nj(Tij(z, u)− Iu,v) + ni(Tij(z, v)− Iu,v). (8)

In fact, if agents u and v swap their coalitions, Ψ(zu↔v) =
Ψ(z)− 2(niUu(z) + njUv(z)) + 2(nj(Tij(z, u)− Iu,v) +
ni(Tij(z, v) − Iu,v)). Given any i, j ∈ [k] with i 6=
j, by summing inequality (8) over all couples of agents
u ∈ Ci(z) and v ∈ Cj(z), we obtain ninjSW(Ci(z)) +

njniSW(Cj(z)) ≥ n2
jTij(z) +n2

iTij(z)− (ni +nj)Tij(z)
that is equivalent to

Tij(z) ≤ ninj(SW(Ci(z)) + SW(Cj(z)))

n2
i + n2

j − ni − nj
. (9)

Assume without loss of generality that i ≤ j. Since ni ≥
nj ≥ nk ≥ 2, by simple algebra, it is possible to verify that

ninj

n2
i + n2

j − ni − nj
≤ ni

2(ni − 1)
≤ nk

2(nk − 1)

and it follows that inequality (9) implies

Tij(z) ≤ nk

2(nk − 1)
(SW(Ci(z)) + SW(Cj(z))). (10)

An easy upper bound to the optimal solution is given by
each agent having utility equal to her degree in G, i.e. all
edges of G contribute to the social welfare of the optimal
solution. It follows that

SW(z∗)

≤ SW(z) + 2
∑

i,j∈[k],i6=j

Tij(z)

≤ SW(z) + (11)

2
∑

i,j∈[k],i6=j

nk

2(nk − 1)
(SW(Ci(z)) + SW(Cj(z)))

≤ SW(z) + (k − 1)
nk

(nk − 1)
SW(z), (12)

where inequality (11) holds by (10) and inequality (12) holds
because each coalition is considered k− 1 times in the sum-
mation. Hence, the claim follows.

It is worth noticing that the approximation ratio guaran-
teed by Theorem 14 approaches k as nk tends to infinity.
This result is particularly significant when considering a sce-
nario in which a population of n agents has to be divided into
a given number of groups, each of which sized as a quota of
the total: as n grows and tends to infinity, also nk does.

6 Conclusions
Besides closing the gaps between all non-tight upper and
lower bounds derived in this paper, we believe that hedonic
games with fixed-size coalitions may spur future research
along several directions. Some of these are: deriving price
of anarchy bounds as a function of vector (n1, . . . , nk), con-
sidering the efficiency of stable outcomes with respect to the
egalitarian social welfare (which measures the quality of an
outcome by means of the lowest agent’s utility), strength-
ening the stability notion by allowing permutations involv-
ing more than two agents, considering other well-established
classes of hedonic games as, for instance, fractional hedonic
games (Aziz et al. 2019). With respect to the latter question,
we observe that Theorem 1 keeps holding in this setting as
well, up to an O(n2) slowdown on the convergence time for
simple games.
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Bilò, V.; Fanelli, A.; Flammini, M.; Monaco, G.; and
Moscardelli, L. 2019. Optimality and Nash Stability in Ad-
ditive Separable Generalized Group Activity Selection Prob-
lems. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, (IJCAI), 102–
108.
Bogomolnaia, A.; and Jackson, M. O. 2002. The Stability
of Hedonic Coalition Structures. Games and Economic Be-
havior, 38(2): 201–230.
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