
Invariant Action Effect Model for Reinforcement Learning

Zheng-Mao Zhu1,2*, Shengyi Jiang1, Yu-Ren Liu1, Yang Yu1,2, Kun Zhang 3

1 National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, Jiangsu, China
2 Peng Cheng Laboratory, Shenzhen, Guangdong, China

3Department of Philosophy, Carnegie Mellon University,Pittsburgh, PA, United States
{zhuzm, jiangsy, liuyr, yuy}@lamda.nju.edu.cn, kunz1@cmu.edu

Abstract
Good representations can help RL agents perform concise
modeling of their surroundings, and thus support effective
decision-making in complex environments. Previous meth-
ods learn good representations by imposing extra constraints
on dynamics. However, in the causal perspective, the causa-
tion between the action and its effect is not fully considered in
those methods, which leads to the ignorance of the underlying
relations among the action effects on the transitions. Based on
the intuition that the same action always causes similar effects
among different states, we induce such causation by taking
the invariance of action effects among states as the relation.
By explicitly utilizing such invariance, in this paper, we show
that a better representation can be learned and potentially im-
proves the sample efficiency and the generalization ability of
the learned policy. We propose Invariant Action Effect Model
(IAEM) to capture the invariance in action effects, where the
effect of an action is represented as the residual of represen-
tations from neighboring states. IAEM is composed of two
parts: (1) a new contrastive-based loss to capture the under-
lying invariance of action effects; (2) an individual action ef-
fect and provides a self-adapted weighting strategy to tackle
the corner cases where the invariance does not hold. The ex-
tensive experiments on two benchmarks, i.e. Grid-World and
Atari, show that the representations learned by IAEM pre-
serve the invariance of action effects. Moreover, with the in-
variant action effect, IAEM can accelerate the learning pro-
cess by 1.6x, rapidly generalize to new environments by fine-
tuning on a few components, and outperform other dynamics-
based representation methods by 1.4x in limited steps.

Introduction
Despite recent progress on deep reinforcement learning,
sample-efficiency and generalization ability are still big
challenges in achieving a satisfactory performance, espe-
cially in environments with high-dimensional observation
space (Mnih et al. 2013, 2015). It has been proved both the-
oretically and empirically that learning policies from low-
dimensional features can be much more sample-efficient
than directly learning. A good representation can also im-
prove generalizability (Silver et al. 2016; Tassa et al. 2018).

*This work is supported by National Key Research and
Development Program of China (2020AAA0107200), and
NSFC(61876077).
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Such advantages motivate learning an abstract representa-
tion by encoding high-dimensional states into compressed
representations while retaining the most important informa-
tion for learning tasks (Biza et al. 2020).

Recent works (Srinivas, Laskin, and Abbeel 2020; Zhang
et al. 2020b) use self-supervised methods to learn abstract
states of visual observations, which can be divided into two
major categories: reconstruction-based and dynamics-based
approaches. Reconstruction-based approaches learn repre-
sentations by restoring the raw observations, but such rep-
resentations can be easily distracted by large amounts of
irrelevant information in observations(Higgins et al. 2017).
Dynamics-based approaches (Biza et al. 2020) filter the ir-
relevant information by grouping states that are indistin-
guishable w.r.t state sequences given any action sequences
tested. However, in the causal perspective, the causation be-
tween the action and its effect is ignored since those ap-
proaches learn action effects on each state individually. This
causation implies the underlying relations of action effects
in the representation space, which benefits the sample effi-
ciency and generalizability.

Based on the intuition that the same action always causes
similar effects among different states, we propose IAEM (In-
variant Action Effect Model) to utilize this causation in the
form of an invariance relation between action effects into
learning latent dynamics, where the effect of an action is
represented as the residual between the representations of
neighboring states. IAEM learns the invariance property for
RL environments with two components: (1) A new con-
trastive loss by viewing the action effect from the same ac-
tion as the positive samples and others as negative samples.
We show that with this contrastive loss, the invariance of the
action effect can be preserved in the residuals of the state
representations. (2) An individual action effect and a learn-
able weight for using the invariant action effect in practice,
which can reduce the discrepancy between the ideal invari-
ance property and the non-invariance in some marginal con-
ditions (e.g., when an agent moves towards a barrier, it will
stay put instead of moving through the barrier).

In summary, this paper makes the following key contribu-
tions:

• The IAEM is the first to learns an action effect disen-
tangled representation, which forming a better represen-
tation for learning policies and interpretability.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

9260



• The IAEM outperforms baseline dynamics-based meth-
ods by showing 20% performance gains in Atari games
in limited 30M environment steps.

• The IAEM saves up to 40% samples compared with
baseline dynamics-based methods while reaching the
converged performance.

Related Work
Learning representation in RL has been widely studied in
high-dimensional observation settings. Reconstruction loss,
such as enforcing abstract states to recover observations
(Igl et al. 2018), is one of the most common constraints
used to guide the learning process (Corneil, Gerstner, and
Brea 2018; Hafner et al. 2019; Feng et al. 2021b). The
main disadvantage of reconstruction constraint is training
the decoder, which is time-consuming and usually not nec-
essary for decision-making tasks (van der Pol et al. 2020).
Dynamics-based representation learning, on the other hand,
aims to preserve the dynamics-related property in the latent
space. Self-supervised representation learning aims to group
states together without loss of that property (Anand et al.
2019; Kipf, van der Pol, and Welling 2020). To avoid erro-
neously grouping states, Gelada et al. (2019) includes both
the transition function and the reward function in grouping
states; François-Lavet et al. (2019) introduces an approxi-
mate entropy maximization penalty for abstract representa-
tions. van der Pol et al. (2020) defines action-equivalence for
better recovering the action effect in the latent space. How-
ever, these prevailing dynamics-based approaches do not
utilize the underlying relations of the action effects, which
leads to repeated learning of similar action effects. To solve
this problem, our IAEM represents the action effect as the
residual representations of neighboring states and uses con-
trastive learning to learn invariant action effects.

Contrastive-based representation learning in RL. Con-
trastive learning is a framework to learn representations or-
ganized by similarity and dissimilarity. In reinforcement
learning, structuring positive and negative samples for con-
trastive learning is a challenge. CURL (Srinivas, Laskin, and
Abbeel 2020) directly takes a state and its augmentations
as positives, but it didn’t utilize the dynamics information
in the samples. TCN and its variants (Sermanet et al. 2018;
Dwibedi et al. 2018) use an image and itself in another view
as positive, which is similar to CURL to some extend. Pre-
vious works do not utilize the dynamics information in RL,
which is an in-negligible feature of data in RL ((Feng et al.
2021a; Zhang et al. 2021)). In contrast, our IAEM consid-
ers the dynamics in defining positives and negatives, i.e. we
define the residual between two states to be positives or neg-
atives according to the action.

Preliminaries
Markov Decision Process (MDP). We describe the RL en-
vironment as an MDP with five-tuple ⟨S,A, P,R, γ⟩ (Bell-
man 1957), where S is a finite set of states;A is a finite set of
actions; P is the transition function with P (s′|s, a) denoting
the next-state distribution after taking action a in state s; R

is a reward function with R(s, a) denoting the expected im-
mediate reward gained by taking action a in state s; and γ ∈
[0, 1] is a discount factor. An agent chooses actions a accord-
ing to a policy a ∼ π(s), which updates the system state s′ ∼
P (s, a), yielding a reward r ∼ R(s, a). The agent’s goal is
to maximize the the expected cumulative return by learn-
ing a good policy maxπ,P E[γtR(st, at)]. The state-action
value Qπ of a policy π is the expected discounted reward of
executing action a from state s and subsequently following
policy π: Qπ(s, a) := R(s, a) + γEs′∼P,a′∼π [Qπ (s′, a′)].

Dynamics-based Representation Learning. The goal of
dynamics-based representation learning is to learn represen-
tations preserving the dynamics. In this paper, we approach
dynamics-based representation learning from the perspec-
tive of state abstractions. State abstractions can reduce the
size of a given problem’s state space by grouping together
similar states, which maps the state space S to a com-
pact representation space Z while preserving the reward
and dynamics (Dean and Givan 1997a). Bi-simulation and
bi-simulation metrics are different forms of state abstrac-
tions that group states according to “behaviorally equiva-
lent” and “behaviorally similar” (e.g., how similar the fu-
ture states and rewards are given the same action sequences).
A generalization of the mapping induced by bi-simulation
is the notion of MDP homomorphism (Randran and Barto
2004). MDP homomorphism were introduced by (Randran
and Barto 2001) as an extension of (Dean and Givan 1997b).
We use the definition of MDP homomorphism Given by
(Randran and Barto 2004) as follows:
Definition 1 (Deterministic MDP Homomorphism) The
deterministic MDP homomorphism from a deterministic
MDP M = ⟨S,A, P,R, γ⟩ to another deterministic MDP
M̄ = ⟨Z,AZ , PZ , RZ , γ⟩ is a tuple h = ⟨fS , fA⟩. In
this tuple, fS : S → Z is the state embedding function
and fA : A → AZ is the action embedding func-
tion. fS and fA hold the following identities for all
s, s′ ∈ S, a ∈ A : P (s, a) = s′ =⇒ PZ(fS(s), fA(a)) =
fS(s′), RZ(fS(s), fA(a)) = R(s, a).
Given samples (st, at, rt, st+1) from the environment, re-
cent works (François-Lavet et al. 2019; van der Pol et al.
2020) treat the MDP homomorphism as the following loss
on the transition and reward functions: (1) The transition
function preserving loss to minimize the distance between
the predicted abstract states and sampled abstract states. A
forward model PZ is built to predict the next state rep-
resentations based on the current state representations and
chosen actions as Ltransition = E(st,at,st+1)[PZ(fS(st), at) −
fS(st+1)]

2. (2) The reward function preserving loss to pre-
dict the true rewards based on the abstract states and ac-
tions as Lreward = E(st,at,rt+1)[RZ(fS(st), at) − rt]

2. (3)
The mode collapse preventing loss to prevent trivial solu-
tions, the distance between abstract states should be maxi-
mized as Lnorm = E(st,sk) max(0, ϵ− ∥fS(st)− fS(sk)∥2),
where sk is a random sample.

In this paper, we use θ, ϕ and ζ to parameterize the ab-
straction function fθS , the latent transition function and the
latent reward function RζZ respectively. We let PϕZ be the
form of PϕZ(z, a) = z+AϕZ(z, a), and letAϕZ : Z×A → AZ

9261



be a function mapping from the state representation and the
action into the action effect.

Invariant Action Effect Model
The Markov property in MDP guarantees that the state and
the action are the only causal parents of the action effect
and reward, which is represented by a graphical model in
previous work(Zhang et al. 2020a). However, such causal
modeling is insufficient since it does not fully consider the
causation between the action and the action effect. In RL
environments, there are several relations among different ac-
tions, including similarity and orthogonality, which also ex-
ist among the action effects due to this causation. In this
work, we learn representations by building the constraints
based on the relations, which requires fewer training data
and improves the generalization.

Our method contains two steps: First, we define the rela-
tions of action effects based on the intuition that the same
action often has a similar effect among different states. We
call the action effect invariant if the action effects on differ-
ent states but the same action are similar or even the same
and take the invariance as the prior knowledge of effects re-
lations. Second, we leverage MDP homomorphism to learn
representations and design a new contrastive loss to keep
the invariance of action effects, where action effects are the
residual of representations. Without loss of generality, we
consider deterministic MDPs with a discrete action space.

The statements of IAEM are organized in three steps: (1)
Keep the action effect invariant. (2) Adapt the invariant ac-
tion effect on marginal conditions. (3) Learn policies based
on the representations with the invariant action effect. These
three steps will be discussed in detail in the following sub-
sections.

Learning Invariant Action Effects
To learn representations with the invariant action effect,
we design a new contrastive loss for the action effects,
which views the action effects from the same action as
positive samples and those from different actions as neg-
ative samples. Given a set of experience tuples D =
{(st, at, rt, st+1)}Nt=1 by rolling out several initial policies,
we first pick a batch B = {(st, at), (sk, ak), (sm, am)} ∼ D
where {(st, at), (sk, ak)} are positive samples due to at =
ak and {(st, at), (sm, am)} are negative samples due to at ̸=
am. Based on this batch, we denote the action effect simi-
larity gt,k ≜ g(st, at, sk, ak) as follows:

g(st, at, sk, ak) = AϕZ(f
θ
S(st), at)

TAϕZ(f
θ
S(sk), ak)/τ.

(1)
With this similarity, we design our action contrastive loss
based on the InfoNCE loss (van den Oord, Li, and nyals
2018) as:

Linvariant(θ, ϕ) = E(st,at),(sk,ak),(sm,am)[− log
egt,k

egt,k + egt,m
].

(2)

With this new loss, the action effects AϕZ of the same ac-
tions will be similar and those of different actions will be
different.

Previous contrastive-based approaches calculate the simi-
larity g by treating its augmented data (Srinivas, Laskin, and
Abbeel 2020) or its neighboring states (Hénaff et al. 2019)
as the positive samples of a given state. In both cases, transi-
tion information of data in RL is not preserved. The absence
of the transition information results in representations los-
ing the dynamics-based relations among each other, which
violates the goal of preserving related information and thus
harms the ability for downstream tasks. By contrast, our
contrastive loss captures the difference between neighboring
states by taking neighboring states as sample pairs, which
preserves the transition information. What is more, this con-
trastive loss makes action effects of the same actions close,
which also preserves the relations of action effects. Repre-
sentations with such relations of action effects have better
generalization ability and are sample-efficient in training.

Adapting Invariant Action Effects
After defining how to learn an invariant action effect, we
study how to adapt such action effect in practical envi-
ronments. In many practical environments, there are some
marginal conditions where the invariant property of action
effects is not satisfied, e.g., when “moving” towards a bar-
rier, the learned invariant action effect is moving forward,
but the overall (actual) action effect is staying put. To bridge
this discrepancy between the invariant action effect and the
overall action effect, we introduce the individual action ef-
fect and the individual activation weight ω.

Individual Action Effect. We separate the action effect
AϕZ(z, a) into two parts: the invariant one and the individual
one. We let AϕZV (z, a) denote the invariant action effect and
rewrite the action effect similarity g(st, at, sk, ak) in Eq (1)
as
g(st, at, sk, ak) = AϕZV (f

θ
S(st), at)

TAϕZV (f
θ
S(sk), ak)/τ.

(3)

Then we let AϕZD (z, a) denote the individual action effect,
which can be combined to attain the overall action effect
AϕZ(z, a) as AϕZ(z, a) = AϕZV (z, a) + AϕZD (z, a). When
the functions AϕZV and AϕZD are optimized by gradient de-
scent, the tuple of the two action effects has a trivial solution
where the invariant action effect can be zero and the individ-
ual action effect equals to the overall action effect. Specif-
ically, suppose Aϕ

∗

Z (z, a) with parameter ϕ∗ is the ground-
truth overall action effect, the optimal invariant action ef-
fect should be Aϕ

∗

ZV (z, a0) = argminx E(s,a)∼D,a=a0∥x −
Aϕ

∗

Z (z, a)∥p. The optimal individual action effect should be
Aϕ

∗

ZD (z, a) = Aϕ
∗

Z (z, a)− Aϕ
∗

ZV (z, a). Since it is easy to get

a local minimum at ϕ̂ satisfying
(
Aϕ̂ZV (z, a), Aϕ̂ZD (z, a)

)
=(

0, Aϕ
∗

Z (z, a)
)

, we are prone to learn a trivial solution that
the invariant action effect collapse to a zero vector. To pre-
vent this trivial collapse, we propose a normalization con-
straint on the individual action effect, i.e. the effects are re-
stricted with L1 loss:

Lnorm-individual(θ, ϕ) = Es[∥AϕZD (f
θ
S(s), a)∥1] (4)

9262



Dynamics

𝐙𝐙𝐭𝐭 𝐙𝐙𝐭𝐭+𝟏𝟏

𝚫𝚫𝐙𝐙𝐕𝐕

𝚫𝚫𝐙𝐙𝐃𝐃

𝝎𝝎

×

+

+

𝚫𝚫𝒁𝒁

Dynamics

𝐕𝐕𝟏𝟏 𝐕𝐕𝟐𝟐 𝐕𝐕𝟑𝟑

𝐙𝐙𝟏𝟏 𝐙𝐙𝟐𝟐 𝐙𝐙𝟑𝟑

𝐒𝐒𝟏𝟏 𝐒𝐒𝟐𝟐 𝐒𝐒𝟑𝟑

Dynamics

𝐀𝐀𝟏𝟏 𝐀𝐀𝟐𝟐

𝐀𝐀𝐭𝐭

Figure 1: The architecture of IAEM. Left: the complete view of dynamics-based representation learning. St represents the
observation, At represents the action, Zt represents the latent representation and Vt represents the value of St, which is the
output of the Q-learning algorithms. Right: the details of the dynamics in the representation space. We learn three variables
from the state representation and actions, including the invariant action effect ∆ZV , the individual action effect ∆ZD and its
weight ω. These variables are combined by the flow chart to compute the residual between two state representations ∆Z, where
× represents dot product and + represents addition.

With the gradient ∇ϕEs[∥AϕZD (f
θ
S(s), a)∥1] from the

loss (4), the gradient at ϕ̂ will not be zero, which prevents
the trivial collapse and forces the model to reach the target
solution ϕ∗.

Individual Activation Weight. Since the discrepancy
only occurs in limited states in RL environments, those non-
zero individual action effects should be activated in few
states. However, without any constraint, non-zero individ-
ual action effects are abused in states, which breaks the
invariance in action effects and leads to poor generaliza-
tion ability. To solve this problem, we introduce a dynamic
weight ω(z, a) ∈ [0, 1] that determines when to activate
the individual action effect by AϕZ(z, a) = AϕZV (z, a) +
ω(z, a)AϕZD (z, a). Though the normalization constraint on
the individual action effect can also help alleviate the prob-
lem slightly, ω(z, a) solves it by playing as a switch, which
is much more direct and convenient. With the switch vari-
able, we rewrite the transition loss as:

Ltransition(θ, ϕ) =E(s,a,s′)[z +AϕZV (z, a)

+ ω(z, a)AϕZD (z, a)− z′]2. (5)

After defining all proposed new losses, we combine the two
traditional losses Lreward and Lnorm in preliminary with our
proposed new losses to get the final optimization target of
dynamics as:

Ldynamics(θ, ϕ, ζ) =Linvariant(θ, ϕ) + Ltransition(θ, ϕ)

+ Lreward(θ, ζ) + Lnorm(θ)

+ Lnorm-individual(θ, ϕ) (6)

Notice that ϵ in Lnorm is a hyperparameter that controls the
scale of the embeddings and we set ϵ = 1 in this paper,
which follows previous works (van der Pol et al. 2020).

With these losses in the optimization target, the learned
representations can hold the invariance property of action

Algorithm 1: Invariant Action Effect Model (IAEM)

Input: D-empty replay buffer; θ, ϕ, ζ, ψ-initial network
parameters, which are the encoder function, dynamics
function, reward function and policy function respec-
tively; N -the number of epochs.
for epoch = 0 to N do

Get initial state s0
for step t = 0 to terminal do

Encode state zt = fϕS (st)
Execute action at = π(zt)
Record data: D ← D ∪ {st, at, rt, st+1}
Sample batch B ∼ D
Train dynamics, encoder and policy functions:
∆ϕ,∆θ,∆ζ,∆ψ = ∇ϕ, θ, ζ, ψ(Lall) by Eq (8)
Update parameters ϕ, θ, ζ, ψ with ∆ϕ,∆θ,∆ζ,∆ψ

end for
end for

effects, which benefits sample efficiency and generalization
ability. And the adaptation-related losses assure the invari-
ance on even marginal conditions, which is the key challenge
to practical RL environments.

Training Algorithms
In this subsection, we first introduce the policy learning pro-
cedure and then provide the complete algorithm training
procedure.

Policy Learning. The policy learning of IAEM could
benefit straightforwardly from using any other existing vari-
ant of DQN (Hessel et al. 2018) or actor-critic architectures
(Mnih et al. 2016). For fair and convenient comparison, we
combine our representation learning approach with the DQN
algorithm (Mnih et al. 2013) to devise a practical reinforce-
ment learning method. Letting QψZ : Z × A → R de-

9263



note the Q-value function in the representation space, and
Y = r + γmaxa Q

ψ
Z(f

θ
S(s′), a) denote the target value, the

Q-value function training is done by minimizing:

Lpolicy(θ, ψ) = E(s,a,r,s′)[Q
ψ
Z(z, a)− Y ]2 (7)

Notice that the gradient of loss (7) updates the parameters
of both the encoder and the Q-value function. The policy
π is derived from the learned value function Q as π(s) =

argmaxa Q
ψ
Z(fS(s), a).

Model Training. After defining the policy learning, we
conclude the complete training process in IAEM. We train
IAEM by updating three components: the Q-value func-
tion QψZ , the encoder fθS and the latent dynamics model
(PVZ , P

D
Z ,ω). At each training step, a sum of the aforemen-

tioned losses are minimized using gradient descent:

Lall(θ, ϕ, ζ, ψ) = Ldynamics(θ, ϕ, ζ) + Lpolicy(θ, ψ) (8)

After each training step, the policy π is used to step in the
environment, the data is collected in a replay buffer D, and
a batch is randomly selected to repeat training.

The detailed learning procedure is shown in Algorithm
1. Notice that our method could be combined with any RL
algorithm in principle, including the policy gradient algo-
rithms. Implementation details and hyperparameter values
of IAEM are summarized in the appendix A.

Figure 2: State observations for labyrinth task and Atari
Games. Left: a simple task with 3 × 3 size. Middle: a dif-
ficult task with 8× 8 size. In the labyrinth, the agent aims to
bypass the grey wall and then reach the brown door. Right:
an example of the Atari Games, the Pong. The goal of both
two boards is to hit back the ball.

Experiments
We evaluate the performance, sample efficiency, and the
generalization ability of IAEM on two widely-used bench-
marks: Grid-World and Atari games. The Grid-World is a
simple and typical environment that is convenient to visu-
alize the learned representations and verify the advantages
of the proposed model in few environment steps. The Atari
Game is the most common benchmark to investigate the per-
formance in pixel-based complex environments, where pre-
vious works provide many standard baseline algorithms. We
evaluate our IAEM on two indexes: (1) Evaluating sample-
efficiency by measuring how many steps it takes the best per-
forming baselines to match IAEM performance in limited
20k (Grid-World) or 30M (Atari) steps and (2) Evaluating
performance by measuring the ratio of the episode returns
achieved by IAEM versus the best performing baselines at
limited steps.

Baselines. We compare IAEM with two dynamics-based
approaches (CRAR, PRAE) and one model-free algorithm
(DQN): (1) DQN (Mnih et al. 2013) is the policy learn-
ing algorithm used in the two dynamics-based approaches,
which can be seen as the blank control without any dy-
namics constraints. DQN takes visual observations as in-
puts directly and outputs the Q(s, a) for policy learning. (2)
PRAE (van der Pol et al. 2020) is a sota dynamics-based
approach that builds an MDP homomorphism by keeping
action-equivalence. PRAE learns a plannable MDP homo-
morphism with a dynamics-related constraint. (3) CRAR
(François-Lavet et al. 2019) is another sota dynamics-based
approach that captures the relation of the action effects in
some toy environments by designing a Cosine-based simi-
larity constraint.

Environment. Grid-World. We use a labyrinth MDP as
a pixel-based Grid-World for convenient visualization of
the representations, where the dynamic is a discrete state
MDP. Fig. 2 shows their visual observation respectively and
the following will give a detailed description. Labyrinth
Env. The agent moves towards the four cardinal directions
through four actions, except when the agent reaches the bar-
riers (grey) or the wall (black), whose goal is to reach the
door. In every step, the reward r = 100 if the agent reaches
the door and r = −1 otherwise. The episode ends if the
agent reaches the door or has taken more than 50 steps. The
starting positions are selected randomly when a new episode
starts. Atari. Compared to the Grid-World, Atari (Bellemare
et al. 2012) is much more complex in both dynamics and ob-
servations. We experiment with IAEM in 8 different games
of Atari.

Implement Details. For the network architecture in Grid-
World, we use the same network architecture as that in the
two dynamics-based baselines. For the network architecture
in Atari, we use a state-of-the-art DQN baseline dopamine
(Castro et al. 2018). We directly make improvements based
on dopamine. Following the preprocessing pipeline of previ-
ous works, we down-sample frames to 84 × 84 pixels, con-
vert them to gray-scale, and stack 4 consecutive frames as
one observation. More detailed architectural hyperparame-
ters can be found in the appendix A.

Performance
The results in Fig. 3(a) show that our IAEM outperforms
all three baselines by a large margin. Additionally, the re-
sults in Fig. 3(b) show the transition loss of three dynamics-
based approaches, where the transition loss curves are sig-
nificantly consistent with the performance curves. This con-
sistency implies that a low transition loss helps to learn a
good policy, which indicates that our IAEM achieves good
performance by the well-learned latent dynamics. Moreover,
in Atari Games, IAEM outperforms baselines by 1.4x gains
averagely and achieves significant improvements on the ma-
jority (75%) in Fig. 4.

Sampling Efficiency
The results in Fig. 4 show that IAEM surpasses the best
baseline on the sample efficiency in all eight games. In some
games, we can use 65% to 80% fewer samples to reach the

9264



0 2 4 6 8 10

Number…of…steps…(1e3)

40

20

0

20

40

60

80

100

A
ve

ra
ge

…
sc

or
e…

pe
r…

ep
is

od
e

OURS
PRAE
CRAR
DQN

(a) Comparison on averaged scores

0 1 2 3 4 5 6

Number…of…steps…(1e3)

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

…
tra

ns
iti

on
…

lo
ss

OURS
PRAE
CRAR

(b) Comparison on transition losses

0 2 4 6 8 10

Number…of…steps…(1e3)

40

20

0

20

40

60

80

100

A
ve

ra
ge

…
sc

or
e…

pe
r…

ep
is

od
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
ve

ra
ge

…
tra

ns
iti

on
…

lo
ss

score
score…w/o 
loss
loss…w/o

(c) The Ablation study.

Figure 3: Comparison of IAEM and baselines in Grid-World. Left: The comparison on averaged scores. IAEM can reach the
optimal policy in 4000 time-steps while others need at least 6000 time-steps. Middle: The comparison on the transition loss.
Optimization of the transition constraint in IAEM is faster than it in other baselines. Right: The ablation study on the invariant
action effect. We deactivate the invariant action effect for ablation study, and the result shows that this component contributes
to the IAEM sample efficiency.

Bank
Heist

Phoenix AirRaid Crazy
Climber

Demon
Attack

Qbert Gopher Double
Dunk

100

120

140

160

180

200

R
at

io
…

of
…

sc
or

es
…

(%
)

score
samples

20

30

40

50

60

70

80

90
R

at
io

…
of

…
sa

m
pl

es
…

(%
)

Figure 4: The comparison on scores and samples in Atari
games. Blue: The ratio of IAEM to the best baseline on
scores. Green: The ratio of IAEM to the best baseline on
samples.

same performances while in others the percents the ratio of
saved samples is still more than 13%. Detailed results on
sample efficiency can be found in appendix B.

IAEM outperforms those three baselines for the follow-
ing reasons: (1) DQN learns policy directly from high-
dimensional observations but IAEM learns from low-
dimensional representations, which can alleviate the distur-
bance from irrelevant information; (2) PRAE learns repre-
sentations without any prior knowledge about the action ef-
fect, which causes repeating learning in the same action ef-
fect among states, in contrast, IAEM saves samples by intro-
ducing the invariance relation in representations; (3) CRAR
tries to introduce the relation of the action effect in the
form of cos-based similarity, which suffers from the discrep-
ancy problem and mainly works in toy environments. IAEM
solves this problem by introducing the individual action ef-

0 5 10 15 20
Number…of…steps…(1e3)

50

25

0

25

50

75

100

A
ve

ra
ge

…
sc

or
e…

pe
r…

ep
is

od
e

Env…1
Env…2-relearn
Env…2-CRAR
Env…2-IAEM

0 5 10 15 20
Number…of…steps…(1e3)

50

25

0

25

50

75

100

A
ve

ra
ge

…
sc

or
e…

pe
r…

ep
is

od
e

Env…1
Env…2-relearn
Env…2-CRAR
Env…2-IAEM

Figure 5: The generalization study for IAEM invariant ac-
tion effect component. Left: A new environment of the same
size but with different barriers. Right: A new environment of
a larger size. The reported score is the mean of the running
average of 3 independent runs.

fect and the switch variable ω.

Illustration of Generalization
The IAEM architecture has the advantage of explicitly train-
ing its different components, and hence can be used for gen-
eralization by retraining some of its components to adjust to
new environments. In particular, one can enforce that states
related to the same underlying dynamics but in different en-
vironments (e.g., a larger-size environment) are mapped into
the representation space with a shared invariant action effect.
In that case, an agent trained in a small environment can be
deployed in a complex and large setting with limited train-
ing.

To illustrate the possibility of using the IAEM for gen-
eralization, we consider putting the agent into the two set-
tings after pretraining: (1) environments with the same size
but barriers in different positions. (2) environments with a
larger size and more barriers, such as the middle of Fig. 2.
In the second set, the env-1 experience available to the agent
is converted to the Env-3 version (the larger version) by
padding the blank space. On the first 1e4 steps, training is
done on the original environment (Env-1) while for the re-
maining 1e4 steps, training is done on the new environments

9265



Double
Dunk

Demon
Attack

Qbert Gopher AirRaid Crazy
Climber

Bank
Heist

Phoenix

Environments

0%

20%

40%

60%

80%
Pe

rc
en

t…
of

…
sa

ve
d…

sa
m

pl
es

BASE
OURS
(-)…D…loss
(-)…w
(-)…w…&…D
(-)…V

(-) invariant

𝐙𝐙𝐭𝐭 𝐙𝐙𝐭𝐭+𝟏𝟏
𝚫𝚫𝐙𝐙𝐃𝐃

𝝎𝝎

×
+

𝚫𝚫𝒁𝒁𝐀𝐀𝐭𝐭

(-) w

𝐙𝐙𝐭𝐭 𝐙𝐙𝐭𝐭+𝟏𝟏

𝚫𝚫𝐙𝐙𝐕𝐕

𝚫𝚫𝐙𝐙𝐃𝐃

+

+

𝚫𝚫𝒁𝒁𝐀𝐀𝐭𝐭

(-) w & individual

𝐙𝐙𝐭𝐭 𝐙𝐙𝐭𝐭+𝟏𝟏

𝚫𝚫𝐙𝐙𝐕𝐕

+

𝚫𝚫𝒁𝒁𝐀𝐀𝐭𝐭

(-) constraint for individual

𝐙𝐙𝐭𝐭 𝐙𝐙𝐭𝐭+𝟏𝟏

𝚫𝚫𝐙𝐙𝐕𝐕

𝚫𝚫𝐙𝐙𝐃𝐃

𝝎𝝎

×

+

+

𝚫𝚫𝒁𝒁𝐀𝐀𝐭𝐭

Figure 6: Left: The ablation study for IAEM on sample-efficiency in various Atari games. Right: The architectures of the
dynamics deactivating some components. Results show that ω, the individual action effect and the invariant action effect all
contribute to the IAEM sample-efficiency.

(Env-2 and Env-3).
Fig. 5 shows that, with the generalization procedure, lit-

tle retraining is sufficient in contrast to directly learning. We
take CRAR (François-Lavet et al. 2019) as the baseline since
it also claims the generalization ability with only replac-
ing some components. IAEM outperforms CRAR because
CRAR can only generalize in environments with different
rendering but doesn’t learn a generalizable action effect w.r.t
a fixed dynamics mechanism.

Visualization of Learned Representations

four actions: four actions: 

Figure 7: Learned abstract states and actions of two different
approaches in the labyrinth task. Left: IAEM. Right: PRAE.
The two learned representations are trained with the same
steps.

To understand the benefits from the invariant action effect,
we visualize the learned representations in Fig. 7, where
vertex represent the state representations z, edges represent
the action effects AϕZ(z, a) and colors represent the action
classes. The representations in the two figures are trained
with the same steps in the same environment. Results show
that: (1) The directions of edges are clustered by their col-
ors, which verifies that we get invariant action effects in the
representation space by the contrastive-based loss. Addition-
ally, the learned action effect can be easily reused in other
states since they are similar. (2) The vertex are connected

concretely by the edges, which means that we get concise
dynamics in the representation space and verifies that the in-
dividual action effects work on making up the discrepancy.
In the perspective of disentanglement, the learned represen-
tation disentangles the overall action effect by splitting it
into the invariant one and the individual one. In contrast, in
PRAE the learned representations are less interpretable and
the action effects cannot be reused.

Ablation Study

To evaluate the contribution of each component, we per-
form an ablation study for IAEM. The results in Fig. 3(c)
show that the invariant component contributes to the opti-
mization of both the transition loss and the policy loss. Fur-
thermore, in Fig. 6 we deactivate more components in Atari,
including the invariant action effect, the switch variable ω,
the normalization constraint for the individual action effect,
and the whole individual action effect. Results show that all
these components contribute to the IAEM sample efficiency,
where the invariant action effect plays the most important
role in IAEM.

Conclusion
In this paper, we propose an effective approach IAEM to ad-
dress the problems of sample efficiency and generalization
in dynamics-based approaches of learning abstract represen-
tations. The main idea of IAEM is to capture the invariance
relations between action effects, through which we learn in-
variant action effects and build an architecture to use this
effect in practice. Extensive experiments on the Grid-World
and Atari demonstrate that our IAEM outperforms other
state-of-the-art dynamics-based approaches, saves samples,
and has great generalization ability. Moreover, IAEM can be
adapted into more RL algorithms, including policy gradient
algorithms and model-based approaches.

9266



References
Anand, A.; Racah, E.; Ozair, S.; Bengio, Y.; Côté, M.; and
Hjelm, R. D. 2019. Unsupervised State Representation
Learning in Atari. In Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, December 8-
14, 2019, Vancouver, BC, Canada, 8766–8779.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2012. The Arcade Learning Environment: An Evaluation
Platform for General Agents. CoRR, abs/1207.4708.
Bellman, R. 1957. A Markovian decision process. Journal
of mathematics and mechanics, 6(5): 679–684.
Biza, O.; Jr., R. P.; van de Meent, J.; and Wong, L. L. S.
2020. Learning discrete state abstractions with deep varia-
tional inference. CoRR, abs/2003.04300.
Castro, P. S.; Moitra, S.; Gelada, C.; Kumar, S.; and Belle-
mare, M. G. 2018. Dopamine: A Research Framework for
Deep Reinforcement Learning. CoRR, abs/1812.06110.
Corneil, D. S.; Gerstner, W.; and Brea, J. 2018. Effi-
cient Model-Based Deep Reinforcement Learning with Vari-
ational State Tabulation. CoRR, abs/1802.04325.
Dean, T. L.; and Givan, R. 1997a. Model Minimization in
Markov Decision Processes. In Proceedings of the Four-
teenth National Conference on Artificial Intelligence and
Ninth Innovative Applications of Artificial Intelligence Con-
ference, AAAI 97, IAAI 97, July 27-31, 1997, Prodence,
Rhode Island, USA, 106–111.
Dean, T. L.; and Givan, R. 1997b. Model Minimization in
Markov Decision Processes. In Kuipers, B.; and Webber,
B. L., eds., Proceedings of the Fourteenth National Confer-
ence on Artificial Intelligence and Ninth Innovative Applica-
tions of Artificial Intelligence Conference, AAAI 97, IAAI 97,
July 27-31, 1997, Providence, Rhode Island, USA, 106–111.
AAAI Press / The MIT Press.
Dwibedi, D.; Tompson, J.; Lynch, C.; and Sermanet, P. 2018.
Learning Actionable Representations from Visual Observa-
tions. In 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, IROS 2018, Madrid, Spain, Oc-
tober 1-5, 2018, 1577–1584.
Feng, H.; You, Z.; Chen, M.; Zhang, T.; Zhu, M.; Wu, F.;
Wu, C.; and Chen, W. 2021a. KD3A: Unsupervised Multi-
Source Decentralized Domain Adaptation via Knowledge
Distillation. In Meila, M.; and Zhang, T., eds., Proceedings
of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research,
3274–3283. PMLR.
Feng, H.-Z.; Kong, K.; Chen, M.; Zhang, T.; Zhu, M.; and
Chen, W. 2021b. SHOT-VAE: Semi-supervised Deep Gen-
erative Models With Label-aware ELBO Approximations.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 35(8): 7413–7421.
François-Lavet; Bengio, Y.; Precup, D.; and Pineau, J. 2019.
Combined Reinforcement Learning a Abstract Representa-
tions. In Proceedings of the 33rd AAAI Conference on Arti-
ficial Intelligence, 3582–3589.

Gelada, C.; Kumar, S.; Buckman, J.; Nachum, O.; and Belle-
mare, M. G. 2019. DeepMDP: Learning Continuous Latent
Space Models for Representation Learning. In Proceedings
of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA,
2170–2179.
Hafner, D.; Lillicrap, T. P.; Fischer, I.; Villegas, R.; Ha, D.;
Lee, H.; and Davidson, J. 2019. Learning Latent Dynamics
for Planning from Pixels. In Proceedings of the 36th In-
ternational Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, 2555–2565.
Hénaff, O. J.; Srinivas, A.; Fauw, J. D.; Raza, A.; Doer-
sch, C.; Eslami, S. M. A.; and van den Oord, A. 2019.
Data-Efficient Image Recognition with Contrastive Predic-
tive Coding. CoRR, abs/1905.09272.
Hessel, M.; Modayil, J.; van Hasselt, H.; Schaul, T.; Ostro-
vski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M. G.;
and Silver, D. 2018. Rainbow: Combining Improvements
in Deep Reinforcement Learning. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial In-
telligence (IAAI-18), and the 8th AAAI Symposium on Edu-
cational Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, 3215–3222.
Higgins, I.; Pal, A.; Rusu, A. A.; Matthey, L.; Burgess,
C.; Pritzel, A.; Botnick, M.; Blundell, C.; and Lerchner, A.
2017. DARLA: Improng Zero-Shot Transfer in Reinforce-
ment Learning. In Proceedings of the 34th International
Conference on Machine Learning, 1480–1490.
Igl, M.; Zintgraf, L. M.; Le, T. A.; Wood, F.; and White-
son, S. 2018. Deep Variational Reinforcement Learning for
POMDPs. In Proceedings of the 35th International Confer-
ence on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, 2122–2131.
Kipf, T. N.; van der Pol, E.; and Welling, M. 2020. Con-
trastive Learning of Structured World Models. In 8th In-
ternational Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap,
T. P.; Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016.
Asynchronous Methods for Deep Reinforcement Learning.
In Proceedings of the 33nd International Conference on Ma-
chine Learning, ICML 2016, New York City, NY, USA, June
19-24, 2016, 1928–1937.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. A. 2013.
Playing Atari with Deep Reinforcement Learning. CoRR,
abs/1312.5602.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nat., 518(7540): 529–533.
Randran, B.; and Barto, A. G. 2001. Symmetries and model
minimization in markov decision processes. CoRR.

9267



Randran, B.; and Barto, A. G. 2004. Approximate ho-
momorphisms: A framework for non-exact minimization in
Markov decision processes. CoRR.
Sermanet, P.; Lynch, C.; Chebotar, Y.; Hsu, J.; Jang, E.;
Schaal, S.; and Levine, S. 2018. Time-Contrastive Net-
works: Self-Supervised Learning from Video. In 2018
IEEE International Conference on Robotics and Automa-
tion, ICRA 2018, Brisbane, Australia, May 21-25, 2018,
1134–1141.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.;
Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T. P.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of Go with deep neural networks
and tree search. Nat., 529(7587): 484–489.
Srinivas, A.; Laskin, M.; and Abbeel, P. 2020. CURL:
Contrastive Unsupersed Representations for Reinforcement
Learning. CoRR, abs/2004.04136.
Tassa, Y.; Doron, Y.; Muldal, A.; Erez, T.; Li, Y.;
de Las Casas, D.; Budden, D.; Abdolmaleki, A.; Merel, J.;
Lefrancq, A.; Lillicrap, T. P.; and Riedmiller, M. A. 2018.
DeepMind Control Suite. CoRR, abs/1801.00690.
van den Oord, A.; Li, Y.; and nyals, O. 2018. Representa-
tion Learning with Contrastive Predictive Coding. CoRR,
abs/1807.03748.
van der Pol, E.; Kipf, T.; Oliehoek, F. A.; and Welling, M.
2020. Plannable Approximations to MDP Homomorphisms:
Equivariance under Actions. In Proceedings of the 19th In-
ternational Conference on Autonomous Agents and Multia-
gent Systems, 1431–1439.
Zhang, A.; Lyle, C.; Sodhani, S.; Filos, A.; Kwiatkowska,
M.; Pineau, J.; Gal, Y.; and Precup, D. 2020a. Invariant
Causal Prediction for Block MDPs. In Proceedings of the
37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, 11214–11224.
Zhang, A.; McAllister, R.; Calandra, R.; Gal, Y.; and
Levine, S. 2020b. Learning Invariant Representations for
Reinforcement Learning without Reconstruction. CoRR,
abs/2006.10742.
Zhang, T.; Feng, H.; Chen, W.; Chen, Z.; Zheng, W.; Luo,
X.-N.; Huang, W.; and Tung, A. K. H. 2021. ChartNavi-
gator: An Interactive Pattern Identification and Annotation
Framework for Charts. IEEE Transactions on Knowledge
and Data Engineering, 1–1.

9268


