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Abstract

Continuous-depth neural networks, such as the Neural Or-
dinary Differential Equations (ODEs), have aroused a great
deal of interest from the communities of machine learning
and data science in recent years, which bridge the connection
between deep neural networks and dynamical systems. In this
article, we introduce a new sort of continuous-depth neural
network, called the Neural Piecewise-Constant Delay Differ-
ential Equations (PCDDEs). Here, unlike the recently pro-
posed framework of the Neural Delay Differential Equations
(DDEs), we transform the single delay into the piecewise-
constant delay(s). The Neural PCDDEs with such a transfor-
mation, on one hand, inherit the strength of universal approx-
imating capability in Neural DDEs. On the other hand, the
Neural PCDDEs, leveraging the contributions of the informa-
tion from the multiple previous time steps, further promote
the modeling capability without augmenting the network di-
mension. With such a promotion, we show that the Neu-
ral PCDDEs do outperform the several existing continuous-
depth neural frameworks on the one-dimensional piecewise-
constant delay population dynamics and real-world datasets,
including MNIST, CIFAR10, and SVHN.

Introduction

Recently, many frameworks have been established, connect-
ing dynamical systems tightly with neural networks and pro-
moting the network performances significantly (E 2017; Li
et al. 2017; Haber and Ruthotto 2017; Chang et al. 2017;
Pathak et al. 2018; Fang, Lin, and Luo 2018; Li and Hao
2018; Lu et al. 2018; E, Han, and Li 2019; Chang et al. 2019;
Ruthotto and Haber 2019; Zhang et al. 2019; Zhu, Ma, and
Lin 2019; Tang et al. 2020). One framework of milestone is
the Neural Ordinary Differential Equations (NODEjs), also
regarded as continuous-depth neural networks (Chen et al.
2018). The framework non-trivially extends the traditional
residual neural networks (ResNets) (He et al. 2016) to para-
metric ordinary differential equations (ODEs), where the
time in NODE:s is treated as the “depth” of the ResNets.
Actually, different from the traditional neural networks, the
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NODEs model the vector fields of the ODEs through op-
timizing their parameters with the back-propagation algo-
rithm and the ODE solver based on the training data and
a predefined loss function. In addition, the NODEs contain
a broad range of architectures, including the feed-forward
neural networks and the convolution neural networks.

Owing to the constant memory cost, the continuous dy-
namical behavior, and the naturally-rooted invertibility of
the NODEs, applications of such a framework to model-
ing physical systems are growing. Examples abound: data
analytics on the time series with irregular sampling dura-
tion (Rubanova, Chen, and Duvenaud 2019; De Brouwer
et al. 2019; Kidger et al. 2020), generations of the contin-
uous normalizing flow (Chen et al. 2018; Grathwohl et al.
2018; Finlay et al. 2020; Deng et al. 2020; Kelly et al.
2020), and representations of the point clouds (Yang et al.
2019; Rempe et al. 2020). It is worthwhile to mention that
the framework of NODEs, in spite of its wide applicability,
is not of a universal approximator. It thus cannot success-
fully learn representative maps such as the reflections or the
concentric annuli due to the homeomorphism property of
ODEs (Dupont, Doucet, and Teh 2019; Zhang et al. 2020).
To address this problem, several practical schemes (Dupont,
Doucet, and Teh 2019; Massaroli et al. 2020; Zhu, Guo, and
Lin 2021) have been suggested and implemented, among
which the Neural Delay Differential Equations (NDDEs)
show an outstanding efficacy in approximating functionals
based on given data (Zhu, Guo, and Lin 2021). Additionally,
variants of extensions and applications of the NODEs have
been proposed in recent years, including the partial differ-
ential equations (Han, Jentzen, and Weinan 2018; Ruthotto
and Haber 2019; Sun, Zhang, and Schaeffer 2020) and the
stochastic differential equations (Liu et al. 2019; Jia and
Benson 2019; Li et al. 2020; Song et al. 2020).

In this article, inspired by a recent framework of ND-
DEs, as mentioned above, we develop a new framework
of continuous-depth neural networks with different config-
urations of delay(s). Although the NDDEs not only allow
the trajectories to intersect with each other even in a lower-
dimensional phase space but also accurately model repre-
sentative delayed physical/biological systems, such as the
Mackey-Glass system (Mackey and Glass 1977), they likely
suffer from tremendously high computational cost. Clearly,



such a shortcoming is due to the persistent existence of the
effect induced by ¢ — 7, the dynamical delay. In addition,
continuously improving the feature representation of a neu-
ral architecture is also a challenging direction of machine
learning. To conquer these difficulties, we therefore pro-
pose the model as mentioned above. Indeed, the proposed
model mainly consists of the following two configurations:
(1) novelly transforming the dynamical delay in NDDEs into
a piecewise-constant delay, viz. |t — 7], and (2) introducing
multiple piecewise-constant delays into the vector field to
significantly promote the feature representation.

The advantages of the first configuration include preserv-
ing the computational efficacy with the simple piecewise-
constant delay and maintaining the capabilities of model-
ing complex dynamics (chaos) using the discontinuous na-
ture of the particular form of this delay. The advantage of
the second configuration involves leveraging the information
from not only the current time point but also many previous
time points and thus strengthening the feature propagation.
All these advantages definitely result in a better feature rep-
resentation, comparing to the NDDEs. Mathematically, our
model is originated from a well-developed class of delay dif-
ferential equations, called the piecewise-constant delay dif-
ferential equations (PCDDEs) (Carvalho and Cooke 1988;
Cooke and Wiener 1991; Jayasree and Deo 1992). We there-
fore refer our model of continuous-depth neural networks
to the neural PCDDEs (NPCDDE:s). To further improve the
performance, we propose an extension of the NPCDDEs
without sharing the parameters in different time duration,
called the unshared NPCDDEs (UNPCDDEs).

To summarize, the major contributions of this article are
multi-folded, including:

e establishment of a generic continuous-depth model,
NPCDDE:s, such that typical neural networks, such as
ResNets and NODEs, are the special cases of the UN-
PCDDEs,

« validation of the NPCDDEs having the capability of uni-
versal approximation (see Proposition 2),

e formulation of the adjoint dynamical system and the
backward gradients for the NPCDDEs (see Theorem 2),
and

* demonstrations of the powerful nonlinear representa-
tion of NPCDDEs on the synthetic data produced by
the one-dimensional piecewise-constant delay popula-
tion dynamics and on the representative image datasets,
i.e., MNIST, CIFAR10, and SVHN, as well.

Related Work

® Neural Ordinary Differential Equations As pointed
out by (Chen et al. 2018), the NODEs can be regarded as the
continuous version of the ResNets having an infinite number
of layers (He et al. 2016). The residual block of the ResNets
is mathematically written as z;; = z: + f(24, 6;), where
7z, is the feature at the ¢-th layer, and f(-,-) is a dimension-
preserving and nonlinear function parametrized by a neural
network with 6., the parameter vector pending for learning.
Notably, such a transformation could be viewed as the spe-
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cial case of the following discrete-time equations:

Ziy1 — 2y
ftHl 0
At f(zta t)
with At = 1. In other words, as At in (1) is set as an in-
finitesimal increment, the ResNets could be regarded as the
Euler discretization of the NODEs which read:

dz(t)
2 = 1al0),0).
Here, the shared parameter vector 6, which unifies the vec-
tor 6, of every layer in Eq. (1), is injected into the vector
field across the finite time horizon, to achieve parameter ef-
ficiency of the NODEs. As such, the NODEs can be used
to approximate some unknown function F' : x — F(x).
Specifically, the approximation is achieved in the following
manner: Constructing a flow of the NODE:s starting from the
initial state z(0) = x and ending at the final state z(7") with
z(T) ~ F(x). Thus, a standard framework of the NODEs,
which takes the input as its initial state and the feature rep-

resentation as the final state, is formulated as:

(D

2

~
~

z(T) = z(0) +/0 f(z(t),0)dt

— ODESolve(z(0), /,0, T, 0),
z(0) = input,

3)

where 7' is the final time and the solution of the above ODE
can be numerically obtained by the standard ODE solver us-
ing adaptive schemes. Indeed, a supervised learning task can
be formulated as:

ming L(z(T)),

s.t. Eq. (2) holds for any ¢ € [0, 7], )

where L(+) is a predefined loss function. To optimize the loss
function in (4), we need to calculate the gradient with respect
to the parameter vector. This calculation can be implemented
with a memory in an order of O(1) by employing the adjoint
sensitivity method (Chen et al. 2018; Pontryagin 1987) as:

dL /0 +Of(z(t),0)
T

dag 90
82—(Lt) is called the adjoint, representing the

a(t) dt, 5)

where a(t) :=
gradient with respect to the hidden states z(¢) at each time
point ¢.

@ Variants of NODEs As shown in (Dupont, Doucet, and
Teh 2019), there are still some typical class of functions that
the NODEs cannot represent. For instance, the reflections,
defined by g14 : R — R with g14(1) = —1 and g14(—1) =
1, and the concentric annuli, defined by gaq : R? — R with

92a(x) = { 1_,1’

where || - || is the Ly norm, and 0 < r; < r9 < r3. Such
successful constructions of the two counterexamples are at-
tributed to the fact that the feature mapping from the input
(i.e., the initial state) to the features (i.e., the final state) by

if ||x] < rq,
ifro <||x|| < rs,

(6)



the NODEs is a homeomorphism. Thus, the features always
preserve the topology of the input domain, which mathemat-
ically results in the impossibility of separating the two con-
nected regions in (6). A few practical strategies have been
timely proposed to address this problem. For example, pro-
posed creatively in (Dupont, Doucet, and Teh 2019) was an
argumentation of the input domain into a higher dimensional
space, which makes it possible to have more complicated dy-
namics emergent in the Augmented NODEs. Very recently,
articulated in (Zhu, Guo, and Lin 2021) was a novel frame-
work of the NDDEs to address this issue without argumenta-
tion. Actually, such a framework was inspired by a broader
class of functional differential equations, named delay dif-
ferential equations (DDEs), where a time delay was intro-
duced (Erneux 2009). Fox example, a simple form of ND-
DEs reads:

P flatt—7).0), 1 0.7

z(t) = ¢(t) = x, t € [-7,0],

N

where 7 is the delay effect and ¢(t) is the initial func-
tion. Hereafter, we assume ¢(t) as a constant function, i.e.,
¢(t) = x with input x. Due to the infinite-dimension na-
ture of the NDDEs, the crossing orbits can be existent in
the lower-dimensional phase space. More significantly as
demonstrated in (Zhu, Guo, and Lin 2021), the NDDESs have
a capability of universal approximation with 7' = 7 in (7).

® Control Theory Training a continuous-depth neural
network can be regarded as a task of solving an optimal
control problem with a predefined loss function, where the
parameters in the network act as the controller (Pontryagin
1987; Chen et al. 2018; E, Han, and Li 2019). Thus, de-
veloping a new sort of continuous-depth neural network is
intrinsic or equivalent to designing an effective controller.
Such a controller could be in a form of open-loop or closed-
loop. Therefore, from a viewpoint of control, all the exist-
ing continuous-depth neural networks can be addressed as
control problems. However, these problems require differ-
ent forms of controllers. Specifically, when we consider the

continuous-depth neural network dzgt) = f(z(t),u(t),t),
u(t) is regarded as a controller. For example, u(t) treated
as constant parameters yields the network frameworks pro-
posed in (Chen et al. 2018), u(t) as a data-driven controller
yields a framework in (Massaroli et al. 2020), and u(t)
as other forms of controllers brings more fruitful network
structures (Chalvidal et al. 2020; Li et al. 2020; Kidger et al.
2020; Zhu, Guo, and Lin 2021). Here, the mission of this
work is to design a delayed feedback controller for render-
ing a continuous-depth neural network more effectively in
coping with synthetic or/and real-world datasets.

Neural Piecewise-Constant Delay Differential
Equations
In this section, we propose a new framework of continuous-
depth neural networks with delay (i.e., the NPCDDEs) by

an articulated integration of some tools from machine learn-
ing and dynamical systems: the NDDEs and the piecewise-
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constant DDEs (Carvalho and Cooke 1988; Cooke and
Wiener 1991; Jayasree and Deo 1992).

We first transform the delay of the NDDE:s in (7) into a
form of the piecewise-constant delay (Carvalho and Cooke
1988; Cooke and Wiener 1991; Jayasree and Deo 1992), so
that we have

dz(t) t
i f(z(\j_J 7),0),t €[0,T], ®
z(0) = x,

where the final time 7" = n7 and n is supposed to be a posi-
tive integer hereafter. We note that the NPCDDEs in (8) with
T = 7 is exactly the NDDEs in (7), owning the universal ap-
proximation as mentioned before. As the vector filed of the
NPCDDEs in (8) is constant in each interval [k7, kT + 7] for
k=0,1,..., [ L], the simple NPCDDEs in (8) can be treated
as a discrete-time dynamical system:

z(k +1) = z(k) + 7f(z(k), 0) := F(z(k),0). (9)

Actually, this iterative property of dynamical systems en-
ables the NPCDDE:s in (8) to learn some functions with spe-
cific structures more effectively. For example, if the map

F(x) = c?z with a large real number ¢ > 0 is pending
for learning and the vector field is set as:
t t
ra|t] o) =aa| | n4s ao)

with 7 = 1 and the initial parameters a = b = 0 before
training, then, we only use 7' = 27 as the final time for the
NPCDDE:s in (8) and require x(7) to learn the small coeffi-
cient in the linear function = +— cx (or, equivalently, require
f tolearn x — (c — 1)x). As such, the feature z(T)
(x(7))? ~ c?z naturally approximates the above-set func-
tion F'(x), because F'(z) can be simply represented as two
iterations of the function F'(z) = cx, ie., FoF(z) = F(x).
We experimentally show the structural representation power
in Fig. 1, where the training loss of the NPCDDEs in (8)
with T' = 27 decreases faster than that only with T’ = 7.
Given the above example, the following question arises
naturally: For any given function z — F'(x), does there exist

a function x — F'(x) such that the functional equation
FoF(x)=F(z) (11)

holds? Unfortunately, the answer is no, which is rigorously
stated in the following proposition.

~
~
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Figure 1: The training processes for fitting the function
F(x) = 16z using the NPCDDE:s in (8), respectively, with
the final times 7' = 7 and T' = 27. The training loses (left),
and the evolution of two parameters a (middle), and b (right),
as defined in (10) during the training processes.



Proposition 1 (Radovanovic 2007) There does not exist any
function f : R — R such that f(f(z)) = x? — 2 for all
rzeR

As shown in Proposition 1, although the iterative property of
NPCDDE:s in (8) allows the effective learning of functions
with certain structure, the solution of the functional equation
(11) does not always exist. This thus implies that (8) cannot
represent a wide class of functions (Rice, Schweizer, and
Sklar 1980; Chiescu and Gdea 2011).

To further elaborate this point, weuse ' = 7 and T' = 27,
respectively, for the NPCDDEs in (8) to model the function
g24(x) as defined in (6). Clearly, Fig. 2 shows that the train-
ing processes for fitting the concentric annuli using (8) with
the two delays are different. Contrary to the preceding ex-
ample, the training loss of one with T" = 7 decreases much
faster than that of the one with 7' = 27.

In order to sustain the capability of universal approxima-
tion from the NDDE:s to the current framework, we modify
the NPCDDE:s in (8) by adding a skip connection from the
time O to the final time 27 in the following manner:

dz(tt) — f(a M ), 2( V TJ 7),0), t € [0,27],

T T

z(—7) = z(0) = x.

(12)
As can be seen from Fig. 2, the training loss of the modified
NPCDDE:s in (12)) decreases outstandingly faster than that
of the NPCDDEs in (8) with T' = 27 and that of NODEs.
Also, it is slightly faster than the one with T = 7. More-
over, the dynamical behaviors of the feature spaces during
the training processes using different neural frameworks are
shown in Fig. 3. In particular, the NPCDDEs in (12) first
separate the two clusters among these models at the 3rd
training epoch, which is beyond the ability of the baselines.
More importantly, the following theorem demonstrates
that NPCDDE:s in (12) are universal approximators, whose

proof is provided in the supplementary material.

Theorem 1 (Universal approximation of the NPCDDEs in
(12)) Consider the NPCDDEs in (12) of n-dimension. If,
for any given function F' : R" — R", there exists a neu-
ral network g(x,0) that can approximate the map G(x) =
5 [F(x) — x|, then the NPCDDE: that can learn the map
X — F(x). In other words, we have z(T') =~ F(x) provided
that both the initial states z(—7) and z(0) are set as x, the

input.

Notice that, for the NPCDDEs in (8) and the modified
NPCDDE:s in (12), their vector fields keep constant in a 7
period of time. More generally, we can extend these models
by adding the dependency on the current state, enlarging the
value of the final time, and introducing more skip connec-
tions from the previous time to the current time. As such, a
more generic framework of the NPCDDE:s reads:

dzsf) :f(z(t),z(m = ...,z(v _T”TJ ),6),
t€[0,T],
z(—n7)=---=12z(—7) = 2(0) = x,

0.6 ——NPCDDE NODE NPCDDE1
6| — NPCDDE1
" — NPCDDE2
@04 NODE N\
S ot NN
0.2 ¢ o \ . ™
b 2
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Epochs PRI
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P
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Figure 2: The training processes for fitting the func-
tion go4(x). (a) The training loses, respectively, using the
NODEs, the NPCDDEs in (8) withn = 1 and 7 = 1, the
NPCDDE:s in (8) with n = 2 and 7 = 0.5, and the special
NPCDDE:s in (12) with 7 = 0.5. (b) A part of the training
dataset for visualization. The flows mapping from the initial
states to the target states, respectively, by the NODE:s (c), the
NPCDDE:s in (8) with n = 2 and 7 = 0.5 (d), NPCDDEs
in (8) withn = 1 and 7 = 1 (e), and the special NPCDDEs
in (12) with 7 = 0.5 (f). The red (resp. blue) points and the
yellow (resp. cyan color) points are the initial states and the
final states of all the flows, respectively.

where T" = nt with n being a positive integer. Analogous to
the proof of Theorem 1, the universal approximation of the
NPCDDE:s in (13) can be validated (see Proposition 2).

Proposition 2 The NPCDDE:s in (13) have a capability of
universal approximation.

To further improve the modeling capability of the NPCD-
DEs, we propose an extension of the NPCDDEs without
sharing the parameters, which reads:

dz(t t t—
0 —rat)al| £ a0

z(0),0y),t € [kT, kT + 7],
z(0) =x,

where 6, is the parameter vector used in the time interval
[k, kT + 7] for k = 0,1, ...,n — 1. For simplicity, we name
such a model as unshared NPCDDEs (UNPCDDEs). As in
the ResNets (1), a typical neural network, the parameters in
each layer are independent with the parameters in the other
layer. Moreover, the gradients of the loss with respect to the
parameters of the UNPCDDEs in (14) are shown in Theo-
rem 2, whose proof is provided in the supplementary mate-
rial. Moreover, setting 6;, = 0 straightforwardly in Theorem
2 enables us to compute the gradients of the NPCDDE:s in
(13).

Theorem 2 (Backward gradients of the UNPCDDE:s in
(14)) Consider the loss function L(z(T)) with the final time
T = nr. Thus, we have

dL kr - Of
— = —a(t) =——dt 15
= e g (1)

(14)
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Figure 3: The dynamical behaviors of the feature spaces dur-
ing the training processes (totally 6 epochs from the left col-
umn to the right column) for fitting go4(x) using different
models: the NODE:s (the top row), the NPCDDEs in (8) with
n = 1 and 7 = 1 (the second row), the NPCDDE:s in (8)
with n = 2 and 7 = 0.5 (the third row), and the special
NPCDDE:s in (12) with 7 = 0.5 (the bottom row).

where the dynamics of the adjoint can be specified as:

da(t) _ T Of
dt = a(t) 8T(t)7 t (S [kT, kT + T]
kT
of (16)
a(lr :alT+/ —a(t)’ ,
( ) ( ) kT+1 ( ) 5‘z(l¢)
l:0717"' 7k7
where the backward initial condition a(T) = agé((;))) and

k=n—-1,n—-2,---,0.

We note that in (16), due to the skip connections, anal-
ogous to DenseNets (Huang et al. 2017), the gradients are
accumulated from multiple paths through the reversed skip
connections in the backward direction, which likely renders
the parameters optimized sufficiently. Additionally, if the
loss function L(z(T")) depends on the states at different time
points, viz., the new loss function L(z(tg), z(t1), ..., z2(tN)),
we need to update instantly the adjoint state in the backward
direction by adding the partial derivative of the loss at the
observational time point, viz. a(¢;) = a(t;) + %. For the
specific tasks of classification and regression, refer to the
section of Experiments.

Major Properties of NPCDDEs

The NPCDDEs in (13) and the UNPCDDE:s in (14) gener-
alize the ResNets and the NODEs as well. Also, they have
strong connections with the Augmented NODEs. Moreover,
the discontinuous nature of the NPCDDEs enables us to
model complex dynamics beyond the NODEs, the Aug-
mented NODEs, and the NDDE:s. Lastly, the NPCDDEs are
shown to enjoy advantages in computation over the NDDEs.
In the sequel, we discuss these properties.
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® Both the ResNets and the NODEs are Special Cases
of the UNPCDDEs in (14). We emphasize that any
dimension-preserving neural networks (multi-layer residual
blocks) are special cases of the UNPCDDEs. Actually, one
can enforce the z(t),z(| == | 7),z(| =27 | 1), -, 2(0) as
the dummy variables in the vector field of (13) by assigning
the weights connected to these variables to be zero, except
for the variable z(| £ | 7). Moreover, letting 7 = 1 results in

T

very simple unshared NPCDDE:s as:
dz(t
ist) — [(a(k),04), t € [k, k+1], 2(0) = x.
Due to the vector field of (17) keeping constant in each in-
terval [k, k + 1], we have
z(k+ 1) = z(k) + f(z(k),0), z(0) = x, (18)
which is exactly the form of the ResNets (1). In addition,
if we letz(| 1] 7),z(| 2] 7), ..., 2(0) as the dummy vari-
ables in the vector field of (13) and set 8, = 6, the UN-
PCDDE:s in (14) indeed become the typical NODEs. Inter-
estingly, though the NODEs are inspired by the ResNets,
they are not equivalent to each other because of the limited

modeling capability of the NODEs. But UNPCDDEs in (14)
provides a more general form of the two.

©® Connection to Augmented NODEs The NPCDDEs in
(13) can be viewed as a particular form of the Augmented
NODE:s:

a7

dz(tt) = f(a(®), 20(t), 21(2), -, 20 (1), 0), ¢ € [0, T,
dZdot(t) _ 07Z0(t) = z( j_J 7'),
dZn(t) B t—nrt

7 07Zn(t) = Z( p J 7_)7
z(—n7) = -2z(-7) = 2(0) = x.

(19)
Hence, we can apply the framework of the NODEs to cop-
ing with the NPCDDEs by solving the Augmented NODEs
in (19). It is worthwhile to emphasize that the Augmented
NODE:s in (19) are not trivially equivalent to the traditional
Augmented NODEs developed in (Dupont, Doucet, and Teh
2019). In fact, the dynamics of z;(t) in (19) are piecewise-
constant (but z(t) is continuous) and thus discontinuous
at each time instant k7, while the traditional Augmented
NODE:s still belong to the framework of NODEs whose dy-
namics are continuously evolving. The benefits of disconti-
nuity are specified in the following.

@ Discontinuity of the Piecewise-Constant Delay(s) No-
tice that | -] used in the piecewise-constant delay(s) is a dis-
continuous function, which makes the first-order derivative
of the function discontinuous at each key time point (i.e.,
integer multiple of the time delay). This characteristic over-
comes a huge limitation, the homeomorphisms/continuity of
the trajectories produced by the NODEs, and thus enhances
the flexibility of the NPCDDEs to handling plenty of com-
plex dynamics (e.g., jumping derivatives and chaos evolv-
ing in the lower dimensional space). We will validate this
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Figure 4: Sketches of different kinds of continuous-depth neural networks, including the NODEs, the NDDEs, and our newly
proposed framework, the NPCDDEs. Specifically, ¢(t) = z(0) as a constant function is the initial function for the NDDEs. For
the NPCDDEs in (13), at each time point in the interval [k7, kT 4 7], the time dependencies are unaltered, different from the

dynamical delay in the NDDEs.

advantage in the section of Experiments. Additionally, the
simple Euler scheme for the ODEs in (1) is actually a special

PCDDE: 21 — f(z(| & | At)) (Cooke and Wiener 1991).
Based on the discontinuous nature, the approximation of the
DDE:s using the PCDDEs has been validated in (Cooke and
Wiener 1991). Finally, such kind of discontinuous settings
could be seen as typical forms of those discontinuous con-
trol strategies that are frequently used in control problems
(Evans 1983; Lewis, Vrabie, and Syrmos 2012). Actually,
discontinuous control strategies can bring benefits on time
and energy consumption (Sun et al. 2017).

® Computation Advantages of NPCDDEs over NDDEs
For solving the conventional NDDEs in (7), we need to re-
compute the delay states in time using appropriate ODE
solver (Zhu, Guo, and Lin 2021), which requires O(n) mem-
ory and O(nK) computation, where K is the adaptive depth
of the ODE solver. On the contrary, for NPCDDE:s in (13)
and the unshared NPCDDE:s in (13), the delays are constant,
and thus recomputing is not needed. As a result, for NPCD-
DEs (or UNPCDDEs), computational cost is approximately
in orders of O(n) and O(K). Thus, the computational cost
of NPCDDE:s is cheaper than NDDEs.

Experiments
Population Dynamics: One-Dimensional PCDDE
We consider a 1-d PCDDE, which reads:

dz(t)
dt

where the growth parameter ¢ > 0 (Carvalho and Cooke
1988; Cooke and Wiener 1991). The above PCDDE (20) is
analogous to the well-known, first-order nonlinear logistic
differential equation of one-dimension, which describes the
growth dynamics of a single population and can be written
as:

=az(t)(1 —z(|t])), z(0) =29 > 0. (20)

dz(t)
dt

Clearly, replacing the term 1 — x(¢) in the vector field of
(21) by the term 1 — x(|t]) results in the vector field of
(20). For each given a > 0 and ¢ > 0, if we consider
the state x(¢) at the integer time instants ¢ = 0,1,2,---,
the corresponding discrete sequence, (0),z(1),2(2),- -,
satisfy the following discrete dynamical system:

=az(t)(1 —=z(t)), z(0) =29 >0. (21)

z(t+1) = z(t)e® =0 =0,1,2,-- . (22)

9247

Thus, we study the function

fa(z) = 2377 2 €[0,00). (23)

Direct computation indicates that the function f,(-) in (23)
is a C''-unimodal map in [0, co] with its maximal value as
fa(z*) = fa(L). Thus, [0, 1] is a strictly increasing regime
of this function while [%, 00) is a strictly decreasing regime.
As pointed out in (Carvalho and Cooke 1988; Cooke and
Wiener 1991), the discrete dynamical system (22) can ex-
hibit complex dynamics including chaos. More precisely, at
a® = 3.11670..., the solution of (22) with the initial value
z(0) = xp = 2 is periodic and asymptotically stable with
a period of three, so that fo« o fy+ o fox(xg) = zq. This
further implies that the map with the adjustable parameter a
admits period-doubling bifurcations and thus has chaotic dy-
namics according to the well-known Sharkovskii Theorem
(Li and Yorke 1975; Carvalho and Cooke 1988; Cooke and
Wiener 1991). Moreover, since the discrete dynamical sys-
tem (22) could be regarded as the sampled system with in-
teger sampling time instants from the original PCDDE (20),
this PCDDE exhibits chaotic as well for a in the vicinity of
a”*. We thereby test the NODEs, the NDDEs, the NPCDDEs,
and the Augmented NODEs on the piecewise-constant delay
population dynamics (20), respectively, with a = 2.0 and
a = 3.2, which corresponds to two regimes of oscillation
and chaos. Moreover, as can be seen from Fig. 5, the train-
ing losses and the test losses of the NPCDDEs decrease sig-
nificantly, compared to those of the other models. Addition-
ally, in the oscillation regime, the losses of the NPCDDEs
approach a very low level in both training and test stages,
while in the chaos regime, the NPCDDEs can achieve short-
term prediction in an accurate manner. Naturally, it is hard to
achieve long-term prediction because of the sensitive inde-
pendence of initial conditions in a chaotic system. Here, for
training, we produce 100 time series from different initial
states in the time interval [0, 3] with 0.1 as the sampling pe-
riod. Thus, still with 0.1 as the sampling period, we use the
final states of the training data as the initial states for the 100
test time series in the next time interval [3, 13]. More specific
configurations for our numerical experiments are provided
in the supplementary material.

Image Datasets

We conduct experiments on several image datasets, includ-
ing MNIST, CIFAR10, SVHN, by using the (unshared)
NPCDDE:s and the other baselines. In the experiments, we
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Figure 5: The training losses and the test losses of the piecewise-constant delay population dynamics (20) with the growth
parameter a = 2.0 (the oscillation regime, top) and a = 3.2 (the chaos regime, bottom), respectively, by using the NPCDDEs,
the NDDEs, the NODEs, and the Agumented NODEs (where the augmented dimension equals to 1). The panels in the first
column depict the training losses. The panels from the second column to the fifth column depict the test losses over the time

intervals, respectively, with the lengths 1, 2, 5, and 10.

follow the setup in the work (Zhu, Guo, and Lin 2021). For a
fair comparison, we construct all models without augment-
ing the input space, and for the NDDEs, we assume that
the initial function keeps constant (i.e., the initial function
¢(t) = input for ¢ < 0), which is different from the ini-
tial function used for the NDDEs in (Zhu, Guo, and Lin
2021). We note that our models are orthogonal to these mod-
els, since one can also augment the input space and model
the initial state as the feature of an NODE in the frame-
work of NPCDDEs. Additionally, the number of the param-
eters for all models are almost the same (84k params for
MNIST, 107k params for CIFAR10 and SVHN). Notably,
the vector fields of all the models are parameterized with the
convolutional architectures (Dupont, Doucet, and Teh 2019;
Zhu, Guo, and Lin 2021), where the arguments that ap-
peared in the vector fields are concatenated and then fed into
the convolutional neural networks (CNNs). For example, for
the NDDE:s, the vector field is f(concat(z(t),z(t — 7)), 0),
where concat(-, ) is a concatenation operator for two ten-
sors on the channel dimension. Moreover, the initial states
for these models are just the images from the datasets. It
is observed that our models outperform the baselines on
these datasets. The detailed test accuracies are shown, re-
spectively, in Tab. 1. For the specific training configurations
for all the models and more experiments equipped with aug-
mentation (Dupont, Doucet, and Teh 2019), please refer to
the supplementary material.

Discussion

As shown above, the NPCDDEs achieve good performances
not only on the 1-d PCDDE example but on the image
datasets as well. However, such NPCDDEs are not the per-
fect framework, still having some limitations. Here, we sug-
gest several directions for future study, including: 1) For an
NPCDDE, seeking a good strategy to determine the num-
ber of the skip connections and the specific value of each
delay for different tasks, 2) applying the NPCDDEs to the
other suitable real-world datasets, such as the time series
with the piecewise-constant delay effects, 3) providing more
analytical results for the NPCDDEs to guarantee the stability
and robustness, and 4) leveraging the optimal control theory
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CIFAR10 MNIST SVHN
NODE 53.92% £0.67  96.21% £ 0.66  80.66% =+ 0.56
NDDE 55.69% £0.39  96.22% +£0.55  81.49% + 0.09
NPCDDE2 56.03% £0.25  97.32% +0.30  82.63% =+ 0.36
UNPCDDE2  56.22% +0.42  97.43% +0.13  82.99% =+ 0.23
NPCDDE3 56.34% £ 0.51  97.34% +0.10  82.38% £ 0.35
UNPCDDE3  56.09% + 0.37  97.52% +0.14  83.19% =+ 0.32
NPCDDES 56.59% +0.44  97.40% +£0.19  82.62% + 0.69
UNPCDDES 56.73% +0.54 97.69% +0.13 83.45% +0.38

Table 1: The test accuracies with their standard devia-
tions over 5 realizations of different models on the image
datasets. In the first column, the integer ¢ in NPCDDE: or
UNPCDDE¢: means that n = ¢ for the NPCDDE:s in (13) or
for the UNPCDDE:s in (14). The results for the NODEs and
NDDEs are reported in (Zhu, Guo, and Lin 2021). The final
time 7" for all models is assigned as 1.

(Pontryagin 1987) for dynamical systems to further promote
the performance of neural networks.

Conclusion

In this article, we have articulated a framework of the
NPCDDEs, which is mainly inspired by several previous
frameworks, including the NODEs, the NDDEs, and the
PCDDEs. The NPCDDEs own not only the provable capa-
bility of universal approximation but also the outstanding
power of nonlinear representations. Also, we have derived
the backward gradients along with the adjoint dynamics for
the NPCDDEs. We have emphasized that both the ResNets
and the NODEs are the special cases of the NPCDDEs and
that the NPCDDEs are of a more general framework com-
pared to the existing models. Finally, we have demonstrated
that the NPCDDEs outperform the several existing frame-
works on representative image datasets (MNIST, CIFARI10,
and SVHN). All these suggest that integrating the elements
of dynamical systems with different kinds of neural net-
works is indeed beneficial to creating and promoting the
frameworks of deep learning using continuous-depth struc-
tures.
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