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Abstract

Recently, the scheme of model-X knockoffs was proposed
as a promising solution to address controlled feature selec-
tion under high-dimensional finite-sample settings. Howev-
er, the procedure of model-X knockoffs depends heavily on
the coefficient-based feature importance and only concern-
s the control of false discovery rate (FDR). To further im-
prove its adaptivity and flexibility, in this paper, we propose
an error-based knockoff inference method by integrating the
knockoff features, the error-based feature importance statis-
tics, and the stepdown procedure together. The proposed in-
ference procedure does not require specifying a regression
model and can handle feature selection with theoretical guar-
antees on controlling false discovery proportion (FDP), FDR,
or k-familywise error rate (k-FWER). Empirical evaluations
demonstrate the competitive performance of our approach on
both simulated and real data.

Introduction
Data-driven feature selection aims to uncover informative
features associated with the response to tailor interpretable
statistical inference. Based on regression estimation, vari-
ous regularized models have been formulated for sparse fea-
ture selection (Hastie and Tibshirani 1990; Fan and Li 2001;
Lin and Zhang 2007; Liu, Chen, and Huang 2020; Chen
et al. 2021). Following this line, typical methods include
Lasso (Tibshirani 1996), group Lasso (Yuan and Lin 2006;
Bach 2008; Friedman, Hastie, and Tibshirani 2010), Las-
soNet (Lemhadri, Ruan, and Tibshirani 2021), SpAM (Liu
et al. 2008), GroupSpAM (Yin, Chen, and Xing 2012), and
regression models with automatic structure discovery (Pan
and Zhu 2017; Frecon, Salzo, and Pontil 2018; Wang et al.
2020). It should be noticed that the above-mentioned work-
s mainly concern the algorithm’s power performance to s-
elect true informative features. However, it is still largely
undeveloped to carry out feature selection while explicitly
controlling the number of false discoveries (Hochberg and
Tamhane 1987; Benjamini and Hochberg 1995; Lehmann
and Romano 2005; Candès et al. 2018).
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It is well known that false discovery control is crucial to
enable interpretable machine learning in many real-world
applications, e.g., genetic analysis where the cost of exam-
ining a falsely selected gene may be intolerable. Hochberg
and Tamhane (1987) proposed a method to control the prob-
ability of selecting one or more false discoveries, while it
may lead to low power in high dimensional settings. Ben-
jamini and Hochberg (1995) formulated an approach to con-
trol the expect value of false discovery proportion (FDP),
which is called FDR control. To balance the selection ac-
curacy and the power, some trade-off models (Korn et al.
2004; Lehmann and Romano 2005) are constructed for con-
trolling the probability of selecting k or more false discover-
ies (k-FWER control), or the probability of FDP exceeding a
fixed level (FDP control). Besides the above works, there are
extensive studies on feature selection with FWER control
(Farcomeni 2008), FDR control (Benjamini and Yekutieli
2001; Efron and Tibshirani 2002; Genovese and Wasserman
2004; Fan, Guo, and Hao 2012; Liu and Shao 2014), and
FDP control (Fan and Lv 2010; Delattre and Roquain 2015).
However, most of them either assume a specific dependent
structure between the response and argument (such as linear
structure) or rely on p-value to evaluate the significance of
each feature. The structure assumption may be too restric-
tive in many applications, where the response could depend
on input features through very complicated forms. In addi-
tion, the classical p-value calculation procedures usually de-
pend on the large-sample asymptotic theory, which may be
no longer justified under high-dimensional finite-sample set-
tings (Candès et al. 2018; Fan, Demirkaya, and Lv 2019).

Knockoff Filter
Recently, novel knockoff statistics have been constructed
in (Barber and Candès 2015; Candès et al. 2018; Lu et al.
2018; Bai et al. 2020; Fan et al. 2020a,b; Liu et al. 2020;
Sesia et al. 2020) to evaluate the contribution of each fea-
ture to the corresponding response. In particular, theoreti-
cal analysis demonstrates that irrelevant features’ statistics
are independent and symmetrically distributed without mak-
ing any assumption on the sample size, the number of di-
mensions, or the dependent structure. This property is then
used to discover informative features with FDR control. Be-
yond identifying informative features, a new testing proce-
dure (called conditional randomization test) is developed in
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Figure 1: FDP under a given target FDR level

(Candès et al. 2018), which can estimate the distribution of
knockoff statistics and construct the valid p-values under fi-
nite sample settings by repeatedly training the learning mod-
el.

Rapid progress has been made in recent years on under-
standing the theoretical behavior of knockoff techniques.
Candès et al. (2018) proved that the model-X knockoffs
(MX-Knockoff) framework enjoys tight FDR control when
the covariant distribution is known, and feature impor-
tance statistic satisfies some mild conditions (e.g., shown
in Proposition 1). Moreover, some refined works in Bar-
ber, Candès, and Samworth (2020); Fan et al. (2020a,b) have
demonstrated that the knockoff procedures can also control
FDR with asymptotic probability one even the covariant dis-
tribution follows some unknown Gaussian graphical model.
In addition, the power of knockoff filters is guaranteed for
RANK (Fan et al. 2020a) and IPAD (Fan et al. 2020b) under
the linear model assumption. Recently, a two-step approach
has been proposed in (Liu et al. 2020) based on the projec-
tion correlation and the model-X knockoff features, which
has both sure screening and rank consistency under weak
assumptions.

Despite the success of knockoff filters, some issues re-
main to be further investigated:
• FDR Vs. FDP and k-FWER. The control of FDR does

not assure the control of FDP (Genovese and Wasserman
2004). To illustrate such phenomenon, we display the
histogram of FDP when applying MX-Knockoff (Candès
et al. 2018) in 800 randomly generated datasets in Figure
1, which shows FDP can significantly exceed the target
FDR level. See Supplementary Material B for details of
our simulated example and related discussions. In addi-
tion, as pointed out in (Farcomeni 2008), k-FWER con-
trol is more desirable than FDR control when a powerful
selection result can be made.
• Coefficient-based feature statistic Vs. Coefficient-free

feature statistic. Under MX-Knockoff framework, fea-
ture importance is usually measured by the coefficient d-
ifference, e.g., (Candès et al. 2018; Fan et al. 2020a,b).
However, it may be difficult to obtain the feature impor-
tance from general nonlinear models (Christian 2012; Li-
u et al. 2020). Indeed, it is an open question to design new

feature importance statistics (see Section 7.2.5 in (Can-
dès et al. 2018)), e.g., coefficient-free statistics.
• Conditional randomization test Vs. Computational

friendly test. Although the p-value of each feature can
be calculated via the conditional randomization test, this
procedure is required to train the learning model mul-
tiple times. It will cause heavy computational burden-
s when calculating valid p-values, especially in high-
dimensional finite-sample case (Candès et al. 2018).
Thus, it is an open question how to efficiently calculate
valid p-values via knockoff technique (see Section 7.2.6
in (Candès et al. 2018)).

Main Contributions
To address the above issues, this paper proposes a new
knockoff filter scheme, called Error-based Knockoffs Infer-
ence (E-Knockoff), for controlled feature selection based on
the error-based feature statistics. The main contributions of
this paper are summarized as below:

• Error-based knockoffs inference. Our model integrates
the knockoff features (Candès et al. 2018), the error-
based feature statistics and the stepdown procedure
(Lehmann and Romano 2005) into a coherent way for
FDR, FDP or k-FWER control. The error-based impor-
tance measure does not require specifying a regression
model and can be used to calculate the valid p-values ef-
ficiently. The stepdown procedure, with the help of new
importance statistics, provides the route to control FDP
and k-FWER, respectively, which is different from the
previous knockoffs inference just for FDR control (Bar-
ber and Candès 2015; Candès et al. 2018; Lu et al. 2018;
Fan et al. 2020a,b; Liu et al. 2020). In particular, it is
novel to design the error-based statistics of feature im-
portance under the knockoff framework, which partially
answers the open questions stated in Sections 7.2.5 and
7.2.6 (Candès et al. 2018).
• Theoretical guarantees on k-FWER, FDP, and FDR con-

trol. For the MX-Knockoff framework, statistical foun-
dations on the power and FDR control have been pro-
vided in (Candès et al. 2018; Fan et al. 2020a,b), where
the power analysis is limited to high-dimensional linear
models with both known and unknown covariate distri-
bution. Beyond the linear models in aforementioned lit-
erature, we state theoretical justifications on the tight k-
FWER control and FDP control when the stepdown pro-
cedure is employed. In particular, the robustness of k-
FWER and FDP control can also be assured even for
unknown covariate distribution associated with Gaussian
graphical model. Additionally, our power analysis hold-
s for general nonlinear models, which is closely related
to the open question illustrated in Section 6 (Fan et al.
2020a). Some empirical evaluations support our theoret-
ical findings.

To better illustrate the novelty of current work, we com-
pare it with FX-Knockoff (Barber and Candès 2015), MX-
Knockoff (Candès et al. 2018), DeepPINK (Lu et al. 2018),
RANK (Fan et al. 2020a), PC-Knockoff (Liu et al. 2020)

9191



Properties FX-Knockoff MX-Knockoff DeepPINK RANK PC-Knockoff E-Knockoff (Ours)
Coefficient-free feature statistics × × × × X X
k-FWER control × × × × × X
FDP control × × × × × X
FDR control X X X X X X
Robust analysis × × × X × X
Power analysis (linear model) × × × X X X
Power analysis (nonlinear model) × × × × X X

Table 1: Algorithmic properties (X-has the given information, ×-hasn’t the given information)

in Table 1 from the lens of feature statistics, control abili-
ty, and asymptotic theory. Table 1 shows that our approach
enjoys theoretical guarantees on robustness and power for
FDR, FDP, and k-FWER control.

Preliminaries
This section introduces some necessary backgrounds includ-
ing the problem setup, the knockoff filter (Candès et al.
2018) and the stepdown procedure (Lehmann and Romano
2005).

Problem Statement
Let X ⊂ Rp be the compact input space and let Y ⊂ R be
the output set. We have n independent identically distribut-
ed (i.i.d.) observations {(xi, Yi)}ni=1 from the population of
(x, Y ), where x = (X1, . . . , Xp) ∈ X and Y ∈ Y . Suppose
that the conditional distribution of Y is only relevant with a
small subset of p covariates.

The definition of irrelevant features is given in Candès
et al. (2018).

Definition 1 (Candès et al. 2018) A feature Xj is said to be
“irrelevant” if Y is independent of Xj conditionally on

x−j := (X1, . . . , Xj−1, Xj+1, . . . , Xp).

For simplicity, we denote it as

Y |= Xj |x−j .

Remark 1 If feature Xj is irrelevant according to Defini-

tion 1, it satisfies that Y |x d
= Y |x−j , where d

= denotes e-
quality in distribution. That is, the conditional distribution
of Y remains invariant when removing Xj from x.

Let S1 ⊂ {1, . . . , p} be the index set with respect to irrel-
evant features. Naturally, the index set of true informative
features S0 is the complement set of S1, i.e., S0 = Sc1 . This
paper aims to find Ŝ , the data dependent estimation of S0,
while controlling k-FWER, FDP, or FDR. Recall that

FDR = E[FDP] = E

[
|Ŝ ∩ S1|
|Ŝ| ∨ 1

]
and

k-FWER = Prob{|Ŝ ∩ S1| ≥ k},
where | · | is the cardinality of a set.

Model-X Knockoff Framework
Model-X knockoff framework (Candès et al. 2018) aims to i-
dentify informative features while controlling FDR. The key
point is to construct the knockoff copy of x which looks like
real ones without contribution to the response.
Definition 2 (Candès et al. 2018) Model-X knockoffs for the
family of random variables x = (X1, . . . , Xp) is a new fam-
ily of random variables x̃ = (X̃1, . . . , X̃p) satisfying

x̃ |= Y |x (1)

and
(x, x̃)swap(s)

d
= (x, x̃), ∀s ⊂ {1, . . . , p}. (2)

Here, (x, x̃) = (X1, . . . , Xp, X̃1, . . . , X̃p), and
(x, x̃)swap(s) is swapping Xj with X̃j for al-
l j ∈ s, e.g., when p = 3, (x, x̃)swap({2,3}) =

(X1, X̃2, X̃3, X̃1, X2, X3).

Remark 2 The properties of knockoff features have been
well investigated in (Candès et al. 2018). The property (1)
illustrates that all knockoff features are noise features, and
(2) assures the similarity between x and x̃.

Candès et al. (2018) state the construction of knockoffs
when x obeys a known Gaussian graphical model N (0,Σ),
where the covariance matrix Σ is positive definite. Model-
X knockoff can construct x̃ conditionally on x w.r.t. x̃|x d

=
N (µ,V), where

µ = x(Ip −Σ−1diag{s}),

V = 2diag{s} − diag{s}Σ−1diag{s},
and the joined distribution of (x, x̃) satisfies

(x, x̃) ∼ N (0,G)

with

G =

(
Σ Σ− diag{s}

Σ− diag{s} Σ

)
. (3)

Some strategies have been provided in (Candès et al.
2018) for selecting diagonal matrix diag{s} .

Given i.i.d. observations {(xi, Yi)}ni=1, denote

X = (xi)
n
i=1 ∈ Rn×p and y = (Yi)

n
i=1 ∈ Rn,

where each xi = (Xi1, . . . , Xip). The knockoff data ma-
trix X̃ = (x̃i)

n
i=1 is constructed w.r.t. x̃|x, where x̃i is the

knockoff copy of xi. The n × 2p matrix [X, X̃] is obtained
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by connecting X and X̃. To identify active features, a paired-
input filter is trained on

(
[X, X̃],y

)
, e.g, Lasso (Hastie and

Tibshirani 1990) in (Candès et al. 2018). Then, each feature
(including its knockoff) is assigned with a coefficient-based
score, e.g., the absolute value of Lasso coefficient (Candès
et al. 2018; Fan et al. 2020a).

Let Zj and Z̃j be the score of Xj and X̃j respectively.
The importance measure of feature Xj is defined by

Wj := wj

(
[X, X̃],y

)
= Zj − Z̃j ,

where wj is a model-driven function associated with
[X, X̃],y. Typical example of Wj is the Lasso coefficien-
t difference (LCD) used in (Candès et al. 2018; Fan et al.
2020a). The distribution ofWj enjoys the following flip-sign
property.
Proposition 1 (Candès et al. 2018) Assume swapping Xj

with X̃j has the effect of changing the sign of Wj , i.e.,

wj

(
[X, X̃]swap({j}),y

)
= −wj

(
[X, X̃],y

)
.

Then, eachWj associated with irrelevant feature is indepen-
dent and symmetrically distributed.
The above property is helpful to obtain the theoretical guar-
antee on the FDR control.
Lemma 1 (Candès et al. 2018) If Wj is independent and
symmetrically distributed for each j ∈ S1. For any given
target FDR level q ∈ (0, 1), let

τ = min

{
τ > 0 :

1 + |{j :Wj ≤ −τ}|
|{j :Wj ≥ τ}| ∨ 1

≤ q
}
. (4)

Then the procedure selecting the variables Ŝ = {j : Wj ≥
τ} can control FDR ≤ q.

Usually, the FDR control under model-X knockoff frame-
work depends heavily on the coefficient difference derived
from Lasso (Candès et al. 2018; Fan et al. 2020a), group
Lasso (Sesia et al. 2020), and paired-input deep neural net-
works (Lu et al. 2018). In many applications involving com-
plex function relationships, this coefficient-based property
may hinder the flexibility and accuracy of model-X knock-
off framework.

Stepdown Procedure
Denote Pj as the p-value associated with the significance of
feature Xj , j = 1, . . . , p. Let Pkj

, j = 1, . . . , p, be the p-
values with Pk1

≤ · · · ≤ Pkp
and let αj , j = 1, . . . , p, be

the significance threshold values with α1 ≤ · · · ≤ αp. Nat-
urally, the first m features with lower p-values are selected
as informative variables Ŝ = {k1, . . . , km}, where

m = max{M : Pkj
≤ αj , ∀j ≤M}.

Lehmann and Romano (2005) have stated the following re-
sults about k-FWER and FDP control.
Lemma 2 (Lehmann and Romano 2005) For any given α ∈
(0, 1) and k = 1, . . . , p, the stepdown procedure with

αj =


kα

p
, j ≤ k

kα

p+ k − j
, j > k

can control k-FWER ≤ α.

Lemma 3 (Lehmann and Romano 2005) For any given
α, q ∈ (0, 1), if the p-value of any irrelevant feature is inde-
pendent of the p-values of informative features, the stepdown
procedure with

αj =
(bqjc+ 1)α

p+ bqjc+ 1− j

satisfies Prob{FDP > q} ≤ α.

Error-based Knockoff Inference
This paper exploits the idea of “feature replacing” for con-
trolled feature selection, i.e., replacing a feature with its
knockoff and see whether there is a significant difference in
the estimation error or not. We first assume the distribution
of x is known as prior and propose an error-based feature
statistic for k-FWER, FDP, or FDR control. Then, we ex-
tend the theoretical result to a more general setting where
the distribution of x is unknown. Finally, the power analysis
is stated for the proposed approach.

Error-based Feature Importance
To construct the error-based feature importance Wj , j =
1, . . . , p, we need to divide n samples into two disjointed
parts: (X∗,y∗) and (X′,y′), containing n1 and n2 samples,
respectively.

Let f be the regression estimator trained on (X∗,y∗) and
let X̃′ be the knockoff copy of X′. Denote

(
(x′i, x̃

′
i), Y

′
i

)
as the i-th column of ([X′, X̃′],y′). Given an estimator f
and random sample (x, Y ) ∈ X × Y , define the error-based
random variable

ξ := ξ(x, Y ) = |f(x)− Y | (5)

and
ξj := ξj(x, Y ) = |f

(
Rj(x)

)
− Y |, (6)

where

Rj(x) = (X1, . . . , Xj−1, X̃j , Xj+1, . . . , Xp).

For observation (x′i, Y
′
i ) associated with (X′,y′), we define

ξi = |f(x′i)− Y ′i | and ξji =
∣∣f(Rj(x

′
i)
)
− Y ′i

∣∣ .
The feature importance can be measured by the error dif-

ference between ξji and ξi, i.e.,

T j
i := ξji − ξi.

The error-based feature importance can be characterized by

Wj :=
1

n2

( n2∑
i=1

I{T j
i >0}

)
− 0.5, (7)

where indicator function I{A} = 1 if A is true and 0 other-
wise.

The basic properties of Wj are stated as below, which are
obtained from the definition of knockoff features (e.g., Defi-
nition 2) and the flip-sign property of MX-Knockoff feature
importance (e.g., Proposition 1). The corresponding proof
can be found in Supplementary Material C.
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Proposition 2 For each j ∈ S1, Wj defined in (7) is in-
dependent and symmetrically distributed around zero, and
satisfies n2(Wj + 0.5) ∼ B(n2, 0.5), ∀j ∈ S1.

Remark 3 The first conclusion of Theorem 2 differs from
Proposition 1 ( See also Lemma 3.3 in (Candès et al. 2018))
in that, we remove the assumption on feature importance via
replacing strategy. Since the error-based importance mea-
sure has no requirement on the structure of learning ma-
chine, it may be much flexible for applications. The second
conclusion reveals the distribution information of the pro-
posed irrelevant feature’s importance, which gives us the
opportunity to realize k-FWER control and FDP control via
combining the knockoff technique with the stepdown proce-
dure.

Combining Lemma 1 and Proposition 2 yields the follow-
ing result for FDR control.
Theorem 1 For any given target FDR level q ∈ (0, 1), the
error-based knockoff procedure, with feature importance (7)
and knockoff threshold (4), satisfies FDR ≤ q.

Assume the null-hypothesis that the feature is irrelevant.
LetMj := max{n2(Wj+0.5), n2(0.5−Wj)}. The p-values

Pj := 2

n2∑
i=Mj

C(n2, i)
1

2n2
, j = 1, . . . , p (8)

are used to evaluate the feature significance, where
C(n2,m) is the combinatorial number.

The following theoretical results on k-FWER and FDP
control can be established by combining Proposition 2 with
Lemmas 2 and 3.
Theorem 2 For any given α ∈ (0, 1), the stepdown proce-
dure, constructed in Lemma 2 and associated with knockoff-
based p-values (8), satisfies k-FWER ≤ α.

Theorem 3 For any given q, α ∈ (0, 1), the FDP of Ŝ , as-
sociated with the stepdown procedure in Lemma 3 and p-
values in (8), satisfies Prob{FDP > q} ≤ α.

Remark 4 Different from the previous knockoff filters re-
lied on the coefficient difference (Barber and Candès 2015;
Candès et al. 2018; Lu et al. 2018; Barber and Candès
2019), the current knockoff procedure rooted in the error
difference. The error-based knockoff strategy is model-free
(no structure restriction on estimator f ), and gives us the
opportunity to tackle FDR, FDP, and k-FWER control.

Robustness Analysis
This section further establishes the asymptotic properties of
k-FWER control and FDP control when the distribution of x
is characterized by some unknown Gaussian graphical mod-
el, i.e., x ∼ N (0,Σ). All proofs of this section have been
provided in Supplementary Material C.

Let Σ̂ be the empirical estimation of covariance matrix
obtained by (X∗,y∗). To ease the presentation, for any no-
tation A associated with the unknown covariance matrix Σ,
the notation Â stand for its empirical estimation construct-
ed via Σ̂. Inspired from Fan et al. (2020a), we introduce the
following conditions for our robustness analysis.

Algorithm 1: Construct feature importance statistic Wj

Input: Data (X′,y′), trained filter f , feature index j
Output: Feature importance statistic Wj

1: Construct X̃′, i.e., the knockoff copy of X′.
2: for i = 1, . . . , n2 do
3: ObtainRj(x

′
i) by replacing j-th feature in x′i with its

knockoff copy.
4: T j

i ←
∣∣f(Rj(x

′
i)
)
− Y ′i

∣∣− |f(x′i)− Y ′i |
5: end for
6: Wj ← 1

n2

(
n2∑
i=1

I{T j
i >0}

)
− 0.5.

7: return Wj

The following condition on density function is required,
which holds true for bounded regression problem with Gaus-
sian noise assumption (Tibshirani 1996; Yuan and Lin 2006;
Meier, Van De Geer, and Bü hlmann 2008; Christian 2012).
Condition 1 Let η(Y |x) be the probability density function
of Y conditioned on x. There holds max

(x,Y )
η(Y |x) ≤ C1 for

some constant C1.

Without loss of generality, assume the covariance matrix
G defined in (3) to be positive definite (Fan et al. 2020a).
The following condition is used to characterize the relation-
ship between G and its empirical estimation Ĝ, and to rule
out some extreme case of these matrixs, e.g., λmax(G) =
∞. Similar condition has been used in (Fan et al. 2020a) for
robust analysis.

Condition 2 Let λmin(·) and λmax(·) be the minimum and
the maximum matrix eigenvalues, respectively. There exist
some positive sequence an1

, bn1
satisfying an1

→ 0, bn1
→

0 as n1 →∞, and a positive constant C2 such that

‖Ĝ−G‖2 ≤ an1

and

1

C2
≤min

{
λmin(G), λmin(Ĝ)

}
≤max

{
λmax(G), λmax(Ĝ)

}
≤ C2

with probability at least 1− p−
1

bn1 .

Let x̃Σ̂ be the knockoff feature based on the distribution
N (0, Σ̂). For feasibility, denote ηΣ and ηΣ̂ be the distribu-
tion density function of (x, x̃) and (x, x̃Σ̂) respectivly. The
relationship between ηΣ and ηΣ̂ is described as below.
Lemma 4 Under Condition 2, there holds

|ηΣ(x, x̃)− ηΣ̂(x, x̃)| ≤ O(an1
), ∀(x, x̃) ∈ X 2

with probability at least 1− p−
1

bn1 .

It is a position to present the main results on robustness
analysis for controlled variable selection.
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p
E-Knockoff(k-FWER) E-Knockoff(FDP) E-Knockoff(FDR) MX-Knockoff DeepPINK

FDPmax FDR Power FDPmax FDR Power FDPmax FDR Power FDPmax FDR Power FDPmax FDR Power
50 0.03 0.01 1.00 0.12 0.03 1.00 0.35 0.19 1.00 0.33 0.20 1.00 0.32 0.20 1.00
100 0.03 0.00 0.97 0.17 0.04 1.00 0.40 0.19 1.00 0.45 0.19 1.00 0.52 0.17 1.00
200 0.07 0.00 0.95 0.14 0.04 0.99 0.48 0.20 1.00 0.45 0.20 1.00 0.36 0.16 1.00
400 0.04 0.01 0.91 0.13 0.04 0.98 0.43 0.19 1.00 0.39 0.19 1.00 0.50 0.22 1.00
800 0.07 0.01 0.63 0.13 0.04 0.83 0.36 0.19 0.95 0.40 0.20 1.00 0.33 0.18 1.00

1200 0.06 0.00 0.60 0.08 0.03 0.79 0.42 0.16 0.93 0.40 0.16 1.00 0.38 0.19 1.00
1600 0.07 0.01 0.59 0.17 0.04 0.79 0.40 0.18 0.94 0.35 0.19 1.00 0.44 0.18 1.00
2000 0.07 0.01 0.57 0.13 0.03 0.77 0.52 0.19 0.92 0.41 0.16 1.00 0.44 0.24 0.94

Table 2: Results on the simulated data for controlled feature selection (different dimension p)

p 50 100 200 400 800 1200 1600 2000
FPmax 1 1 2 1 1 1 1 1

Table 3: The max number of false discoveries (FPmax) of
E-Knockoff (k-FWER) in 50 trials.

Theorem 4 Let Conditions 1 and 2 be true. For any given
α ∈ (0, 1), k = 1, . . . , p and n2 ∈ R, the feature seleciton
procedure described in Theorem 2 satisfies

̂k-FWER ≤ α+O(p
− 1

bn1 ) +O(an1).

Theorem 5 Let Conditions 1 and 2 be true. For any given
q, α ∈ (0, 1), n2 ∈ R, the feature selection procedure de-
scribed in Theorem 3 satisfies

Prob{F̂DP > q} ≤ α+O(p
− 1

bn1 ) +O(an1
).

Remark 5 Theorems 4 and 5 guarantee the robustness of
our error-based knockoff inference under mild conditions.
Here, we omit the robust analysis for FDR control since it
can be derived directly from (Fan et al. 2020a). To the best
of our knowledge, there is no robust analysis for FDP and
k-FWER control under the knockoff filtering framework.

Power Analysis
The following restriction on the predictor f is involved for
the power property of our error-based knockoff inference.
Condition 3 For the error-based random variables ξ in (5)
and ξj in (6), there holds

Prob{ξj > ξ} > Prob{ξj < ξ}, ∀j ∈ S0.

Condition 3 ensures that the predictor f would have degrad-
ed performance when replacing an informative feature with
a knockoff feature. Recall that the construction procedure of
knockoffs is independent of the response Y , see e.g., Candès
et al. (2018); Romano, Sesia, and Candès (2019); Jordon, Y-
oon, and Mihaela (2019). Therefore, the current restriction
on f is mild since less information is more likely to result in
additional prediction loss.

The central limit theorem assures that the variance of pro-
posed feature importance in (7) would converge to zero.
Thus, we get the following result.

Theorem 6 Under Condition 3, the feature selection proce-
dures described in Theorems 1-3 satisfy

Power := E

[
|Ŝ ∩ S0|
|S0|

]
→ 1 as n2 →∞.

Remark 6 Theorem 6 demonstrates that the power of pro-
posed procedures depends on the sample size n2 of (X′,y′).
Theorems 4-6 imply that, for our error-based knockoff infer-
ence, there is a tradeoff between n1 (associated with getting
the predictor f and covarince matrix Σ̂) and n2 (related to
generate knockoffs and error-based feature statistic Wj).

Experimental Analysis
This section states empirical evaluations of our error-based
knockoff inference on both synthetic data and HIV dataset
(Rhee et al. 2006) to valid our theoretical claims about con-
trolled feature selection and power analysis. The detailed ex-
periment settings and some additional experiments are pro-
vided in Supplementary Material D.

Simulated Data Evaluation
Inspired by (Lu et al. 2018), we draw x independently from
N (0,Σ), where Σ−1 = (0.5|j−k|)1≤j,k≤p. Then, we simu-
late the response from single index model:

Y = g(xβ) + ε, ε ∼ N (0, 0.01)

where the linkage function

g(a) =
√
|a|+ a+ a2 + sin(a) + arctan(a), ∀a ∈ R,

β = (β1, . . . , βp)
T satisfying βj = 0, ∀j ∈

S1 and βj = 1/|S0| otherwise. Here, the sample
size n = 2000 and the number of features p ∈
{50, 100, 200, 400, 800, 1200, 1600, 2000} with |S0| = 30
(Lu et al. 2018).

This paper employes the coefficient-based model-X
knockoff (Candès et al. 2018) and DeepPink (Lu et al. 2018)
as the baselines. We set the target FDR level q = 0.2 for all
FDR controlled methods, set q = 0.2 and α = 0.2 for FD-
P control version of E-Knockoff (E-Knockoff (FDP)), and
set k = 2 and α = 0.1 for k-FWER control version of E-
Knockoff (E-Knockoff (k-FWER)). The feature importance
is measured by the coefficient difference associated with
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Figure 2: Power analysis (Power Vs. n2) on the simulated data for different learning models

Lasso for MX-Knockoff (Candès et al. 2018) and associated
with paired-input DNNs for DeepPink (Lu et al. 2018). We
use Lasso as the base estimator of our E-Knockoff inference
with n1 = n2 = 1000. Table 2 summaries the estimation of
FDR, Power and the maximum value of FDP (FDPmax) with
50 repetitions. In addition, Table 3 reports the max number
of false discoveries (FPmax) for E-Knockoff (k-FWER) in
these trials. These experimental results show that our error-
based knockoff inference can reach the FDR control, FDP
control, and k-FWER control flexibily, while MX-Knockoff
and DeepPINK just can control the FDR. Meanwhile, E-
Knockoff (FDP) and E-Knockoff (k-FWER) also enjoy the
promising selection accuracy in almost all settings.The re-
sults of Table 2 also verify the tradeoff between accuracy
and power discussed in (Korn et al. 2004; Lehmann and Ro-
mano 2005; Farcomeni 2008).

To verify the model-free property and power ability of our
approach, we provide an experiment to illusrate the influ-
ence of n2 and f on selection results. We set p = 800, n1 =
1000 and select n2 from {200, 400, 600, 800, . . . , 2000}.
Three classic learning machines are used to get f includ-
ing Deep neural networks (DNN) (Hinton and Salakhutdi-
nov 2006), Lasso (Tibshirani 1996) and Kernel ridge regres-
sion (KRR) (Christian 2012). Experimental results of power
and mean square error (MSE) are displaced in Figure 2 after
repeating the each experiment 30 times. Full simulated re-
sults are presented in Supplementary Material D. It can be
observed that a powerful selection result can be made with
the increase of n2, which supports our conclusion in Theo-
rem 6. Also, the result implies that a better-trained filter can
select true active features with less samples.

Real Data Evaluation
We next apply E-Knockoff to identify key mutations of HIV
associated with the drug resistance (Rhee et al. 2006). The
HIV-1 dataset consists of the data of the drug resistance lev-
el, mutations, and the treatment-selected mutations (TSM)
associated with drug resistance. For each drug, the response
Y is the log-transformed drug resistance level, and the j-th
feature of argument x indicates the presence or absence of
the j-th mutation (Lu et al. 2018; Li et al. 2021). Figure 3
summarizes the experimental results related to FPV drugs
resistance (with 1809 samples and 224 dimensions), and
Supplementary Material D reports the results of other drugs.
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Figure 3: Results on the HIV-1 drug resistance dataset. For
FPV drug class, we show the number of mutation positions
for PI identified by different knockoff filters. The color in-
dicates whether or not the selected position appears in the
TSM panel, and the horizontal line shows the total number
of positions on the TSM panel.

Here, we use Lasso as the base estimator for E-Knockoff in-
ference (n1 = n

3 , n2 = 2n
3 ). We set k = 2, α = 0.1 for

E-Knockoff (k-FWER), q = 0.2, α = 0.2 for E-Knockoff
(FDP), and q = 0.2 for E-Knockoff (FDR), MX-Knockoff,
and DeepPINK. Empirical results demonstrate that the error-
based knockoff inference can usually control the false dis-
covery efficiently.

Conclusion
To improve the adaptivity and flexibility of the model-X
knockoff framework, this paper proposes a new error-based
knockoff inference method for controlled feature selection.
We establish the statistical asymptotic analysis and power
analysis of the proposed approach. Empirical evaluations
demonstrate the competitive performance of the proposed
procedure on simulated and real data, which support our re-
search motivation and theoretical findings. In the future, it is
interesting to extend the current work for multi-environment
controlled feature selection (Li et al. 2021).

9196



Acknowledgements
This work was supported by National Natural Science Foun-
dation of China under Grant Nos. 12071166, 62076041,
61702057, 61806027, 61972188, 62106191 and by the Fun-
damental Research Funds for the Central Universities of
China under Grant 2662020LXQD002. We are grateful to
the anonymous AAAI reviewers for their constructive com-
ments.

References
Bach, F. 2008. Consistency of the group lasso and multi-
ple kernel learning. Journal of Machine Learning Research,
9(40): 1179 – 1225.
Bai, X.; Ren, J.; Fan, Y.; and Sun, F. 2020. KIMI: Knockoff
inference for motif identification from molecular sequences
with controlled false discovery rate. Bioinformatics, 37(6):
759 – 766.
Barber, R. F.; and Candès, E. J. 2015. Controlling the false
discovery rate via knockoffs. Annals of Statistics, 43(5):
2055 – 2085.
Barber, R. F.; and Candès, E. J. 2019. A knockoff filter for
high-dimensional selective inference. Annals of Statistics,
47(5): 2504 – 2537.
Barber, R. F.; Candès, E. J.; and Samworth, R. J. 2020. Ro-
bust inference with knockoffs. Annals of Statistics, 48(3):
1409 – 1431.
Benjamini, Y.; and Hochberg, Y. 1995. Controlling the false
discovery rate: A practical and powerful approach to multi-
ple testing. Journal of the Royal Statistical Society: Series
B (Methodological), 57(1): 289 – 300.
Benjamini, Y.; and Yekutieli, D. 2001. The control of the
false discovery rate in multiple testing under dependency.
The Annals of Statistics, 29(4): 1165 – 1188.
Candès, E. J.; Fan, Y.; Janson, L.; and Lv, J. 2018. Pan-
ning for gold: Model-X knockoffs for high-dimensional con-
trolled variable selection. Journal of the Royal Statistical So-
ciety: Series B (Statistical Methodology), 80(3): 551 – 577.
Chen, H.; Wang, Y.; Zheng, F.; Deng, C.; and Huang, H.
2021. Sparse modal additive model. IEEE Transactions on
Neural Networks and Learning Systems, 32(6): 2373 – 2387.
Christian, R. 2012. Machine Learning: A Probabilistic Per-
spective. The MIT Press.
Delattre, S.; and Roquain, E. 2015. New procedures con-
trolling the false discovery proportion via Romano-Wolf’s
heuristic. The Annals of Statistics, 43(3): 1141 – 1177.
Efron, B.; and Tibshirani, R. 2002. Empirical bayes methods
and false discovery rates for microarrays. Genetic Epidemi-
ology, 23(1): 70 – 86.
Fan, J.; Guo, S.; and Hao, N. 2012. Variance estimation
using refitted cross-validation in ultrahigh dimensional re-
gression. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 74(1): 37 – 65.
Fan, J.; and Li, R. 2001. Variable selection via nonconcave
penalized likelihood and its oracle properties. Journal of the
American Statistical Association, 96(456): 1348 – 1360.

Fan, J.; and Lv, J. 2010. A selective overview of variable se-
lection in high dimensional feature space. Statistica Sinica,
20(1): 101 – 148.
Fan, Y.; Demirkaya, E.; Li, G.; and Lv, J. 2020a. RANK:
Large-Scale inference with graphical nonlinear knockoffs.
Journal of the American Statistical Association, 115(529):
362 – 379.
Fan, Y.; Demirkaya, E.; and Lv, J. 2019. Nonuniformity of
p-values can occur early in diverging dimensions. Journal
of Machine Learning Research, 20(77): 1 – 33.
Fan, Y.; Lv, J.; Sharifvaghefi, M.; and Uematsu, Y. 2020b.
IPAD: Stable interpretable forecasting with knockoffs in-
ference. Journal of the American Statistical Association,
115(532): 1822 – 1834.
Farcomeni, A. 2008. A review of modern multiple hypoth-
esis testing, with particular attention to the false discovery
proportion. Statistical Methods in Medical Research, 17(4):
347 – 388.
Frecon, J.; Salzo, S.; and Pontil, M. 2018. Bilevel learning
of the group Lasso structure. In Advances in Neural Infor-
mation Processing Systems (NeurIPS).
Friedman, J. H.; Hastie, T.; and Tibshirani, R. 2010. A
note on the group lasso and a sparse group lasso. arX-
iv:1001.0736.
Genovese, C.; and Wasserman, L. 2004. A stochastic pro-
cess approach to false discovery control. The Annals of S-
tatistics, 32(3): 1035 – 1061.
Hastie, T. J.; and Tibshirani, R. 1990. Generalized Additive
Models. London: Chapman and Hall.
Hinton, G. E.; and Salakhutdinov, R. R. 2006. Reducing
the Dimensionality of Data with Neural Networks. Science,
313(5786): 504 – 507.
Hochberg, Y.; and Tamhane, A. C. 1987. Multiple Compar-
ison Procedures. Wiley.
Jordon, J.; Yoon, J.; and Mihaela, v. d. S. 2019. Knockoff-
GAN: Generating knockoffs for feature selection using gen-
erative adversarial networks. In International Conference on
Learning Representations (ICLR).
Korn, E. L.; Troendle, J. F.; McShane, L. M.; and Simon, R.
2004. Controlling the number of false discoveries: applica-
tion to high-dimensional genomic data. Journal of Statistical
Planning and Inference, 124(2): 379 – 398.
Lehmann, E. L.; and Romano, J. P. 2005. Generalizations
of the familywise error rate. The Annals of Statistics, 33(3):
1138 – 1154.
Lemhadri, I.; Ruan, F.; and Tibshirani, R. 2021. LassoNet:
Neural networks with feature sparsity. Journal of Machine
Learning Research, 130: 10 – 18.
Li, S.; Sesia, M.; Romano, Y.; Candès, E. J.; and Sabatti,
C. 2021. Searching for consistent associations with a multi-
environment knockoff filter. arXiv:2106.04118.
Lin, Y.; and Zhang, H. H. 2007. Component selection and s-
moothing in multivariate nonparametric regression. The An-
nals of Statistics, 34(5): 2272 – 2297.

9197



Liu, G.; Chen, H.; and Huang, H. 2020. Sparse shrunk addi-
tive models. In International Conference on Machine Learn-
ing (ICML).
Liu, H.; Wasserman, L.; Lafferty, J.; and Ravikumar, P.
2008. SpAM: Sparse additive models. In Advances in Neu-
ral Information Processing Systems (NIPS).
Liu, W.; Ke, Y.; Liu, J.; and Li, R. 2020. Model-free feature
screening and FDR control with knockoff features. Journal
of the American Statistical Association, 1 – 16.
Liu, W.; and Shao, Q. 2014. Phase transition and regular-
ized bootstrap in large-scale t-tests with false discovery rate
control. The Annals of Statistics, 42(5): 2003 – 2025.
Lu, Y.; Fan, Y.; Lv, J.; and Stafford Noble, W. 2018. Deep-
PINK: reproducible feature selection in deep neural net-
works. In Advances in Neural Information Processing Sys-
tems (NeurIPS).
Meier, L.; Van De Geer, S.; and Bü hlmann, P. 2008. The
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