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Abstract

This paper presents TS2Vec, a universal framework for learn-
ing representations of time series in an arbitrary semantic
level. Unlike existing methods, TS2Vec performs contrastive
learning in a hierarchical way over augmented context views,
which enables a robust contextual representation for each
timestamp. Furthermore, to obtain the representation of an ar-
bitrary sub-sequence in the time series, we can apply a simple
aggregation over the representations of corresponding times-
tamps. We conduct extensive experiments on time series clas-
sification tasks to evaluate the quality of time series represen-
tations. As a result, TS2Vec achieves significant improvement
over existing SOTAs of unsupervised time series representa-
tion on 125 UCR datasets and 29 UEA datasets. The learned
timestamp-level representations also achieve superior results
in time series forecasting and anomaly detection tasks. A lin-
ear regression trained on top of the learned representations
outperforms previous SOTAs of time series forecasting. Fur-
thermore, we present a simple way to apply the learned rep-
resentations for unsupervised anomaly detection, which es-
tablishes SOTA results in the literature. The source code is
publicly available at https://github.com/yuezhihan/ts2vec.

Introduction
Time series plays an important role in various industries
such as financial markets, demand forecasting, and climate
modeling. Learning universal representations for time se-
ries is a fundamental but challenging problem. Many stud-
ies (Tonekaboni, Eytan, and Goldenberg 2021; Franceschi,
Dieuleveut, and Jaggi 2019; Wu et al. 2018) focused on
learning instance-level representations, which described the
whole segment of the input time series and have showed
great success in tasks like clustering and classification.
In addition, recent works (Eldele et al. 2021; Franceschi,
Dieuleveut, and Jaggi 2019) employed the contrastive loss
to learn the inherent structure of time series. However, there
are still notable limitations in existing methods.

First, instance-level representations may not be suitable
for tasks that need fine-grained representations, for example,
time series forecasting and anomaly detection. In such kinds
of tasks, one needs to infer the target at a specific timestamp
or sub-series, while a coarse-grained representation of the
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whole time series is insufficient to achieve satisfied perfor-
mance.

Second, few of the existing methods distinguish the multi-
scale contextual information with different granularities. For
example, TNC (Tonekaboni, Eytan, and Goldenberg 2021)
discriminates among segments with a constant length. T-
Loss (Franceschi, Dieuleveut, and Jaggi 2019) uses random
sub-series from the original time series as positive samples.
However, neither of them featurizes time series at different
scales to capture scale-invariant information, which is es-
sential to the success of time series tasks. Intuitively, multi-
scale features may provide different levels of semantics and
improve the generalization capability of learned representa-
tions.

Third, most existing methods of unsupervised time se-
ries representation are inspired by experiences in CV and
NLP domains, which have strong inductive bias such as
transformation-invariance and cropping-invariance. How-
ever, those assumptions are not always applicable in mod-
eling time series. For example, cropping is a frequently used
augmentation strategy for images. However, the distribu-
tions and semantics of time series may change over time,
and a cropped sub-sequence is likely to have a distinct dis-
tribution against the original time series.

To address these issues, this paper proposes a universal
contrastive learning framework called TS2Vec, which en-
ables the representation learning of time series in all seman-
tic levels. It hierarchically discriminates positive and nega-
tive samples at instance-wise and temporal dimensions; and
for an arbitrary sub-series, its overall representation can be
obtained by a max pooling over the corresponding times-
tamps. This enables the model to capture contextual infor-
mation at multiple resolutions for the temporal data and gen-
erate fine-grained representations for any granularity. More-
over, the contrasting objective in TS2Vec is based on aug-
mented context views, that is, representations of the same
sub-series in two augmented contexts should be consistent.
In this way, we obtain a robust contextual representation for
each sub-series without introducing unappreciated inductive
bias like transformation- and cropping-invariance.

We conduct extensive experiments on multiple tasks to
prove the effectiveness of our method. The results of time
series classification, forecasting and anomaly detection tasks
validate that the learned representations of TS2Vec are gen-
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Figure 1: The proposed architecture of TS2Vec. Although this figure shows a univariate time series as the input example, the
framework supports multivariate input. Each parallelogram denotes the representation vector on a timestamp of an instance.

eral and effective.
The major contributions of this paper are summarized as

follows:

• We propose TS2Vec, a unified framework that learns
contextual representations for arbitrary sub-series at var-
ious semantic levels. To the best of our knowledge, this is
the first work that provides a flexible and universal repre-
sentation method for all kinds of tasks in the time series
domain, including but not limited to time series classifi-
cation, forecasting and anomaly detection.

• To address the above goal, we leverage two novel de-
signs in the contrastive learning framework. First, we use
a hierarchical contrasting method in both instance-wise
and temporal dimensions to capture multi-scale contex-
tual information. Second, we propose contextual consis-
tency for positive pair selection. Different from previous
state-of-the-arts, it is more suitable for time series data
with diverse distributions and scales. Extensive analy-
ses demonstrate the robustness of TS2Vec for time series
with missing values, and the effectiveness of both hierar-
chical contrasting and contextual consistency are verified
by ablation study.

• TS2Vec outperforms existing SOTAs on three bench-
mark time series tasks, including classification, forecast-
ing, and anomaly detection. For example, our method im-
proves an average of 2.4% accuracy on 125 UCR datasets
and 3.0% on 29 UEA datasets compared with the best
SOTA of unsupervised representation on classification
tasks.

Method
Problem Definition
Given a set of time series X = {x1, x2, · · · , xN} of N in-
stances, the goal is to learn a nonlinear embedding function

fθ that maps each xi to its representation ri that best de-
scribes itself. The input time series xi has dimension T ×F ,
where T is the sequence length and F is the feature di-
mension. The representation ri = {ri,1, ri,2, · · · , ri,T } con-
tains representation vectors ri,t ∈ RK for each timestamp t,
where K is the dimension of representation vectors.

Model Architecture
The overall architecture of TS2Vec is shown in Figure 1.
We randomly sample two overlapping subseries from an in-
put time series xi, and encourage consistency of contextual
representations on the common segment. Raw inputs are fed
into the encoder which is optimized jointly with temporal
contrastive loss and instance-wise contrastive loss. The total
loss is summed over multiple scales in a hierarchical frame-
work.

The encoder fθ consists of three components, including
an input projection layer, a timestamp masking module, and
a dilated CNN module. For each input xi, the input projec-
tion layer is a fully connected layer that maps the observa-
tion xi,t at timestamp t to a high-dimensional latent vector
zi,t. The timestamp masking module masks latent vectors
at randomly selected timestamps to generate an augmented
context view. Note that we mask latent vectors rather than
raw values because the value range for time series is possi-
bly unbounded and it is impossible to find a special token for
raw data. We will further prove the feasibility of this design
in the appendix.

A dilated CNN module with ten residual blocks is then ap-
plied to extract the contextual representation at each times-
tamp. Each block contains two 1-D convolutional layers
with a dilation parameter (2l for the l-th block). The di-
lated convolutions enable a large receptive field for different
domains (Bai, Kolter, and Koltun 2018). In the experimen-
tal section, we will demonstrate its effectiveness on various
tasks and datasets.
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Figure 2: Positive pair selection strategies.
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Figure 3: Two typical cases of the distribution change of
time series, with the heatmap visualization of the learned
representations over time using subseries consistency and
temporal consistency respectively.

Contextual Consistency
The construction of positive pairs is essential in contrastive
learning. Previous works have adopted various selection
strategies (Figure 2), which are summarized as follows:

• Subseries consistency (Franceschi, Dieuleveut, and Jaggi
2019) encourages the representation of a time series to
be closer to its sampled subseries.

• Temporal consistency (Tonekaboni, Eytan, and Golden-
berg 2021) enforces the local smoothness of representa-
tions by choosing adjacent segments as positive samples.

• Transformation consistency (Eldele et al. 2021) aug-
ments input series by different transformations, such as
scaling, permutation, etc., encouraging the model to learn
transformation-invariant representations.

However, the above strategies are based on strong as-
sumptions of data distribution and may be not appropriate
for time series data. For example, subseries consistency is
vulnerable when there exist level shifts (Figure 3a) and tem-
poral consistency may introduce false positive pair when
anomalies occur (Figure 3b). In these two figures, the green
and yellow parts have different patterns, but previous strate-
gies consider them as similar ones. To overcome this issue,
we propose a new strategy, contextual consistency, which
treats the representations at the same timestamp in two aug-
mented contexts as positive pairs. A context is generated by
applying timestamp masking and random cropping on the
input time series. The benefits are two-folds. First, mask-
ing and cropping do not change the magnitude of the time
series, which is important to time series. Second, they also

improve the robustness of learned representations by forcing
each timestamp to reconstruct itself in distinct contexts.

Timestamp Masking We randomly mask the timestamps
of an instance to produce a new context view. Specifically, it
masks the latent vector zi = {zi,t} after the Input Projection
Layer along the time axis with a binary mask m ∈ {0, 1}T ,
the elements of which are independently sampled from a
Bernoulli distribution with p = 0.5. The masks are inde-
pendently sampled in every forward pass of the encoder.

Random Cropping Random cropping is also adopted to
generate new contexts. For any time series input xi ∈
RT×F , TS2Vec randomly samples two overlapping time
segments [a1, b1], [a2, b2] such that 0 < a1 ≤ a2 ≤ b1 ≤
b2 ≤ T . The contextual representations on the overlapped
segment [a2, b1] should be consistent for two context views.
We show in the appendix that random cropping helps learn
position-agnostic representations and avoids representation
collapse. Timestamp masking and random cropping are only
applied in the training phase.

Hierarchical Contrasting
In this section, we propose the hierarchical contrastive loss
that forces the encoder to learn representations at various
scales. The steps of calculation is summarized in Algo-
rithm 1. Based on the timestamp-level representation, we
apply max pooling on the learned representations along the
time axis and compute Equation 3 recursively. Especially,
the contrasting at top semantic levels enables the model to
learn instance-level representations.

Algorithm 1: Calculating the hierarchical contrastive loss

1: procedure HIERLOSS(r, r′)
2: Lhier ← Ldual(r, r′);
3: d← 1;
4: while time length(r) > 1 do
5: // The maxpool1d operates along the time axis.
6: r ← maxpool1d(r, kernel size = 2);
7: r′ ← maxpool1d(r′, kernel size = 2);
8: Lhier ← Lhier + Ldual(r, r′) ;
9: d← d+ 1 ;

10: end while
11: Lhier ← Lhier/d ;
12: return Lhier
13: end procedure

The hierarchical contrasting method enables a more com-
prehensive representation than previous works. For exam-
ple, T-Loss (Franceschi, Dieuleveut, and Jaggi 2019) per-
forms instance-wise contrasting only at the instance level;
TS-TCC (Eldele et al. 2021) applies instance-wise contrast-
ing only at the timestamp level; TNC (Tonekaboni, Eytan,
and Goldenberg 2021) encourages temporal local smooth-
ness in a specific level of granularity. These works do not
encapsulate representations in different levels of granularity
like TS2Vec.

To capture contextual representations of time series, we
leverage both instance-wise and temporal contrastive losses
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125 UCR datasets 29 UEA datasets

Method Avg. Acc. Avg. Rank Training Time (hours) Avg. Acc. Avg. Rank Training Time (hours)

DTW 0.727 4.33 – 0.650 3.74 –
TNC 0.761 3.52 228.4 0.677 3.84 91.2
TST 0.641 5.23 17.1 0.635 4.36 28.6
TS-TCC 0.757 3.38 1.1 0.682 3.53 3.6
T-Loss 0.806 2.73 38.0 0.675 3.12 15.1
TS2Vec 0.830 (+2.4%) 1.82 0.9 0.712 (+3.0%) 2.40 0.6

Table 1: Time series classification results compared to other time series representation methods. The representation dimensions
of TS2Vec, T-Loss, TS-TCC, TST and TNC are all set to 320 and under SVM evaluation protocol for fair comparison.

jointly to encode time series distribution. The loss functions
are applied to all granularity levels in the hierarchical con-
trasting model.

Temporal Contrastive Loss To learn discriminative rep-
resentations over time, TS2Vec takes the representations at
the same timestamp from two views of the input time se-
ries as positives, while those at different timestamps from
the same time series as negatives. Let i be the index of the
input time series sample and t be the timestamp. Then ri,t
and r′i,t denote the representations for the same timestamp t
but from two augmentations of xi. The temporal contrastive
loss for the i-th time series at timestamp t can be formulated
as

`
(i,t)
temp=−log

exp(ri,t·r′i,t)∑
t′∈Ω

(
exp(ri,t·r′i,t′ )+I[t6=t′] exp(ri,t·ri,t′ )

) , (1)

where Ω is the set of timestamps within the overlap of the
two subseries, and I is the indicator function.

Instance-wise Contrastive Loss The instance-wise con-
trastive loss indexed with (i, t) can be formulated as

`
(i,t)
inst = − log

exp(ri,t·r′i,t)∑B
j=1(exp(ri,t·r′j,t)+I[i6=j] exp(ri,t·rj,t))

, (2)

where B denotes the batch size. We use representations of
other time series at timestamp t in the same batch as negative
samples.

The two losses are complementary to each other. For
example, given a set of electricity consumption data from
multiple users, instance contrast may learn the user-specific
characteristics, while temporal contrast aims to mine the dy-
namic trends over time. The overall loss is defined as

Ldual =
1

NT

∑
i

∑
t

(
`
(i,t)
temp + `

(i,t)
inst

)
. (3)

Experiments
In this section, we evaluate the learned representations
of TS2Vec on time series classification, forecasting, and
anomaly detection. Detailed experimental settings are pre-
sented in the appendix.

Time Series Classification
For classification tasks, the classes are labeled on the entire
time series (instance). Therefore we require the instance-
level representations, which can be obtained by max pool-
ing over all timestamps. We then follow the same protocol

1 2 3 4 5 6

TS2Vec
T-Loss

TS-TCC TNC
DTW
TST

CD

Figure 4: Critical Difference (CD) diagram of representation
learning methods on time series classification tasks with a
confidence level of 95%.

as T-Loss (Franceschi, Dieuleveut, and Jaggi 2019) where
an SVM classifier with RBF kernel is trained on top of the
instance-level representations to make predictions.

We conduct extensive experiments on time series classi-
fication to evaluate the instance-level representations, com-
pared with other SOTAs of unsupervised time series repre-
sentation, including T-Loss, TS-TCC (Eldele et al. 2021),
TST (Zerveas et al. 2021) and TNC (Tonekaboni, Eytan, and
Goldenberg 2021). The UCR archive (Dau et al. 2019) and
UEA archive (Bagnall et al. 2018) are adopted for evalua-
tion. There are 128 univariate datasets in UCR and 30 mul-
tivariate datasets in UEA. Note that TS2Vec works on all
UCR and UEA datasets, and full results of TS2Vec on all
datasets are provided in the appendix.

The evaluation results are summarized in Table 1. TS2Vec
achieves substantial improvement compared to other repre-
sentation learning methods on both UCR and UEA datasets.
In particular, TS2Vec improves an average of 2.4% clas-
sification accuracy on 125 UCR datasets and 3.0% on 29
UEA datasets. Critical Difference diagram (Demšar 2006)
for Nemenyi tests on all datasets (including 125 UCR and
29 UEA datasets) is presented in Figure 4, where classifiers
that are not connected by a bold line are significantly differ-
ent in average ranks. This validates that TS2Vec significantly
outperforms other methods in average ranks. As mentioned
in section and , T-Loss, TS-TCC and TNC perform con-
trastive learning at only a certain level and impose strong
inductive bias, such as transformation-invariance, to select
positive pairs. TS2Vec applies hierarchical contrastive learn-
ing at different semantic levels, thus achieves better perfor-
mance.

Table 1 also shows the total training time of representa-
tion learning methods with an NVIDIA GeForce RTX 3090
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Dataset H TS2Vec Informer LogTrans N-BEATS TCN LSTnet

ETTh1

24 0.039 0.098 0.103 0.094 0.075 0.108
48 0.062 0.158 0.167 0.210 0.227 0.175
168 0.134 0.183 0.207 0.232 0.316 0.396
336 0.154 0.222 0.230 0.232 0.306 0.468
720 0.163 0.269 0.273 0.322 0.390 0.659

ETTh2

24 0.090 0.093 0.102 0.198 0.103 3.554
48 0.124 0.155 0.169 0.234 0.142 3.190
168 0.208 0.232 0.246 0.331 0.227 2.800
336 0.213 0.263 0.267 0.431 0.296 2.753
720 0.214 0.277 0.303 0.437 0.325 2.878

ETTm1

24 0.015 0.030 0.065 0.054 0.041 0.090
48 0.027 0.069 0.078 0.190 0.101 0.179
96 0.044 0.194 0.199 0.183 0.142 0.272
288 0.103 0.401 0.411 0.186 0.318 0.462
672 0.156 0.512 0.598 0.197 0.397 0.639

Electric.

24 0.260 0.251 0.528 0.427 0.263 0.281
48 0.319 0.346 0.409 0.551 0.373 0.381
168 0.427 0.544 0.959 0.893 0.609 0.599
336 0.565 0.713 1.079 1.035 0.855 0.823
720 0.861 1.182 1.001 1.548 1.263 1.278

Avg. 0.209 0.310 0.370 0.399 0.338 1.099

Table 2: Univariate time series forecasting results on MSE.
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Figure 5: A prediction slice (H=336) of TS2Vec, Informer
and TCN on the test set of ETTh2.

GPU. Among these methods, TS2Vec provides the short-
est training time. Because TS2Vec applies contrastive losses
across different granularities in one batch, the efficiency of
representation learning has been greatly improved.

Time Series Forecasting
Given the last Tl observations xt−Tl+1, ..., xt, time series
forecasting task aims to predict the future H observations
xt+1, ..., xt+H . We use rt, the representation of the last
timestamp, to predict future observations. Specifically, we
train a linear regression model with L2 norm penalty that
takes rt as input to directly predict future values x̂. When x
is a univariate time series, x̂ has dimension H . When x is a
multivariate time series with F features, the dimension of x̂
should be FH .

We compare the performance of TS2Vec and exist-
ing SOTAs on four public datasets, including three ETT
datasets (Zhou et al. 2021) and the Electricity dataset (Dua
and Graff 2017). We apply Informer (Zhou et al. 2021), Log-
Trans (Li et al. 2019), LSTnet (Lai et al. 2018), TCN (Bai,
Kolter, and Koltun 2018) for both univariate and multivariate
settings, N-BEATS (Oreshkin et al. 2019) for the univariate
setting, and StemGNN (Cao et al. 2020) for the multivari-
ate setting respectively. Follow previous works, we use MSE
and MAE to evaluate the forecasting performance.

Phase H TS2Vec Informer

Training

24 60.42 + 2.47 402.31
48 60.42 + 3.63 163.41
96 60.42 + 5.10 392.40

288 60.42 + 10.76 706.94
672 60.42 + 21.38 938.36

Inference

24 3.01 + 0.01 15.91
48 3.01 + 0.02 4.85
96 3.01 + 0.03 14.57

288 3.01 + 0.10 21.82
672 3.01 + 0.21 28.49

Table 3: The running time (in seconds) comparison on mul-
tivariate forecasting task on ETTm1 dataset.

The evaluation results on MSE for univariate forecasting
are shown in Table 2, while full forecasting results (univari-
ate and multivariate forecasting on both MSE and MAE) are
reported in the appendix due to space limitation. In general,
TS2Vec establishes a new SOTA in most of the cases, where
TS2Vec achieves a 32.6% decrease of average MSE on the
univariate setting and 28.2% on the multivariate setting. Fur-
thermore, the representations only need to be learned once
for each dataset and can be directly applied to various hori-
zons (Hs) with linear regressions, which demonstrates the
universality of the learned representations. Figure 5 presents
a typical prediction slice with long-term trends and period-
ical patterns, comparing among the top 3 best-performing
methods on univariate forecasting. In this case, Informer
shows its capability to capture long-term trends but fails to
capture periodical patterns. TCN successfully captures peri-
odical patterns but fails to capture long-term trends. TS2Vec
captures both characteristics, showing better predictive re-
sults than other methods.

The execution time on an NVIDIA GeForce RTX 3090
GPU of the proposed method on ETTm1 is presented in Ta-
ble 3, compared with Informer (Zhou et al. 2021), which
is known as its remarkable efficiency for long time series
forecasting. The training and inference time of TS2Vec are
reported by two stages respectively. The training phase in-
cludes two stages: (1) learning time series representations
through TS2Vec framework, (2) training a linear regressor
for each H on top of the learned representations. Similarly,
the inference phase also includes two steps: (1) inference
of representations for corresponding timestamps, (2) predic-
tion via trained linear regressor. Note that the representation
model of TS2Vec only needs to be trained once for differ-
ent horizon settings. Whether in training or inference, our
method achieves superior efficiency compared to Informer.

Time Series Anomaly Detection
We follow a streaming evaluation protocol (Ren et al. 2019).
Given any time series slice x1, x2, ..., xt , the task of time
series anomaly detection is to determine whether the last
point xt is an anomaly. On the learned representations, an
anomaly point may show a clear difference against nor-
mal points (Figure 7c). In addition, TS2Vec encourages the
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Yahoo KPI

F1 Prec. Rec. F1 Prec. Rec.

SPOT 0.338 0.269 0.454 0.217 0.786 0.126
DSPOT 0.316 0.241 0.458 0.521 0.623 0.447
DONUT 0.026 0.013 0.825 0.347 0.371 0.326
SR 0.563 0.451 0.747 0.622 0.647 0.598
TS2Vec 0.745 0.729 0.762 0.677 0.929 0.533

Cold-start:
FFT 0.291 0.202 0.517 0.538 0.478 0.615
Twitter-AD 0.245 0.166 0.462 0.330 0.411 0.276
Luminol 0.388 0.254 0.818 0.417 0.306 0.650
SR 0.529 0.404 0.765 0.666 0.637 0.697
TS2Vec† 0.726 0.692 0.763 0.676 0.907 0.540

Table 4: Univariate time series anomaly detection results.

contextual consistency on the same timestamp of an in-
stance. Considering this, we propose to define the anomaly
score as the dissimilarity of the representations computed
from masked and unmasked inputs. Specifically, on infer-
ence stage, the trained TS2Vec forwards twice for an input:
for the first time, we mask out the last observation xt only;
for the second time, no mask is applied. We denote the rep-
resentations of the last timestamp for these two forwards as
rut and rmt respectively. L1 distance is used to measure the
anomaly score:

αt = ‖rut − rmt ‖1 . (4)

To avoid drifting, following previous works (Ren et al.
2019), we take the local average of the preceding Z points
αt = 1

Z

∑t−1
i=t−Z αi to adjust the anomaly score by αadjt =

αt−αt

αt
. On inference, a timestamp t is predicted as an

anomaly point when αadjt > µ + βσ, where µ and σ are
the mean and standard deviation respectively of the histori-
cal scores and β is a hyperparameter.

We compare TS2Vec with other unsupervised meth-
ods of univariate time series anomaly detection, including
FFT (Rasheed et al. 2009), SPOT, DSPOT (Siffer et al.
2017), Twitter-AD (Vallis, Hochenbaum, and Kejariwal
2014), Luminol (Brennan and Ritesh 2018), DONUT (Xu
et al. 2018) and SR (Ren et al. 2019). Two public datasets are
used to evaluate our model. Yahoo (Nikolay Laptev 2015) is
a benchmark dataset for anomaly detection, including 367
hourly sampled time series with tagged anomaly points. It
converges a wide variety of anomaly types such as outliers
and change-points. KPI (Ren et al. 2019) is a competition
dataset released by AIOPS Challenge. The dataset includes
multiple minutely sampled real KPI curves from many In-
ternet companies. The experimental settings are detailed in
the appendix.

In the normal setting, each time series sample is split into
two halves according to the time order, where the first half is
for unsupervised training and the second is for evaluation.
However, among the baselines, Luminol, Twitter-AD and
FFT do not require additional training data to start. There-
fore these methods are compared under a cold-start setting,
in which all the time series are for testing. In this setting,
the TS2Vec encoder is trained on FordA dataset in the UCR

Avg. Accuracy

TS2Vec 0.829
w/o Temporal Contrast 0.819 (-1.0%)
w/o Instance Contrast 0.824 (-0.5%)
w/o Hierarchical Contrast 0.812 (-1.7%)
w/o Random Cropping 0.808 (-2.1%)
w/o Timestamp Masking 0.820 (-0.9%)
w/o Input Projection Layer 0.817 (-1.2%)

Positive Pair Selection
Contextual Consistency
→ Temporal Consistency 0.807 (-2.2%)
→ Subseries Consistency 0.780 (-4.9%)

Augmentations
+ Jitter 0.814 (-1.5%)
+ Scaling 0.814 (-1.5%)
+ Permutation 0.796 (-3.3%)

Backbone Architectures
Dilated CNN
→ LSTM 0.779 (-5.0%)
→ Transformer 0.647 (-18.2%)

Table 5: Ablation results on 128 UCR datasets.

archive, and tested on Yahoo and KPI datasets. We denote
this transferred version of our model as TS2Vec†. We set
β = 4 empirically and Z = 21 following (Ren et al. 2019)
for both settings. In the normal setting, µ and σ of our pro-
tocol are computed using the training split for each time se-
ries, while in the cold-start setting they are computed using
all historical data points before the recent point.

Table 4 shows the performance comparison of different
methods on F1 score, precision and recall. In the normal
setting, TS2Vec improves the F1 score by 18.2% on Ya-
hoo dataset and 5.5% on KPI dataset compared to the best
result of baseline methods. In the cold-start setting, the F1

score is improved by 19.7% on Yahoo dataset and 1.0% on
KPI dataset than the best SOTA result. Note that our method
achieves similar scores on these two settings, demonstrating
the transferability of TS2Vec from one dataset to another.

Analysis
Ablation Study
To verify the effectiveness of the proposed components in
TS2Vec, a comparison between full TS2Vec and its six vari-
ants on 128 UCR datasets is shown in Table 5, where (1)
w/o Temporal Contrast removes the temporal contrastive
loss, (2) w/o Instance Contrast removes the instance-wise
contrastive loss, (3) w/o Hierarchical Contrast only per-
forms contrastive learning at the lowest level, (4) w/o Ran-
dom Cropping uses full sequence for two views rather than
using random cropping, (5) w/o Timestamp Masking uses a
mask filled with ones in training, and (6) w/o Input Projec-
tion Layer removes the input projection layer. The results
show that all the above components of TS2Vec are indis-
pensable.

Table 5 also shows the comparison among different pos-
itive pair selection strategies. We replace our proposed
contextual consistency, including the timestamp masking
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Figure 6: Accuracy scores of the top 4 largest datasets in
UCR archive with respect to the rate of missing points.

and random cropping, into temporal consistency (Tonek-
aboni, Eytan, and Goldenberg 2021) and subseries consis-
tency (Franceschi, Dieuleveut, and Jaggi 2019). The tem-
poral consistency takes the timestamps within a certain dis-
tance as positives, while the subseries consistency randomly
takes two subseries for the same time series as positives.
In addition, we try to add data augmentation techniques to
our method, including jitter, scaling and permutation (El-
dele et al. 2021), for different views of the input time se-
ries. A performance decrease is observed after adding these
augmentations. As mentioned earlier, they assume the time
series data to follow some invariant assumptions which do
not hold for diverse and ever-changing distributions of time
series.

To justify our choice of the backbone, we replace the di-
lated CNN with LSTM and Transformer with a similar pa-
rameter size. The accuracy score decreases significantly for
both cases, showing dilated CNN is an effective choice for
the model architecture of time series.

Robustness to Missing Data
Missing data is a common occurrence for time series col-
lected from the real world. As a universal framework,
TS2Vec provides steady performance when feeding data
with a large proportion of missing values, in which the
proposed hierarchical contrasting and timestamp masking
strategies play an important role. Intuitively, timestamp
masking enables the network to infer the representations un-
der incomplete contexts. The hierarchical contrasting brings
about long-range information, which helps to predict a miss-
ing timestamp if its surrounding information is not complete.

The top 4 largest UCR datasets are selected for analysis.
We randomly mask out observations for both training set
and test set with specific missing rates of timestamps. Fig-
ure 6 shows that without hierarchical contrast or timestamp
masking, the classification accuracy drops rapidly with the
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Figure 7: The heatmap visualization of the learned represen-
tations of TS2Vec over time.

growth of the missing rate. We also notice that the perfor-
mance of w/o Hierarchical Contrast drops dramatically as
the missing rate grows, indicating the importance of long-
range information for handling a large number of miss-
ing values. We can conclude that TS2Vec is extremely ro-
bust to missing points. Specifically, even with 50% miss-
ing values, TS2Vec achieves almost the same accuracy on
UWaveGestureLibraryAll, and only 2.1%, 2.1% and 1.2%
accuracy decrease on StarLightCurves, HandOutlines and
MixedShapesRegularTrain respectively.

Visualized Explanation
This section visualizes the learned representations over time
on three datasets from UCR archive, including ScreenType,
Phoneme and RefrigerationDevices datasets (Figure 7). We
choose the first sample from the test set and select the top
16 representation dimensions with the largest variances for
visualization. Figure 7a corresponds to a time series similar
to binary digital signals, where the representation learned
by TS2Vec clearly distinguishes the timestamps with high
and low values respectively. Figure 7b shows an audio sig-
nal with shrinking volatility. The learned representation is
able to reflect the evolving trend across timestamps. In Fig-
ure 7c, the time series has periodical patterns with a sud-
den spike. One can notice that the learned representations of
spiked timestamps show an obvious difference from normal
timestamps, demonstrating the ability of TS2Vec for captur-
ing the change of time series distributions.

Conclusion
This paper proposes a universal representation learning
framework for time series, namely TS2Vec, which applies
hierarchical contrasting to learn scale-invariant represen-
tations within augmented context views. The evaluation
of the learned representations on three time-series-related
tasks (including time series classification, forecasting and
anomaly detection) demonstrates the universality and effec-
tiveness of TS2Vec. We also show that TS2Vec provides
steady performance when feeding incomplete data, in which
the hierarchical contrastive loss and timestamp masking play
important roles. Furthermore, visualization of the learned
representations validates the capability of TS2Vec to cap-
ture the dynamics of time series. Ablation study proves the
effectiveness of proposed components. The framework of
TS2Vec is generic and has potential to be applied for other
domains in our future work.
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