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Abstract

Spectral graph convolution is extremely time-consuming for
large graphs, thus existing Graph Convolutional Networks
(GCNs) reconstruct the kernel by a polynomial, which is (al-
most) fixed. To extract features from the graph data by learn-
ing kernels, Low-pass Collaborative Filter Network (LCFN)
was proposed as a new paradigm with trainable kernels.
However, there are two demerits of LCFN: (1) The hyper-
graphs in LCFN are constructed by mining 2-hop connec-
tions of the user-item bipartite graph, thus 1-hop connec-
tions are not used, resulting in serious information loss. (2)
LCFN follows the general network structure of GCNs, which
is suboptimal. To address these issues, we utilize the bipar-
tite graph to define the graph space directly and explore the
best network structure based on experiments. Comprehensive
experiments on two real-world datasets demonstrate the ef-
fectiveness of the proposed model. Codes are available on
https://github.com/Wenhui-Yu/LCFN.

Introduction
Convolutional Neural Networks (CNNs) gain strong power
of extracting features by learning kernels (Krizhevsky,
Sutskever, and Hinton 2012). To explore convolution in
the graph learning tasks such as recommendation, it is ex-
tended from the Euclidean domain to the graph domain
(Shuman et al. 2013), and is then injected to a deep structure
to propose Graph Convolutional Networks (GCNs) (Kipf
and Welling 2017; Defferrard, Bresson, and Vandergheynst
2016; He et al. 2020; Hamilton, Ying, and Leskovec 2017).
However, since graph convolution is time-consuming for
large graphs, Kipf and Welling (2017) simplified it by fix-
ing the kernel into a 1-order polynomial, thus GCNs lose the
ability of extracting features and only propagate embeddings
through the graph.

To close this gap, Yu and Qin (2020) proposed an un-
scathed way to simplify the (spectral) graph convolution by a
Low-pass Collaborative Filter (LCF). Graph convolution is
defined in the frequency domain (Shuman et al. 2013) and
all-frequency components of the signal participate in cal-
culation. Filtered by LCF, only a very small proportion of
the components (low-frequency components) are reserved
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and need to be calculated, thus the efficiency is increased
greatly. LCF and the graph convolution are used to design an
end-to-end GCN, called LCF Network (LCFN), where ker-
nels are trainable. Another benefit of the LCF is to remove
the noise. Due to the random exposure and quantization, ob-
served interactions reflect user preference yet contain noise.
Yu and Qin (2020) pointed out that the user preference is
low-frequency and the noise is high-frequency, thus can be
separated by LCF. As we can see, LCF contributes to both
efficiency and effectiveness aspects.

However, there is still great room for improvement.
Firstly, LCFN used 2D graph convolution, with user-user
and item-item hypergraphs defining the graph spaces of
the two dimensions. These hypergraphs are constructed by
the 2-hop connections of the user-item bipartite graph, thus
there is no 1-hop connections, resulting in information loss.
For example, when performing convolution on a user, items
cannot contribute to the result. What’s more, since the fea-
ture maps are large and dense matrices, they are factorized
in LCFN for storage, making 2D convolution of an inter-
action matrix degenerates into twice 1D convolution of em-
beddings. As we can see, LCFN pays the cost of information
loss, but does not achieve real 2D graph convolution. Con-
sidering this issue, we utilize the observed bipartite graph
to define the graph space directly. To be specific, we treat
the bipartite graph as a homogeneous graph and design 1D
graph convolution. In this case, both users and items con-
tribute to the convolution on a certain user.

Secondly, LCFN focuses attention on introducing a new
graph convolution while simply follows the general network
structure and model settings of GCNs. Many unnecessary
structures and suboptimal model settings are used, increas-
ing the difficulty of model training and degrading the per-
formance. To solve these issuses, we design experiments to
explore the optimal structure and settings for the proposed
model.

Finally, we inject the 1D spectral graph convolution
into the tuned network, and propose our Low-pass Graph
Convolutional Network (LGCN). To sum up, the contribu-
tions are as follows:

• We propose 1D graph convolution to leverage the direct
connections of the observed graph. Then, we design a
1D LCF, and integrate it with 1D graph convolution as
the low-pass graph convolution.
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• We inject 1D low-pass graph convolution to a deep struc-
ture. We design comprehensive experiments to explore
the optimal model structure and settings.

• We conduct experiments on two real-world datasets to
validate the effectiveness of our proposed model. Exper-
iments show that the performance of this model is signif-
icantly better than state-of-the-art models.

Related Work

Recommender system is designed to learn user preference
from the interaction history, such as clicking, purchasing,
etc., and return top items to each user. The most widely-
used recommendation model is the latent variable model
(Koren 2009; He et al. 2017; He and Chua 2017) which en-
codes user preference and item properties by embeddings,
and measures the user preference towards items based on the
distance between the embeddings. In latent variable models,
embeddings are the most important parameters. In order to
learn better embeddings, many variants have been proposed
(Ying et al. 2018; Berg, Kipf, and Welling 2018; Wu et al.
2019b; He et al. 2020; Yu and Qin 2020).

Graph Neural Network (GNN) (Wang et al. 2019; Wu
et al. 2019b; Ying et al. 2018; Berg, Kipf, and Welling
2018) is one of the most effective paradigm for represen-
tation learning. GNNs refine the embeddings of each node
with that of the neighbors. To be specific, GNNs propagate
embeddings through the bipartite graph. Embeddings are
propagated to the 1-hop neighbors by one propagation layer,
and by stacking several layers, GNNs achieve long-distance
propagation. For each node, the embeddings are refined by
the neighbors within L hops, where L is the depth. GNNs
ensure connected nodes have similar embeddings thus pro-
vide an explicit way to leverage collaborative information.
However, GNNs only utilize the graphs to smooth embed-
dings. Deep models which can utilize graphs to extract high-
level features are desired.

Inspired by CNN, graph convolution is proposed to ex-
tract features for graph data. Shuman et al. (2013) extended
convolution from the Euclidean domain to the graph do-
main and Defferrard, Bresson, and Vandergheynst (2016)
proposed GCN which leverages graph convolution to ex-
tract high-level features. To utilize graph convolution for
recommendation tasks, Kipf and Welling (2017) improved
the efficiency by fixing the kernel, yet made GCNs degen-
erate into GNNs. Following Kipf and Welling (2017), most
existing GCNs (Wang et al. 2019; Ying et al. 2018; Berg,
Kipf, and Welling 2018; He et al. 2020) become GNNs or
the variants. To deal with this issue, Yu and Qin (2020) pro-
posed a low-pass graph convolutional network with learn-
able kernels, called LCFN. However, 2D graph convolution
of LCFN leads to the information loss. Also, the network
structure and model settings are rather suboptimal. Wu et al.
(2019a); He et al. (2020) pointed out that the unnecessary
components contribute negatively to the model performance.
In this paper, we explore better low-pass graph convolution
and better model structure.
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Figure 1: The comparison between 1D and 2D graph convo-
lution

1D Low-pass Graph Convolution
In this section, we introduce 1D low-pass graph convolution.
U ∈ RM×K and V ∈ RN×K are user and item embeddings,

where K is the dimensionality. E =

[
U
V

]
is the node em-

bedding matrix.
Figure 1 shows the comparison of 2D and 1D low-pass

graph convolution. We use dotted lines to indicate hyper-
edges of hypergraphs and use solid lines to indicate edges
of the graph. Blue rectangles indicate embeddings and the
white rectangle indicates the feature map. As shown in Fig-
ure 1(a), 2D graph convolution on feature maps becomes
twice 1D graph convolution on embeddings in LCFN. Fig-
ure 1(b) shows the 1D graph convolution on E proposed in
this paper. Although E is a 2D matrix, it is indeed 1D graph
data since only one dimension of E is in the graph space and
the other dimension is in the Euclidean space. That means
only the adjacency relationship between rows is defined by
the graph, and the adjacency relationship between columns
is still determined by their position. As a result, only 1D
graph convolution is needed.

Since that graph convolution is defined in the frequency
domain, we first introduce the graph Fourier transform, and
then design the low-pass graph filter LCF and graph con-
volution. Finally we integrate them to obtain the low-pass
graph convolution. To formulate each part concisely, we use
certain column of the embedding e = E∗k as the graph data,
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and for all columns, we do the same thing.

Graph Fourier Transform
1D Fourier transform is defined as the inner product of signal
and bases of the frequency domain:

F (ω) =

∫
R
f(t)e−jωtdt =

〈
f(t), e−jωt

〉
, (1)

where f(t) is the time-domain waveform, representing
change of the signal over time. F (ω) is the frequency-
domain waveform, representing the distribution of the sig-
nal on the frequency. e−jωt is the base of the frequency
domain, where j is the imaginary unit and ω is the angu-
lar frequency. e−jωt satisfies: ∇te−jωt = −jωe−jωt thus
is the eigen-function of the differential operator in the time
domain, and the eigen-value −jω defines the frequency of
corresponding base. To extend this definition to graph data,
we need to (1) introduce the difference operator in the graph
space; (2) construct the eigen-function to get bases; and (3)
calculate the inner product of the signal and the base. The
difference operator in the graph space is Laplacian matrix:

L = I −D− 1
2AD− 1

2 , where A =

[
0 R

RT 0

]
is adjacency

matrix of the bipartite graph and D is the diagonal degree
matrix: Dii =

∑
j Aij . For graph data e (i.e., E∗k), the re-

sult of Laplacian matrix performing on it is:

(Le)i =
1√
Dii

∑
j∈Ni

(
ei√
Dii

− ej√
Djj

)
(2)

where Ni is the set of connected nodes of i. Equation (2)
shows that the effect of Laplacian matrix L is to take differ-
ence of each node in the neighborhood.

As the difference operator is discrete, we use eigen-
vectors rather than eigen-functions as the bases of the fre-
quency space. Performing eigen-decomposition, we get:
L = PΛPT, where P is the eigen-vector matrix. Columns
of P can form a set of normalized orthogonal bases, which
defines the frequency domain. Λ = diag([λ1, · · · , λM+N ])
is the diagonal eigen-value matrix and all eigen-values are
arranged in ascending order. Eigen-values define the fre-
quency of the corresponding eigen-vector. Now, we can
extend Equation (1) to graph data. Graph Fourier trans-
form is the inner product of the signal e and the bases
{P∗ϕ}ϕ=1,··· ,M+N :

ẽϕ = ⟨e,P∗ϕ⟩ =
M+N∑
i=1

eiPiϕ.

For each column of E, we calculate the inner product. The
graph Fourier transform for entire embeddings E written
in a closed form is: Ẽ = Fg(E) = PTE, where Ẽ ∈
R(M+N)×K is the frequency-domain waveform of E. In this
paper, we use the tilde to mark the signal in frequency do-
main. Similarly, we can get the inverse graph Fourier trans-
form: E = F−1

g (Ẽ) = PẼ, where Fg( ) and F−1
g ( ) rep-

resent the graph Fourier transform and its inverse transform,
respectively. In graph Fourier transform, the time domain is

the graph space, and the frequency domain is defined by the
eigen-values: [λ1, · · · , λM+N ]. The ϕ-th row Ẽϕ is the com-
ponent of the signal E at the frequency λϕ. Thus, Ẽϕ can be
denoted as Ẽ(λϕ).

Low-pass Graph Filter
The low-pass graph filter removes high-frequency compo-
nents in the frequency domain and retains low-frequency
components. We use a 1D gate function to define the fil-

ter in frequency domain: f̃ =

[
1
0

]
, where f̃ ∈ {0, 1}M+N ,

1 ∈ {1}Φ is an all-one column vector; 0 ∈ {0}M+N−Φ is an
all-zero column vector; and Φ (strictly speaking, λΦ) is the
passband cutoff frequency. To remove the high-frequency
components, we need to transform e into the frequency do-
main, and conduct element-wise product with the filter f̃ ,
and finally transform it back to the time domain: LCF (e) =

F−1
g (Fg(e)⊙ f̃). Since the graph filter uses the connections,

i.e., collaborative information in the graph, it is named Low-
pass Collaborative Filter (LCF). For the entire embeddings
matrix E, we have:

LCF (E) = F−1
g

(
diag

(
f̃
)
· Fg(E)

)
= P̄P̄

T
E, (3)

where P̄ = P∗,1:Φ are the first Φ eigen-vectors. We can
find that when Φ = M + N , the filter becomes an all-pass
filter and do not change the embeddings E. By tuning LCF
with respect to Φ, we can retain the useful signal and remove
noise as much as possible. We illustrate the effectiveness of
the 1D LCF by comparing it against GCN and 2D LCF in
LCFN in the Analysis of 1D LCF Section.

Graph Convolution
Convolution theorem tells us that convolution in the time
domain is equivalent to multiplication in the frequency do-
main (Barrett and Wilde 1960). Hence, to perform graph
convolution on embeddings with the convolution kernel, we
only need to transform them into frequency domain by graph
Fourier transform, multiply them, and transform the result
back to time domain: e ∗g k = F−1

g

(
Fg(e)⊙ k̃

)
, where

∗g represents graph convolution; column vector k ∈ RM+N

is convolution kernel and k̃ = Fg(k) is the corresponding
frequency-domain waveform. In our model, we define and
train the kernel directly in frequency domain. For embed-
dings E, the convolution result is:

E ∗g k =F−1
g

(
diag(k̃) · Fg(E)

)
=Pdiag(k̃)PTE,

(4)

In our graph convolutional neural network, the convolution
kernel k̃ of each graph convolutional layer can be learned
from the data.

Low-pass Graph Convolution
For the embeddings, we first smooth it by LCF, and then
extract high-level features by graph convolution, and we can
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get the low-pass graph convolution:

E∗̄gk =F−1
g

(
diag(f̃) · diag(k̃) · Fg(E)

)
=P̄diag(k̄)P̄

T
E,

(5)

where ∗̄g indicates low-pass graph convolution; P̄ = P∗,1:Φ
contains the first Φ eigen-vectors and k̄ = k̃1:Φ is the con-
volutional kernel of low-pass graph convolution. Comparing
Equations (4) and (5), we can see that in graph convolution,
all the eigen-vectors need to be constructed and included in
the convolution computation, while in the low-pass graph
convolution, only the first Φ eigen-vectors are required. The
time cost of constructing P is O((M+N)3). However, since
L is sparse, P̄ can be constructed efficiently by Lanczos
algorithm (Grimes, Lewis, and Simon 1994) with O(nΦ2)
time, where n is the number of non-zero elements in L. Ex-
periments show that Φ ≪ M + N , so our low-pass graph
convolution is much more efficient.

Analysis of 1D LCF
1D LCF is the key component of low-pass graph convolu-
tion. Here, we illustrate the effectiveness of our proposed 1D
LCF by comparing it against 2D LCF in LCFN and existing
GCNs.

Compared with 2D LCF
Yu and Qin (2020) expounded the effect of 2D LCF from
the perspective of removing the high-frequency noise in the
user-item interaction matrix, while in this paper, we provide
another perspective of smoothing embeddings, and they are
equivalent (Yu and Qin 2020).

Though with the same principle, 1D LCF works better
than 2D LCF since they use different graphs. 1D LCF uti-
lizes the observed graph and 2D LCF utilizes two hyper-
graphs, thus 1-hop connections are lost in 2D LCF. For ex-
ample, when smoothing user embeddings, only user embed-
dings are used in 2D LCF yet all embeddings are used in our
1D LCF.

Compared with GCN
In fact, the propagation in vanilla GCNs is also a low-pass
graph filter. The difference between propagation and LCF
is that LCF can remove noise and retain signal more thor-
oughly. In other words, our LCF is an advanced version
of propagation with better effect. We will demonstrate this
viewpoint in both time domain and frequency domain.

Time domain We first compare LCF with propagation in
the time domain. Considering there are many variants of
GCNs with subtle differences, we take He et al. (2020) as
an example. Adjacency matrix with symmetric normaliza-
tion D− 1

2AD− 1
2 is used for propagation. Embeddings af-

ter 1-hop propagation is D− 1
2AD− 1

2E. In this propagation
strategy, the observed connection is used to measure the sim-
ilarity (propagation weight) between nodes. If nodes i and
j are connected, the similarity is 1√

DiiDjj

, and the simi-

larity is 0 otherwise. In the recommendation tasks, only a

small part of the connections can be observed due to insuffi-
cient exposure. Therefore, this similarity measurement is in-
effective and biased. For example, if the connection between
nodes i and j is missed, their embeddings cannot be prop-
agated to each other. To address this issue, GCNs connect
them by multi-hop connections. However, the embeddings
decay seriously through a long distance propagation, there-
fore contributing little to refining the embeddings of each
other. LCF in the time domain is a propagation matrix P̄P̄

T.
The similarity of i and j is determined by the inner prod-
uct of the vector: (P̄P̄

T
)ij = P̄iP̄

T
j . Ng, Jordan, and Weiss

(2002) pointed out that P̄ encodes the graph structure and
can be used to measure the similarity between nodes in node
clustering. P̄P̄

T is a similarity metric that takes multi-hop
connections into account. Compared to the normalized ad-
jacency matrix, P̄P̄

T is more effective and unbiased. For
example, if the connection of nodes i and j is missed, there
are still strong multi-hop connections since they are adja-
cent nodes. In this case (P̄P̄

T
)ij can be very large, and their

embeddings can be propagated to each other effectively.

Frequency domain Next, we compare the LCF against
propagation in the frequency domain. 1-hop propagation is:

D− 1
2AD− 1

2E = (I− L)E = P(I−Λ)PTE

=F−1
g · (diag([1− λ1, · · · , 1− λM+N ]) · Fg(E))

(6)

Comparing Equation (3) with Equation (6), we can con-
clude that propagation in the time domain is equivalent to
a low-pass graph filter in the frequency domain, and the
form of the filter is: [1 − λ1, · · · , 1 − λM+N ]. As intro-
duced in the main body, the eigen-values [λ1, · · · , λM+N ]
are arranged in ascending order, so the elements of filter
[1 − λ1, · · · , 1 − λM+N ] are arranged in descending order.
We can see that the component of frequency λϕ is attenu-
ated by 1 − λϕ. According to the property of the Laplacian
matrix, we have 0 = λ1 < λ2 ≤ · · · ≤ λM+N ≤ 2 (Shu-
man et al. 2013). The direct component (frequency λ1 is 0)
is all preserved, and with the increasing of the frequency
λϕ, the attenuation coefficient |1 − λϕ| decreases first and
then increases (noting that a signal attenuated by a nega-
tive attenuation coefficient 1 − λϕ equals to attenuated by
|1− λϕ| and invert the phase of the signal). It is evident that
this filter cannot retain the low-frequency components and
suppress the high-frequency components thoroughly. On the
contrary, the frequency form of LCF is a gate function. The
passband cut-off frequency λΦ is determined by estimating
the frequency range of the signal and noise. By separating
the signal and noise with λΦ, the signal can be completely
reserved and the noise can be completely removed.

In long-distance propagation of conventional GCNs, we
face over-smooth issue. It is easy to explain in the frequency
domain. After k-hop propagation, we have:(

D− 1
2AD− 1

2

)k

E

=F−1
g

(
diag

([
(1− λ1)

k, · · · , (1− λM+N )k
])

· Fg(E)
)
.

We can see that the filter becomes
[
(1 − λ1)

k,· · · ,(1 −
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If with transformation With Without

F1-score@2 0.01975 0.01995

Table 1: Effectiveness of transformation

λM+N )k
]
, thus except the direct component, all compo-

nents decay significantly with the increasing of k. However,
filtering by LCF k times will not lead to over-smooth issue,
since f̃ ⊙ · · · ⊙ f̃ = f̃ and filtered by LCF k times equals
filtered by LCF one time:

LCF (· · ·LCF (E)) =
(
P̄P̄

T)k
E

=P̄
(
P̄

T
P̄
)k−1

P̄
T
E = P̄Ī

k−1
P̄

T
E

=P̄P̄
T
E = LCF (E).

We benefit from LCF in two aspects: (1) By smoothing em-
beddings, LCF uses collaborative information explicitly to
enhance learning embeddings. (2) More importantly, it im-
proves the efficiency of original graph convolution signifi-
cantly, and makes it possible to design a GCN with train-
able convolution kernels. As analyzed before, our model
with only LCF is better than existing GCNs. By addition-
ally learning convolutional kernels to extract features, our
model is more powerful in predicting user preference.

Exploring the Optimal Model Structure
In this section, we design experiments to explore the best
structure for LGCN. We follow He et al. (2020) to initialize
the experimental settings of the experiments in this section,
that is: no transformation; no activation; sum pooling; inner
product for prediction; BPR loss; Adam as optimizer. F1-
score@2 is reported on the validation set of Amazon.

Graph Convolutional Layer
There are graph convolution, transformation and activation
modules in general graph convolutional layer.

Low-pass Graph Convolution Given Equation (5), we
can perform low-pass graph convolution on E with kernel
k̄ to obtain the feature map E′.

Transformation Embedding transformation is widely
used in GCNs (Berg, Kipf, and Welling 2018; Kipf and
Welling 2017; Yu and Qin 2020; Zhou et al. 2018). It is used
to transform feature maps into a new space. We design ex-
periments to verify the effectiveness of transformation. The
result in Table 1 indicates that transformation brings no ben-
efits. We consider that the feature maps and original embed-
dings are still in the same latent space, leading it unhelpful
to do spatial transformation.

Activation In our experiments, we try sigmoid, ReLU, and
tanh. Result is reported in Table 2. An interesting observa-
tion is that LGCN performs better with no activation or tanh
than with sigmoid or ReLU. The possible reason is that ac-
tivated by sigmoid or ReLU, all dimensions in embeddings
are positive. However, negative values means the user/item

Activation – Sigmoid ReLU Tanh

F1-score@2 0.01995 0.01845 0.01911 0.01977

Table 2: Effectiveness of different activation functions

does not match this latent factor. This information is very
important in the encoding preference. We discard activation
function since it brings no improvement.

As we can see, in the graph convolutional layer, only the
low-pass graph convolution is indispensable and all other
operations lead no enhancement.

Network Structure

Our model has a multi-layer structure, including an embed-
ding layer and L graph convolutional layers. We use super-
script (l) to mark parameters of the l-th graph convolutional
layer. Feature maps from the previous layer E(l−1) is input
in current layer and we get the new feature maps E(l):

E(l) = P̄diag(k̄
(l)
)P̄

T
E(l−1).

We can get L + 1 embeddings {E(l)}l=0,··· ,L, where E(0)

indicates embeddings of the embedding layer. Next, we pool
the L + 1 embeddings to get the predictive embeddings,
and then make prediction by inputting them into a predictive
function. In this subsection, we explore pooling and predic-
tive functions.

Pooling We explore five pooling methods: concatenation,
weighted sum (He et al. 2020), element-wise product, max
pooling, and Multi-Layer Perceptron (MLP). Moreover,
we try 1-layer and 3-layer MLP, denoted as MLP 1L and
MLP 3L respectively. Table 3 shows that the performance
of sum pooling is the best, so our model adopts sum pool-
ing.

Pooling F1-score@2 Pooling F1-score@2

Concatenation 0.01854 Sum 0.01995
Product 0.01775 Maximum 0.01741
MLP 1L 0.01785 MLP 3L 0.01524

Table 3: Effectiveness of different pooling methods

Predictive Function After getting the predictive embed-
dings E, we split it into user embeddings U = E1:M and
item embeddings V = EM+1:M+N . For a pair of user u

and item i, the preference score R̂ui is predicted based on
Uu and Vi. Commonly-used predictive functions are inner
product and MLP. For inner product, R̂ui = UuV

T
i , and for

MLP, R̂ui = MLP ([Uu,Vi,Uu⊙Vi]). Table 4 shows that
inner product performs best, thus we adopt inner product in
LGCN. MLP 3L performs much worse than the others and
we can also conclude that light network performs best.
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Functions Inner product MLP 1L MLP 3L

F1-score@2 0.01995 0.01910 0.01616

Table 4: Effectiveness of different predictive functions

Loss functions BPR Cross-entropy MSE

F1-score@2 0.01995 0.01982 0.01795

Table 5: Effectiveness of different loss functions

Optimization Settings
In this subsection, we design optimization strategies for
LGCN, including loss functions, sample rate, generalization
strategy and optimization methods.

Loss Function We explore three loss functions: Bayesian
Personalized Ranking (BPR) (Rendle et al. 2009), cross-
entropy, and Mean Square Error (MSE). Table 5 shows that
pairwise loss BPR performs better than point-wise losses
cross-entropy and MSE. The reason is that the classification
quality and the rank quality are both important in recom-
mendation tasks with implicit feedbacks.

Sample Rate The impact of sampling rate ρ is shown in
Table 6. As we can see, the model performs best when ρ = 3.
By tuning the model with respect to ρ, we achieve 1.6%
improvement. However, the improvement is very marginal
(1.6%) and the training efficiency is impacted. To balance
the effectiveness and efficiency, we set ρ = 1 in our experi-
ments, and in real-world application, we can set a large ρ to
get the best performance.

Generalization Strategy To prevent overfitting, we try
three generalization strategies: L2 regularization (reg1 in-
dicates performing regularization only on embeddings and
reg2 indicates regularization on all parameters), dropout and
L2 normalization (normalize each row of E). Table 7 illus-
trates that regularization is the best generalization strategy
for LGCN, and only embeddings need to be decayed.

Optimizer We explore four optimizers: Stochastic
Gradient Descent (SGD), Adaptive Gradient Algorithm
(AdaGrad) (Duchi, Hazan, and Singer 2010), Root Mean
Square Propagation (RMSProp) (Tieleman and Hinton
2012) and Adaptive Moment Estimation (Adam) (Kingma
and Ba 2015). Table 8 shows that optimizers with mo-
mentum perform better than vanilla SGD and RMSProp
performs best. Therefore, we adopt RMSProp in LGCN.

From experimental results shown above, we draw the con-
clusion that simple model settings usually bring better per-
formance in recommendation tasks. Thus, the structure of
our LGCN is a very simple and only the indispensable parts
are reserved (please see Figure 2).

Experiment
Experiments are conducted in this section to demonstrate
the effectiveness of LGCN by comparing it against several
state-of-the-art models on two real-world datasets. We also

ρ 1 2 3 4 5

F1-score@2 0.01995 0.02018 0.02027 0.02003 0.02011

Table 6: Performances with different sampling rates ρ

Generalization F1-score@2 Generalization F1-score@2

reg1 0.01995 reg2 0.01976
Dropout 0.01919 reg1+dropout 0.01983
Normalization 0.01528

Table 7: Effectiveness of different generalization methods

demonstrate the two key novelties of this paper: 1D low-pass
graph convolution and model structure by experiments.

Experimental Setup
We strictly follow the experiment settings of Yu and Qin
(2020). For details about the datasets, baselines, and tuning
strategies, please see Yu and Qin (2020).

Performance of LGCN
The performance of all models on two datasets is shown
in Table 9. F1-score and NDCG@{2,5,10,20,50,100} are in
Appendix. Considering longer predictive embeddings mean
stronger representation ability and more time consumption
for inference, we follow (Yu and Qin 2020) to set the same
dimensionality K of E for all models in this experiments.
Since GCMC, NGCF, LCFN leverage concatenation for
pooling yet LightGCN, LGCN leverage sum pooling, the di-
mensionality of E(0) is K

L+1 in GCMC, NGCF, LCFN, and
is K in MF, LightGCN, LGCN, i.e., there are approximately
L+ 1 times learnable parameters in MF, LightGCN, LGCN
of those in GCMC, NGCF, and LCFN. As a result, GCMC
and NGCF cannot outperform MF significantly. However,
even in this case, LCFN achieves significant improvement
over MF (22.00% for the best case) due to the strong repre-
sentation power from learning kernels.

Comparing MF and LightGCN, we can see that by prop-
agating embeddings through the graph, GCNs learn better
embeddings and outperform the basic MF dramatically. By
learning kernels to extract high-level features, LGCN gets
further improvement and outperforms LightGCN signifi-
cantly (9.38%). By utilizing 1-hop connections in construct-
ing graph convolution and exploring better model structure,
LGCN outperforms LCFN (12.57% for the best case).

Model Tuning
The result of model tuning is shown in Figure 3. For a fair
comparison, we tune all models with the same strategy. To
save space, we only report the results on Amazon dataset
on account of the similar performance on the two datasets.
To make sure all models achieve their best performance for
each hyperparameter setting, we retune them with respect to
η and µ for each K, L, and F in Figure 3.

Figure 3(a) illustrates how the dimensionality K im-
pacts the models. As shown in the figure, we gain better
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Optimizer SGD AdaGrad RMSProp Adam

F1-score@2 0.01938 0.01989 0.02005 0.01995

Table 8: Effectiveness of different optimizer
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Figure 2: Illustration of LGCN

performance by increasing the representation ability. The
number of layers L is analyzed in Figure 3(b). Obviously,
with the increase of L, the performance of LightGCN in-
creases first and then decreases slightly due to the over-
smooth issue. Since there is no activation and transfor-
mation in LGCN, performing convolution L times equals
to one time: E∗̄gk(1)∗̄g · · · ∗̄gk(L) = E∗̄gk, where k =

k(1)∗̄g · · · ∗̄gk(L). This is also supported by the experiments:
the performance of LGCN keeps constant with the increase
of L. Figure 3(c) shows the sensitivity analysis of the cut-off
frequencies Φ. When Φ is too small, embeddings are over-
filtered and much useful information is corrupted. Compar-
ing LGCN with LCFN, we can see that the 1D low-pass
graph convolution requires high pass band cut-off frequency.

Effectiveness of 1D Low-pass Graph Convolution
There are two key novelties of our paper: (1) 1D low-pass
graph convolution and (2) model structure. Since the exper-
imental results of the model structure have been reported,
in this section, we design experiments to validate the effec-
tiveness of 1D low-pass graph convolution by comparing the
three low-pass graph convolution methods. For fair compar-
ison, they are all injected into the model structure introduced
above and tuned by the same strategy.
• LGCN 1D: LGCN with 1D graph convolution, which is

the LGCN proposed in this paper.
• LGCN 2D: LGCN with 2D graph convolution. User and

item dimensions are defined by a user graph and an item
graph. In the user graph, users are connected if they have
interacted with the same item. The item graph is con-
structed in the same way.

• LGCN 2Dh: LGCN with 2D hypergraph convolution as
Yu and Qin (2020) proposed.

Model Amazon Movielens
F1-score@2 NDCG@2 F1-score@2 NDCG@2

MF 0.01356 0.01742 0.07506 0.25100
GCMC 0.01377 0.01742 0.07689 0.26316
NGCF 0.01349 0.01733 0.07453 0.25436

LightGCN 0.01703 0.02165 0.08162 0.26817
LCFN 0.01654 0.02104 0.08151 0.26129
LGCN 0.01862 0.02346 0.08318 0.26917

Improvement over competitive baselines
MF 37.33% 34.65% 10.82% 7.24%

LightGCN 9.38% 8.35% 1.91% 0.38%
LCFN 12.57% 11.50% 2.05% 3.02%

Table 9: Recommendation performance (testing set)

(a) Impact of K (b) Impact of L (c) Impact of Φ

Figure 3: Model tuning (Amazon, validation set).

Metrics LGCN 1D LGCN 2D LGCN 2Dh

F1-score@2 0.01862 0.01449 0.01677
NDCG@2 0.02346 0.01834 0.02104

Table 10: Recommendation performance (Amazon, test set)

The results are reported in Table 10. Comparing
LGCN 1D and LGCN 2D, we can see that a large amount
of topological information is lost in 2D graph convolution.
Thanks to the strong representation capacity, hypergraphs
alleviate this issue in some degree, thus LGCN 2Dh outper-
forms LGCN 2D significantly, yet still performs worse than
LGCN 1D. Since all topological information of the bipartite
graph is utilized in the proposed 1D low-pass graph convo-
lution, our LGCN 1D performs best.

Conclusion and Future Work

In this paper, we solve the two issues in the low-pass graph
convolutional network: (1) Only 2-hop connections are used,
which causes topological information loss. (2) The model
structure used is rather suboptimal. For the issue (1), we de-
sign 1D low-pass graph convolution to utilize 1-hop con-
nections directly. For the issue (2), we design experiments
to explore the best structure for the proposed model. Com-
prehensive experiments show the effectiveness of the model.

For future work, we are interested in validate the effec-
tiveness of our model in other graph data learning tasks. We
also want to leverage more graph data in recommendation
tasks, such as knowledge graphs and social networks. Some
widely-used strategies in CNN also attract our interests.
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