
SAIL: Self-Augmented Graph Contrastive Learning
Lu Yu2,1, Shichao Pei1, Lizhong Ding5, Jun Zhou2, Longfei Li2,

Chuxu Zhang4∗, Xiangliang Zhang3,1*
1 King Abdullah University of Science and Technology, Saudi Arabia

2 Ant Group, Hangzhou, China
3 University of Notre Dame, USA

4 Brandeis University, USA
5 Inception Institute of Artificial Intelligence, UAE

bruceyu.yl@alibaba-inc.com, shichao,pei@kaust.edu.sa, lizhong.ding@inceptioniai.org,
{jun.zhoujun,longyao.llf}@antgroup.com,chuxuzhang@brandeis.edu,xzhang33@nd.edu

Abstract

This paper studies learning node representations with graph
neural networks (GNNs) for unsupervised scenario. Specif-
ically, we derive a theoretical analysis and provide an em-
pirical demonstration about the non-steady performance of
GNNs over different graph datasets, when the supervision
signals are not appropriately defined. The performance of
GNNs depends on both the node feature smoothness and the
locality of graph structure. To smooth the discrepancy of node
proximity measured by graph topology and node feature, we
proposed SAIL - a novel Self-Augmented graph contrastive
Learning framework, with two complementary self-distilling
regularization modules, i.e., intra- and inter-graph knowledge
distillation. We demonstrate the competitive performance of
SAIL on a variety of graph applications. Even with a single
GNN layer, SAIL has consistently competitive or even better
performance on various benchmark datasets, comparing with
state-of-the-art baselines.

Introduction
Graph neural networks (GNNs) have been a leading effec-
tive framework of learning graph representations. The key of
GNNs roots at the repeated aggregation over local neighbors
to obtain smoothing node representations by filtering out
noise existing in the raw node features. With the enormous
architectures proposed (Kipf and Welling 2017; Hamilton,
Ying, and Leskovec 2017; Veličković et al. 2018), learn-
ing GNN models to maintain local smoothness usually de-
pends on supervised signals (e.g., node labels or graph la-
bels). However, labeled information is not always available
in many scenarios. Along with the raising attention on self-
supervised learning (Veličković et al. 2019; Hassani and
Khasahmadi 2020), pre-training GNNs without labels has
become an alternative way to learn GNN models.

There are a group of unsupervised node representation
learning models in the spirit of self-supervised learning. As
one of the most representatives, predicting contextual neigh-
bors (e.g., DeepWalk (Perozzi, Al-Rfou, and Skiena 2014)
or node2vec (Grover and Leskovec 2016)) enforces the lo-
cally connected nodes to have similar representations. Self-

*Corresponding author.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

supervising signals of this method are designed to extract
local structure dependency but discard the contribution of
node feature smoothness which has been utilized to improve
expressive capability of GNNs (Kipf and Welling 2017; Wu
et al. 2019). Another line pays attention to maximizing the
mutual information (MI) criterion to make agreement on
multi-view graph representations (Hassani and Khasahmadi
2020; You et al. 2020a), in which each view of augmented
graph is generated by operations on nodes, attributes, etc.
However, most of them aim at making agreement on the
graph-level representations (You et al. 2020a; Sun et al.
2019), which might be not suitable for node-level tasks.

Instead of creating multiple views through graph augmen-
tation (Hassani and Khasahmadi 2020) methods, there are
recent works building upon self-augmented views created
by the intermedian hidden layers of GNN. As a pioneering
work, deep graph infomax (DGI) (Veličković et al. 2019)
proposes to maximize MI between the summarized graph
and node embeddings. However, the summarized graph em-
bedding contains the global context that might not be shared
by all nodes. Inspired by DGI, graphical mutual information
(GMI) (Peng et al. 2020) turns to maximize the edge MI
between the created views of two adjacent nodes. As GMI
focuses on the edge MI maximization task, it lacks a bird’s
eye on the learned node representations. The learned GNN
might bias towards performing well on edge prediction task,
but downgrades on the other tasks like node clustering or
classification. Recently some works (Mandal et al. 2021) at-
tempt to bring the idea of meta-learning to train GNNs with
meta knowledge which can help to avoid the bias caused
by single pretext task. However, the meta-GNN might con-
tain knowledge that cause task discrepancy issue (Tian et al.
2020; Wang et al. 2020).

With the knowledge of the previous work, we just wonder
can we advance the expressivity of GNNs with the knowl-
edge extracted by themselves in an unsupervised way? In
order to answer this question, we theoretically dissect the
graph convolution operations (shown in Theorem 1), and
find that the smoothness of node representations generated
by GNNs is dominated by smoothness of neighborhood em-
beddings from previous layers and the structural similar-
ity. It suggests that improving the graph representations of
shallow layer can indirectly help get better node embed-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

8927

dings of deep layer or the final layer. Based on this observa-
tion, we propose SAIL, a Self-Augmented graph contrastive
Learning framework, in which we mainly use two different
views (i.e., non-linear mappings of input node feature and
the final layer of GNN) of transformed node representations.

More specifically, we propose to iteratively use the
smoothed node representations from the output layer of
GNNs to improve the node representations of shallow layer
or the input layer (e.g., non-linear mapping of input node
features). The most recent work (Chen et al. 2020b) also
shares a similar idea for supervised task, while the differ-
ent thing is that it forces the knowledge flow from low-
level to high-level neural representations. Besides attempt-
ing to make an agreement on the selected views, we in-
troduced a self-distilling module to raise consistency reg-
ularization over node representations from both local and
global perspectives. The design of self-distilling module is
inspired by a recent work (Wang and Isola 2020) on the im-
portance of alignment and uniformity for a successful con-
trastive learning method. With a given distribution of posi-
tive pair, the alignment calculates the expected similarity of
connected nodes (i.e. locally closeness), and the uniformity
measures how well the encoded node embeddings are glob-
ally distributed. The intra-distilling module aims at forcing
the learnt representations and node features to have con-
sistent uniformity distribution. Inspired by another piece of
work (Ishida et al. 2020) indicating out the alleviating the
learning bias by injecting noise into objective, we design
an inter-distilling framework to align the node representa-
tions from a copied teacher model to noisy student model.
Through multiple runs of the inter-distilling module, we im-
plicitly mimic the deep smoothing operation with a shallow
GNN (e.g., only a single GNN layer), while avoiding noisy
information from high-order neighbors to cause the known
oversmoothing issue (Chen et al. 2020a; Li, Han, and Wu
2018) since shallow GNN only depends on the local neigh-
bors. The proposed SAIL can learn shallow but powerful
GNN. Even with a single GNN layer, it has consistently
competitive or even better performance on various bench-
mark datasets, comparing to state-of-the-art baselines. We
summarize the contributions of this work as follow:

- We present SAIL, to the best of our knowledge, the first
generic self-supervised framework designed for advanc-
ing the expressivity of GNNs through distilling knowl-
edge of self-augmented views but not depending on any
external teacher model.

- We introduce a universal self-distilling module for unsu-
pervised learning graph neural networks. The presented
self-distilling method can bring several advantages in-
cluding but not limited to: 1) distilling knowledge from
a self-created teacher model following the graph topol-
ogy; 2) we can mimic a deep smoothing operation with
a shallow GNN by iteratively distilling knowledge from
teacher models to guide a noisy student model with fu-
ture knowledge.

- We demonstrate the effectiveness of proposed method
with thorough experiments on multiple benchmark
datasets and various tasks, yielding consistent improve-

ment comparing with state-of-the-art baselines.

Related Work
Graph Neural Networks. In recent years, we have wit-
nessed a fast progress of graph neural network in both
methodology study and its applications. As one of the pio-
neering research, spectral graph convolution methods (Def-
ferrard, Bresson, and Vandergheynst 2016) generalized the
convolution operation to non-Euclidean graph data. Kipf et
al. (Kipf and Welling 2017) reduced the computation com-
plexity to 1-order Chebyshev approximation with an affined
assumption. NT et al. (NT and Maehara 2019) justified that
classical graph convolution network (GCN) and its variants
are just low-pass filter. At the same time, both of studies (Li
et al. 2019; Klicpera, Weißenberger, and Günnemann 2019)
proposed to replace standard GCN layer with a normal-
ized high-order low-pass filters (e.g. personalized PageRank,
heats kernel). This conclusion can help to answer why sim-
plified GCN proposed by Wu et al. (Wu et al. 2019) has com-
petitive performance with complicated multi-layer GNNs.
Besides GCNs, many novel GNNs have been proposed, such
as multi-head attention models (Veličković et al. 2018; Ma
et al. 2019), recurrent graph neural network (Liu et al. 2019),
RevGNN (Li et al. 2021), heterogeneous graph neural net-
work (Zhang et al. 2019).
Self-supervised Learning for GNNs. In addition to the
line of work following Deepwalk (Perozzi, Al-Rfou, and
Skiena 2014) for constructing self-supervising signals, mu-
tual information (MI) maximization (Veličković et al. 2019)
over the input and output representations shows up as an
alternative solution. In analogy to discriminating that out-
put image representation is generated from the input image
patch or noisy image, Veličković et al. (Veličković et al.
2019) propose deep graph infomax (DGI) criterion to max-
imize the mutual information between a high-level “global”
graph summary vector and a “local” patch representation.
Inspired by DGI, more and more recent methods like Graph
Clustering (Bo et al. 2020), InfoGraph (Sun et al. 2019),
GraphCL (You et al. 2020a), GCC (Qiu et al. 2020) and pre-
training graph neural networks (Hu et al. 2019) are designed
for learning graph representations. Most of self-supervised
learning methods can be distinguished by the way to do data
augmentation and the predefined pretext tasks (Xie et al.
2021; Sun, Lin, and Zhu 2020; You et al. 2020b; Zhao et al.
2021; Xu et al. 2021). For example, graph contrastive cod-
ing (GCC) borrows the idea from the momentum contrastive
learning (He et al. 2020), and aims at learning transferrable
graph neural networks taking the node structural feature as
the input. Both of GraphCL (You et al. 2020a) and Info-
Graph (Sun et al. 2019) are designed for learning agreement
of graph-level representations of augmented graph patches.

Methodology
Let G = {V, E ,X} denote an attribute graph where V is the
node set {vi ∈ V}, E is the edge set, and X ∈ RN×F is
the node feature matrix where each row xi stands for the
node feature of vi. We use A represents the node relation
matrix where aij = 1 if there existing a link between node

8928

Figure 1: Overall architecture of the proposed self-supervised GNN with intra- and inter-distilling modules. The intra-distilling
module aims at forcing the learnt representations and node features to have consistent uniformity distribution. The inter-
distilling module consists of three operations including: 1) creating a teacher model by copying the target model (i.e., θt ← θs),
2) fading the target model to a student model by injecting noise into the model parameters (l(θs, ε) = wθs + (1 − w)ε), 3)
supervising the faded target model (i.e., student model) with future knowledge (i.e., Ht).

vi and vj , i.e., eij ∈ E , otherwise aij = 0. We define the de-
gree matrix D = diag(d1, d2, · · · , dN) where each element
equals to the row-sum of adjacency matrix di =

∑
j aij .

Our goal is to learn a graph neural encoder Φ(X,A|θ) =
H, where H ≡ {h1, h2, · · · , hN} is the representation
learned for nodes in V . Deep graph encoder Φ usually has
oversmoothing problem. In this work, we instantiate a GNN
with single layer to validate the effectiveness of proposed
method to learn qualified node representations with shallow
neighbors. But the analysis results in the following section
can be easily extended to deeper GNNs. The graph neural
encoder (Li et al. 2019; Wu et al. 2019) used in this paper is
defined as:

Ã = D−
1
2 (A+ I)D−

1
2

Φ(X, Ã) = σ(Ã
2
XW)

(1)

where W ∈ RF×F ′ is learnable parameter and σ(·) denotes
the activation function. The vector hi ∈ RF ′ actually sum-
marizes a subgraph containing the second-order neighbors
centered around node vi. We refer to H and X̃ = XW as
the self-agumented node representations after transformed
raw node featatures X. X̃ denotes the low-level node feature,
which might contain lots of noisy information.
Definition 1 (Second-order Graph Regularization). The ob-
jective of second-order graph regularization is to minimize
the following equation∑

eij∈E
sij ||hi − hj ||22 (2)

where sij is the second-order similarity which can be de-

fined as cosine similarity sij =
∑

c∈N(i)∩N(j) αic·αjc

||αi·||2||αj·||2 , and hi
denotes the node representation.
Theorem 1. Suppose that a GNN aggregates node represen-
tations as hli = σ(

∑
j∈N (i)∩vi αijh

l−1
j), where αij stands

for the element of a normalized relation matrix. If the first-
order gradient of the selected activation function σ(x) sat-
isfies |σ′(x)| ≤ 1, then the graph neural operator approxi-
mately equals to a second-order proximity graph regulariza-
tion over the node representations.

Proof. Here we mainly focus on analyzing GNNs whose ag-
gregation operator mainly roots on weighted sum over the
neighbors, i.e. hl = σ(

∑
j∈N (i)∩vi αijh

l−1
j). Typical exam-

ples include but not limited to GCN (Kipf and Welling 2017)
where αij can be the element of normalized adjacent ma-

trix Ã = D−
1
2 (A+ I)D−

1
2 or Ã

2
. The node representation

hli can be divided into three parts: the node representations
αiih

l−1
i , the sum of common neighbor representations Si =∑

c∈N (i)∩N (j) αich
l−1
c , the sum of non-common neighbor

representations Di =
∑
q∈N (i)−N (i)∩N (j) αiqh

l−1
q . Let

y = σ(x), and suppose that the selected activation function
holds |σ′(x)| ≤ 1. We can have (y1−y2)2

(x1−x2)2
= |y1−y2|2
|x1−x2|2 ≤ 1.

Let’s reformulate the definition of hl as hl = σ(ĥl) and
ĥl =

∑
j∈N (i)∩vi αijh

l−1
j . Then we can have ||hli−hlj ||2 ≤

||ĥli−ĥlj ||2. The distance between the representations hli and
hlj satisfies:

||hli − hlj ||2 ≤ ||ĥli − ĥlj ||2
= ||(αiihl−1i − αjjhl−1j) + (Si − Sj) + (Di −Dj)||2
≤ ||(αiihl−1i − αjjhl−1j)||2 + ||(Si − Sj)||2 + ||(Di −Dj)||2
≤ ||(αiihl−1i − αjjhl−1j)||2︸ ︷︷ ︸

local feature smoothness

+ ||Di||2 + ||Dj ||2︸ ︷︷ ︸
non−common neighbor

+ ||
∑

c∈N (i)∩N (j)

(αic − αjc)hl−1c ||2︸ ︷︷ ︸
structure proximity

(3)

From Equation 3, we can see that the upper bound of simi-
larity of a pair of nodes is mainly influenced by local feature
smoothness and structure proximity. According to the proof
shown above, if a pair of node (vi, vj) has smoothed local
features and similar structure proximity with many common
similar neighbors (i.e. αic ≈ αjc), the obtained node repre-
sentation of a GNN will also enforce their node representa-
tions to be similar.

8929

Learning from Self-augmented View
From the conclusion given in Theorem 1, we can see that
the quality of each GNN layer has close relation to previ-
ous layer. As the initial layer, the quality of input layer fea-
ture X̃ will propagate from the bottom to the top layer of a
given GNN model. As a graph neural layer can work as a
low-pass filter (NT and Maehara 2019), its output H are ac-
tually smoothed node representations after filtering out the
noisy information existing in the low-level features. Usu-
ally single GNN layer might not perfectly get a clean node
representations. By stacking multiple layers, a deep GNN
model can repeatedly improved representations from previ-
ous layer. However, deep GNN models tend to oversmooth
the node representations with unlimited neighborhood mix-
ing. In this work, we attempt to improve the GNN model
with shallow neighborhood by shaping the low-level node
features with relatively smoothed node representations.

To overcome the above-discussed challenges, we propose
to transfer the learnt knowledge in the last GNN layer H to
shape X̃ in both local and global view. Concretely, instead
of constructing contrastive learning loss over the node rep-
resentations h at the same GNN layer, we turn to maximize
the neighborhood predicting probability between a node rep-
resentation h and its input node features x̃ in its neighbors.
Formally, for a sample set {vi, vj , vk} where eij ∈ E but
eik /∈ E , the loss `ijk is defined on the pairwise compari-
son of (hi, x̃j) and (hi, x̃k)). Therefore, our self-supervised
learning for GNN has the loss function defined below,

Lssl =
∑
eij∈E

∑
eik /∈E

−`(ψ(hi, x̃j), ψ(hi, x̃k))+λR(G), (4)

where `(·) can be an arbitrary contrastive loss function, ψ is
a scoring function, andR is the regularization function with
weight λ for implementing graph structural constraints (to
be introduced in next section). There are lots of candidates
for contrastive loss `(). In this work we use logistic pairwise
loss lnσ(ψ(hi, x̃j)−ψ(hi, x̃k)), wehre σ(x) = 1

1+exp(−x) .

Self-distilling Graph Knowledge Regularization
The objective function defined in Eq. (4) models the interac-
tions between output node representations h and input node
features x̃, which can be regarded as an intra-model knowl-
edge distillation process from smoothed node embeddings
to denoise low-level node features. However, the raised con-
trastive samples over edge connectivity might fail to repre-
sent a whole picture of node representation distribution, and
cause a bias to learning node representations favoring to pre-
dict edges. We present a self-distilling method shown in Fig-
ure 1 consists of intra- and inter-distilling modules.

Intra-distilling module: To supplement the loss defined
on the individual pairwise samples, we introduce a regular-
ization term to ensure the distribution consistency on the re-
lations between the learned node representations H and the
node features X̃ over a set of randomly sampled nodes. Let
LS = {LS1, LS2, · · · , LSN} denote the randomly sampled
pseudo relation graph, where LSi ⊂ V and |LSi| = d is the
number of sampled pseudo local neighbors for center node

Algorithm 1: SAIL
1 Input: graph G = {V, E ,X},

hyperparameters= {α, λ}
2 Output: learned GNN Φ
3 initialize Φ0 by optimizing Eq. (16) without Rcross
4 for m← 1 to n do
5 if m%τ == 0 then
6 θt ← θs;
7 θs ← wθs + (1− w)ε;
8 Optimize Lssl(Φt,Φs,X,A);
9 return Φs;

vi. The estimated proximity for each node in i-th local struc-
ture LSi is computed by

Stij =
exp(ψ(hi, x̃j))∑

vj∈LSi
exp(ψ(hi, x̃j))

Ssij =
exp(ψ(x̃i, x̃j))∑

vj∈LSi
exp(ψ(x̃i, x̃j))

(5)

where Stij and Ssij denote the similarity estimated from dif-
ferent node representations between node vi and vj . The
Stij will act as the teacher signal to guide the node fea-
tures X̃ = {x̃1, x̃2, · · · , x̃N} to agree on the relation dis-
tribution over a random sampled graph. For the node vi,
the relation distribution similarity can be measured as Si =
CrossEntropy(St[i,·], S

s
[i,·]). Then we can compute the re-

lation similarity distribution over all the nodes as

Rintra =

N∑
i=1

Si, (6)

where Rintra acts as a regularization term generated from
the intra-model knowledge, and to push the learned node
representations H and node features X̃ being consistent at
a subgraph-level.

Inter-distilling Module: The second regularization is
to introduce the inter-distilling module for addressing the
over-smoothing issue. The inter-distilling module can guide
the target GNN model by transferring the learned self-
supervised knowledge. Through multiple implementations
of the inter-distilling module, we implicitly mimic the deep
smoothing operation with a shallow GNN (e.g. a single GNN
layer), while avoiding to bring noisy information from high-
order neighbors. The overall inter-distilling framework is
shown in Figure 1. We create a teacher model Φt by copy-
ing the target GNN model, then inject noise into the tar-
get model that will degrade into a student model Φs af-
ter a fix number of iterations. Working with a self-created
teacher and student model {Φt,Φs} with the same architec-
tures shown in Eq. (1), student model Φs(X,A) = {Hs, X̃s}
distills knowledge from the teacher model Φt. Since no label
is available, we propose to implement representation distil-
lation (Tian, Krishnan, and Isola 2020) with the constraint of
graph structure. The knowledge distillation module consists

8930

of two parts, defined as

Rinter = KD(Ht, X̃s|G) +KD(Ht,Hs|G) (7)

where Ht is the node representations from teacher model
Φt, and X̃s = XW. To define module KD(·), we should
meet several requirements: 1) this function should be easy
to compute and friendly to back-propagation strategy; and
2) it should stick to the graph structure constraint. We resort
to the conditional random field (CRF) (Lafferty, McCallum,
and Pereira 2001) to capture the pairwise relationship be-
tween different nodes. For a general knowledge distillation
module KD(Y,Z|G), the dependency of Z on Y can be
given following the CRF model:

P (Z|Y) =
1

C(Y)
exp(−E(Z|Y)), (8)

where C(·) is the normalization factor and E(·) stands for
the energy function, defined as follows:

E(Zi|Yi) = ψu(Zi, Yi) + ψp(Zi, Zj , Yi, Yj)

= (1− α)||Zi − Yi||22 + α
∑

j∈N (i)

βij ||Zi − Zj ||22,

(9)
where ψu and ψp are the unary and pairwise energy func-
tion, respectively. The parameter α ∈ [0, 1] is to control the
importance of two energy functions. When Z is the node
feature of student model and Y is the node representation
from teacher model Φm−1, the energy function defined in
Equation (9) enforces the node vi representation from stu-
dent model to be close to that in the teacher model and its
neighbor nodes. After obtaining the energy function, we can
resolve the CRF objective with the mean-field approxima-
tion method by employing a simple distributionQ(Z) to ap-
proximate the distribution P (Z|Y). Specifically distribution
Q(Z) can be initialized as the product marginal distributions
asQ(Z) = ΠN

i=1Qi(Zi). Through minimizing the KL diver-
gence between these two distributions as follows:

arg minKL(Q(Z)||P (Z|Y)). (10)

Then we can get the optimal Q∗i (Zi) as follows:

lnQ∗i (Zi) = Ej 6=i[lnP (Zj |Yj)] + const. (11)

According to Equation (8) and (9), we can get

Q∗i (Zi) ∼ exp((1−α)||Zi−Yi||22+α
∑

j∈N (i)

βij ||Zi−Zj ||22),

(12)
which shows that Q∗i (Zi) is a Gaussian function. By com-
puting its expectation, we have the optimal solution for Zi
as follows:

Z∗i =
(1− α)Yi + α

∑
j∈N (i) βijZj

(1− α) + α
∑
j∈N (i) βij

(13)

Then we can get the cross-model knowledge distillation rule
by enforcing the node representations from student model to
have minimized metric distance to Z∗i . After replacing the
random variables Yi as the node representation hti of teacher

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Locality

0.0

0.2

0.4

0.6

0.8

1.0

F
e

a
tu

re
 S

m
o

o
th

n
e

s
s

Cora
Citeseer

Pubmed

Computers Photo

CS

Figure 2: Locality and node feature smoothness in the six
graphs used in experimental evaluation. The larger feature
smoothness value is, the more smoothing feature we have.

model Φt, then we can get the final distillation regularization
as follows:

KD(Ht, X̃s|G) = ||x̃si −
(1− α)hti + α

∑
j∈N (i) βij x̃

s
j

(1− α) + α
∑
j∈N (i) βij

||22
(14)

KD(Ht,Hs|G) = ||hsi −
(1− α)hti + α

∑
j∈N (i) βijh

s
j

(1− α) + α
∑
j∈N (i) βij

||22
(15)

where x̃si denotes the feature of node vi from the student
model Φs, and hsi denotes the output node representation for
node vi. In terms of βij in Eq. (13), we have many choices
such as attentive weight, or mean pooling etc. In this work,
we simply initialize it with mean-pooling operation over the
node representations.

The overall self-supervised learning objective in this work
can be extended as follows by taking the two regularization
terms:

Lssl =
∑
eij∈E

∑
eik /∈E

− `(ψ(hsi , x̃
s
j), ψ(hsi , x̃

s
k))

+ λ(Rintra +Rinter).
(16)

where the initial teacher model Φt can be initialized through
optimizing the proposed self-supervised learning without
the cross-model distillation regularization.

Experimental Evaluation
We compare the proposed method with various state-of-
the-art methods on six datasets including three citation net-
works (Cora, Citeseer, Pubmed) (Kipf and Welling 2017),
product co-purchase networks (Computers, Photo), and one
co-author network subjected to a subfield Computer Sci-
ence (CS). The product and co-author graphs are benchmark
datasets from pytorch geometric (Fey and Lenssen 2019).

Overall Performance
Node Classification. The GNN methods compared here
include convolution or attentive neural networks. Table 1
summarizes the overall performance. The performance of
simple GCN learned by the proposed method SAIL consis-
tently outperforms the other baselines learned by supervised

8931

Input Methods Cora Citeseer PubMed Computers Photo CS

X,A,Y

ChebNet (Defferrard, Bresson, and Vandergheynst 2016) 81.2 69.8 74.4 70.5±0.5 76.9±0.3 92.3±0.1
MLP (Kipf and Welling 2017) 55.1 46.5 71.4 55.3±0.2 71.1±0.1 85.5±0.1
GCN (Kipf and Welling 2017) 81.5 70.3 79.0 76.11±0.1 89.0±0.3 92.4±0.1

SGC (Wu et al. 2019) 81.0 ± 0.0 71.9±0.1 78.9±0.0 55.7±0.3 69.7±0.5 92.3±0.1
GAT (Veličković et al. 2018) 83.0±0.7 72.5±0.7 79.0±0.3 71.4±0.6 89.4±0.5 92.2±0.2
DisenGCN (Ma et al. 2019) 83.7* 73.4* 80.5 52.7±0.3 87.7±0.6 93.3±0.1*

GMNN (Qu, Bengio, and Tang 2019) 83.7* 73.1 81.8* 74.1±0.4 89.5±0.6 92.7±0.2
GraphSAGE (Hamilton, Ying, and Leskovec 2017) 77.2±0.3 67.8±0.3 77.5 ±0.5 78.9±0.4 91.3±0.5 93.2 ±0.3

X,A

CAN (Meng et al. 2019) 75.2±0.5 64.5±0.2 64.8±0.3 78.2±0.5 88.3±0.6 91.2±0.2
DGI (Veličković et al. 2019) 82.3±0.6 71.8±0.7 76.8±0.6 68.2±0.6 78.2±0.3 92.4±0.3

GMI (Peng et al. 2020) 82.8±0.7 73.0±0.3 80.1±0.2 62.7±0.5 86.2±0.3 92.3±0.1
MVGRL (Hassani and Khasahmadi 2020) 83.5±0.4 72.1±0.6 79.8±0.7 88.4±0.3* 92.8±0.2 93.1±0.3

SAIL 84.6±0.3 74.2±0.4 83.8±0.1 89.4±0.1 92.5±0.1* 93.3±0.05

Table 1: Accuracy (with standard deviation) of node classification (in %). The best results are highlighted in bold. Results
without standard deviation are copied from original works.

Methods Cora Citeseer PubMed Computers Photo CS
CAN 51.7 35.4 26.7 42.6 53.4* 71.3
GMI 55.9 34.7 23.3 34.5 47.2 73.9
DGI 50.5 40.1* 28.8 36.8 42.1 74.7*

MVGRL 56.1* 37.6 34.7 46.2* 12.15 66.5
SAIL 58.1 44.6 33.3* 49.1 66.5 76.4

Table 2: Node clustering performance measured by normal-
ized mutual information (NMI) in %.

Methods Cora Citeseer PubMed Computers Photo CS
GMNN 87.5 86.9 88.8 82.1 86.7 91.7

GAT 90.5 89.1 80.5 84.5 88.4 92.2
GCN 82.6 83.2 88.5 82.1 86.7 89.7

DisenGCN 93.3 92.0 91.1 78.9 77.6 94.5

DGI 69.2 69.0 85.2 75.1 74.2 79.7
MVGRL 89.5 94.4 96.1* 74.6 73.1 83.1

CAN 94.8 94.8 91.9 94.9* 95.0 97.1*
GMI 95.1* 96.0* 96.0 85.5 91.9 95.5
SAIL 97.3 98.4 98.5 94.9 94.6* 97.4

Table 3: AUC (in %) of link prediction.

and unsupervised objectives. It’s noted that DisenGCN it-
eratively applies attentive routing operation to dynamically
reshape node relationships in each layer. By default, it has
5-layers and iteratively applies 6 times, which typically is
a deep GNN. From the empirical results, we can see that
SAIL can empower the single-layer GNN through iterative
inter-model knowledge distillation.

Node Clustering. In node clustering task, we aim at eval-
uating the quality of the node representations learned by un-
supervised methods. The performance is validated by mea-
suring the normalized mutual information (NMI). The node
representations are learned with the same experimental set-
ting for the node classification task. From the results shown
in Table 2, we can see that the proposed method are superior
to the baselines in most of cases.

Link Prediction. In addition, we attempt answer the ques-
tion about whether the learned node representations can
keep the node proximity. The performance of each method
is measured with AUC value of link prediction. All of the

methods in this experiment have the same model configura-
tion as the node classification task. From the results shown
in Table 3, we can see that SAIL still outperforms most of
the baselines learned with supervised and unsupervised ob-
jectives. From the results in Table 1, we see that classifica-
tion of nodes in graph CS is indeed an easy task, and most of
the GNNs models have similar good performance. However,
for link prediction shown in Table 3, unsupervised models
(CAN and our model) learned better h than those with su-
pervision information, obviously because the supervision in-
formation is for node classification, not for link prediction.

Exploring Locality and Feature Smoothness
Based on our theoretical understanding in Theorem 1, the
representation smoothness is mainly influenced by the local
structural proximity and feature closeness. Follow the ideas
of recent works (Hou et al. 2020; Chen et al. 2020a), we con-
duct empirical study on the node representation smoothness
before and after being encoded by the GNNs.

Before encoding. With a given graph and node features,
we calculate the inverse of average pairwise distance among
the raw feature (Hou et al. 2020), and clustering coeffi-
cient (Watts and Strogatz 1998) to study the feature smooth-
ness and structural locality, respectively. Combining with the
node classification results, we empirically found that most
of the neural encoders (e.g., GNNs, even simple MLPs) per-
formed well on node classification in graphs like CS, which
has a strong locality and large feature smoothness shown in
Figure 2. Interestingly, for graphs with a strong locality but a
low node feature smoothness (e.g., “Computers”, “Photo”),
unsupervised methods can leverage the graph structure to
achieve better performance than supervised methods.

After encoding. Chen et a. (Chen et al. 2020a) propose to
use mean average distance (MAD) between the target node
and its neighbors for measuring the smoothness of node rep-
resentations, and the MAD gap between the neighbor and
remote nodes to measure the over- smoothness. Let’s denote
MADgap = MADrmt −MADnei, where MADnei rep-
resents the MAD between the target node and its neighbors,
and MADrmt is defined to measure the MAD of remote

8932

Input Methods Cora Citeseer PubMed Computers Photo CS Avg ↓

X,A,Y

GMNN 77.2 68.8 79.8 70.8 87.5 91.6 4.1%
GAT 77.7 65.6 76.7 69.3 89.4 90.4 4.0%
GCN 76.0 67.2 77.7 67.5 88.7 89.9 4.5%

DisenGCN 77.6 68.2 78.3 37.5 48.8 92.4 15.1%

X,A

CAN 73.2 64.0 63.5 77.5 88.1 91.1 1.1%
DGI 72.3 70.1 71.5 67.6 77.4 91.7 4.0%
GMI 77.4 68.3 76.9 54.9 82.5 89.2 6.1%

MVGRL 69.5 62.5 76.5 87.2 92.5 91.8 6.2%
SAIL 81.0 71.3 81.2 88.5 92.4 92.7 2.1%

Table 4: Accuracy (in %) of node classification after randomly 20% neighbors removal. The last column shows the average
classification accuracy downgrades comparing with the results in Table 1.

Data Metrics GCN GAT DisenGCN GMNN CAN DGI GMI MVGRL SAIL

Cora
MADnei 0.075 0.029 0.215 0.088 0.059 0.312 0.069 0.240 0.013
MADgap 0.308 0.083 0.471 0.390 0.900 0.557 0.966 0.661 0.322
MADratio 4.13 2.86 2.19 4.43 15.2 1.77 13.83 2.75 25.3

Citeseer
MADnei 0.049 0.014 0.194 0.059 0.057 0.289 0.122 0.174 0.007
MADgap 0.308 0.083 0.471 0.390 0.921 0.497 0.879 0.491 0.429
MADratio 4.13 2.86 2.19 4.43 15.1 1.72 6.2 2.82 61.2

Pubmed
MADnei 0.043 0.024 0.054 0.068 0.037 0.112 0.086 0.180 0.024
MADgap 0.155 0.083 0.224 0.438 0.757 0.145 0.833 0.541 0.294
MADratio 6.02 6.43 4.17 6.39 20.6 1.29 8.63 3.00 12.1

Table 5: Empirical analysis to shown the quality of learned node representations measured by mean average distance (MAD).

nodes. If we get a small MAD but relatively large MAD gap,
then we can say that the learnt node representations are not
over-smoothed. We define a variant metric MADratio =
MADgap

MADnei
to measure the information-to-noise ratio brought

by the relative changes of MAD of remote nodes over neigh-
bors. We use the node representations with the same set-
ting as node classification task. The results shown in Ta-
ble 5 demonstrate that the proposed method can achieve
the best smoothing performance (i.e. smallest MADnei). In
terms of over-smoothing issue, SAIL has the relative large
MADgap comparing with the scale of the achieved MAD
of each method, which can be measured by MADratio. The
empirical results reflect that the proposed method can help
to tell the difference from local neighbors and remote nodes.

Robustness Against Incomplete Graphs. With the same
experimental configuration as link prediction task, we also
validate the performance of learned node embeddings from
incomplete graph for node classification task. According to
the results in Table 4, SAIL still outperforms baseline meth-
ods in most cases, demonstrating the robustness of SAIL
performance. It has a larger average downgrade in terms of
node classification accuracy than CAN, but still has better
classification accuracy.

Ablation Study
We conduct node classification experiments to validate the
contribution of each component of the proposed SAIL,
where EMI denotes the edge MI loss lijk, Intra stands for
intra-distill moduleRintra and Inter represents thRinter in
Eq. 16. From the results shown in Figure 3, we can see that
both intra- and inter-distilling module can jointly improve

the qualification of learnt node representations. Combining
with the edge MI maximization task, we can see a significant
improvement on the node classification accuracy.

Cora Citeseer Pubmed
50

60

70

80

90

100

A
c
c
u
ra

c
y

Node Classification

EMI

EMI+Intra

EMI+Inter

EMI+Intra+Inter

Figure 3: Ablation study of the distillation component influ-
ence in node classification accuracy (in %).

Conclusions
In this work, we propose a self-supervised learning method
(SAIL) regularized by graph structure to learn unsupervised
node representations for various downstream tasks. We con-
duct thorough experiments on node classification, node clus-
tering, and link prediction tasks to evaluate the learned node
representations. Experimental results demonstrate that SAIL
helps to learn competitive shallow GNN which outperforms
the state-of-the-art GNNs learned with supervised or unsu-
pervised objectives. This initial study might shed light upon
a promising way to implement self-distillation for graph
neural networks. In the future, we plan to study how to im-
prove the robustness of the proposed method against adver-
sarial attacks and learn transferable graph neural network for
downstream tasks like few-shot classification.

8933

References
Bo, D.; Wang, X.; Shi, C.; Zhu, M.; Lu, E.; and Cui, P. 2020.
Structural deep clustering network. In The WebConf, 1400–
1410.
Chen, D.; Lin, Y.; Li, W.; Li, P.; Zhou, J.; and Sun, X.
2020a. Measuring and Relieving the Over-smoothing Prob-
lem for Graph Neural Networks from the Topological View.
In AAAI.
Chen, Y.; Bian, Y.; Xiao, X.; Rong, Y.; Xu, T.; and Huang, J.
2020b. On Self-Distilling Graph Neural Network. In IJCAI.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In NeurIPS, 3844–3852.
Fey, M.; and Lenssen, J. E. 2019. Fast graph represen-
tation learning with PyTorch Geometric. arXiv preprint
arXiv:1903.02428.
Grover, A.; and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In KDD, 855–864.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In NeurIPS, 1024–
1034.
Hassani, K.; and Khasahmadi, A. H. 2020. Contrastive
Multi-View Representation Learning on Graphs. In ICML.
He, K.; Fan, H.; Wu, Y.; Xie, S.; and Girshick, R. 2020.
Momentum contrast for unsupervised visual representation
learning. In CVPR, 9729–9738.
Hou, Y.; Zhang, J.; Cheng, J.; Ma, K.; Ma, R. T. B.; Chen,
H.; and Yang, M.-C. 2020. Measuring and Improving the
Use of Graph Information in Graph Neural Networks. In
ICLR.
Hu, W.; Liu, B.; Gomes, J.; Zitnik, M.; Liang, P.; Pande,
V.; and Leskovec, J. 2019. Strategies for Pre-training Graph
Neural Networks. In ICLR.
Ishida, T.; Yamane, I.; Sakai, T.; Niu, G.; and Sugiyama, M.
2020. Do we need zero training loss after achieving zero
training error? In ICML.
Kipf, T. N.; and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In ICLR.
Klicpera, J.; Weißenberger, S.; and Günnemann, S. 2019.
Diffusion Improves Graph Learning. In NeurIPS, 13333–
13345.
Lafferty, J.; McCallum, A.; and Pereira, F. C. 2001. Con-
ditional random fields: Probabilistic models for segmenting
and labeling sequence data. In ICML.
Li, G.; Müller, M.; Ghanem, B.; and Koltun, V. 2021. Train-
ing Graph Neural Networks with 1000 Layers. In ICML.
Li, Q.; Han, Z.; and Wu, X.-M. 2018. Deeper insights into
graph convolutional networks for semi-supervised learning.
In AAAI.
Li, Q.; Wu, X.-M.; Liu, H.; Zhang, X.; and Guan, Z. 2019.
Label efficient semi-supervised learning via graph filtering.
In CVPR, 9582–9591.
Liu, Z.; Chen, C.; Li, L.; Zhou, J.; Li, X.; Song, L.; and Qi,
Y. 2019. Geniepath: Graph neural networks with adaptive
receptive paths. In AAAI, volume 33, 4424–4431.

Ma, J.; Cui, P.; Kuang, K.; Wang, X.; and Zhu, W. 2019. Dis-
entangled graph convolutional networks. In ICML, 4212–
4221.
Mandal, D.; Medya, S.; Uzzi, B.; and Aggarwal, C. 2021.
Meta-Learning with Graph Neural Networks: Methods and
Applications. arXiv preprint arXiv:2103.00137.
Meng, Z.; Liang, S.; Bao, H.; and Zhang, X. 2019. Co-
embedding attributed networks. In WSDM, 393–401.
NT, H.; and Maehara, T. 2019. Revisiting Graph Neural
Networks: All We Have is Low-Pass Filters. arXiv preprint
arXiv:1905.09550.
Peng, Z.; Huang, W.; Luo, M.; Zheng, Q.; Rong, Y.; Xu,
T.; and Huang, J. 2020. Graph Representation Learning
via Graphical Mutual Information Maximization. In WWW,
259–270.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In KDD, 701–710.
Qiu, J.; Chen, Q.; Dong, Y.; Zhang, J.; Yang, H.; Ding, M.;
Wang, K.; and Tang, J. 2020. Gcc: Graph contrastive coding
for graph neural network pre-training. In KDD, 1150–1160.
Qu, M.; Bengio, Y.; and Tang, J. 2019. GMNN: Graph
Markov Neural Networks. In ICML, 5241–5250.
Sun, F.-Y.; Hoffman, J.; Verma, V.; and Tang, J. 2019. In-
foGraph: Unsupervised and Semi-supervised Graph-Level
Representation Learning via Mutual Information Maximiza-
tion. In ICLR.
Sun, K.; Lin, Z.; and Zhu, Z. 2020. Multi-stage self-
supervised learning for graph convolutional networks on
graphs with few labeled nodes. In AAAI, 5892–5899.
Tian, P.; Qi, L.; Dong, S.; Shi, Y.; and Gao, Y. 2020. Consis-
tent MetaReg: Alleviating Intra-task Discrepancy for Better
Meta-knowledge. In IJCAI.
Tian, Y.; Krishnan, D.; and Isola, P. 2020. Contrastive rep-
resentation distillation. In ICLR.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2018. Graph attention networks. In ICLR.
Veličković, P.; Fedus, W.; Hamilton, W. L.; Liò, P.; Bengio,
Y.; and Hjelm, R. D. 2019. Deep graph infomax. In ICLR.
Wang, C.; Qiu, M.; Huang, J.; and He, X. 2020. Meta Fine-
Tuning Neural Language Models for Multi-Domain Text
Mining. In EMNLP, 3094–3104.
Wang, T.; and Isola, P. 2020. Understanding contrastive rep-
resentation learning through alignment and uniformity on
the hypersphere. In ICML, 9929–9939.
Watts, D. J.; and Strogatz, S. H. 1998. Collective dynamics
of ‘small-world’networks. nature, 393(6684): 440–442.
Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; and Wein-
berger, K. 2019. Simplifying Graph Convolutional Net-
works. In ICML, 6861–6871.
Xie, Y.; Xu, Z.; Zhang, J.; Wang, Z.; and Ji, S. 2021. Self-
supervised learning of graph neural networks: A unified re-
view. arXiv preprint arXiv:2102.10757.
Xu, D.; Cheng, W.; Luo, D.; Chen, H.; and Zhang, X. 2021.
InfoGCL: Information-Aware Graph Contrastive Learning.
In NeurIPS.

8934

You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; and Shen, Y.
2020a. Graph contrastive learning with augmentations. In
NeurIPS.
You, Y.; Chen, T.; Wang, Z.; and Shen, Y. 2020b. When
does self-supervision help graph convolutional networks? In
ICML, 10871–10880.
Zhang, C.; Song, D.; Huang, C.; Swami, A.; and Chawla,
N. V. 2019. Heterogeneous graph neural network. In KDD,
793–803.
Zhao, J.; Wen, Q.; Sun, S.; Ye, Y.; and Zhang, C. 2021.
Multi-view Self-supervised Heterogeneous Graph Embed-
ding. In ECML/PKDD, 319–334.

8935

