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Abstract

In few-shot imitation learning (FSIL), using behavioral
cloning (BC) to solve unseen tasks with few expert demon-
strations becomes a popular research direction. The follow-
ing capabilities are essential in robotics applications: (1) Be-
having in compound tasks that contain multiple stages. (2)
Retrieving knowledge from few length-variant and misalign-
ment demonstrations. (3) Learning from an expert differ-
ent from the agent. No previous work can achieve these
abilities at the same time. In this work, we conduct FSIL
problem under the union of above settings and introduce
a novel stage conscious attention network (SCAN) to re-
trieve knowledge from few demonstrations simultaneously.
SCAN uses an attention module to identify each stage in
length-variant demonstrations. Moreover, it is designed under
demonstration-conditioned policy that learns the relationship
between experts and agents. Experiment results show that
SCAN can perform in complicated compound tasks without
fine-tuning and provide the explainable visualization. Project
page is at https://sites.google.com/view/scan-aaai2022.

Introduction
Humans can learn to perform unseen compound tasks from
different experts with few nonidentical demonstrations. The
number of researches on few-shot imitation learning (FSIL)
increases rapidly to verify whether the machine also has this
ability. The above challenging settings of FSIL problem are
illustrated in Figure 1, and most of existing works only solve
them partially. To overcome the complexity of environment
and concomitant complicated training process, behavioral
cloning (BC) is leveraged to mimics the experts. Previous
works (Finn et al. 2017; Duan et al. 2017; Yu et al. 2018,
2019; Dasari and Gupta 2020; Bonardi, James, and Davison
2020) only support one demonstration at once, which limits
the capability of models. We argue that retrieving knowledge
from few demonstrations simultaneously can break through
the limitations and lead to better performance when conduct-
ing FSIL under these challenging settings.

Meta-learning based methods (Finn et al. 2017; Yu et al.
2018, 2019) learn a meta-policy π(a | s) that takes state s
from current playout p and outputs an action a via BC. Be-
fore testing, the meta-trained policy uses expert demonstra-
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Figure 1: Schema of few-shot imitation learning (FSIL). In
our FSIL problem, models need to solve the task in novel
environment that is unseen during training. Few demon-
strations are given to let models imitate. There are three
challenges in our FSIL setting, (1) We conduct FSIL on
compound tasks which contain multiple stages. (2) Demon-
strations are length-variant. Each stage may locate at dif-
ferent timestamps. (3) Models need to learn the behavior
from a different type of expert. None of previous works
can solve these challenges concurrently. Moreover, learn-
ing from length-variant sequences is non-trivial, making our
FSIL a challenging yet practical problem.

tions to adapt meta-parameters. Then, they update the pol-
icy several times based on the number of demonstrations.
The main drawbacks of these methods are twofold: (1) fine-
tuning is required, and (2) they need a learnable loss (Yu
et al. 2019) to map expert to agent explicitly.

To tackle these drawbacks, demonstration-conditioned
(DC) based methods (Duan et al. 2017; James, Bloesch,
and Davison 2018; Bonardi, James, and Davison 2020; Shao
et al. 2020; Dasari and Gupta 2020; Dance, Perez, and Ca-
chet 2021) apply a policy π(a | s,D) which predict ac-
tions conditioned on both states and demonstrations D. Fine-
tuning is optional for DC methods, because they are ex-
pected to behave by observing demonstrations. They implic-
itly learn the mapping since they have the information in D
concurrently when generating a, even if experts are different
from the agent. The primary objective of DC policies is to
encode few demonstrations into a representative embedding.
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However, it is difficult to encode length-variant demonstra-
tions. Hence, most DC works (Duan et al. 2017; Shao et al.
2020; Dasari and Gupta 2020) only contain one demonstra-
tion in D and claim themselves one-shot imitation methods.

To handle demonstrations with variant lengths, some DC
works apply task-embed techniques. The authors (James,
Bloesch, and Davison 2018; Bonardi, James, and Davi-
son 2020) concatenate the first and last frames of each
demonstration and average their features to generate task-
embedding (alias sentence in their paper). Nevertheless, this
method does not consider the importance of temporal tran-
sitions that are essential for policy learning and cannot pro-
vide efficient information in the case of long demonstrations
given. Therefore, Dance, Perez, and Cachet (2021) intro-
duces a transformer-based network that considers both tem-
poral and cross-demonstration information using attention
mechanisms. They generate a task embedding by averaging
the attention output of few demonstrations at each times-
tamp. The premise of this method is that frames at the same
timestamp of each demonstration have similar knowledge.
However, due to different initial states, the operating time of
each stage could easily vary and result in temporal misalign-
ment. Therefore, the model might be confused by the frame
mixed with two distinct stages and degrade the performance.

We aim to design an attention mechanism that can identify
important frames at different timestamp. Meanwhile, the at-
tention mechanism should detect stages in compound tasks.
A compound task containing multiple stages often appears
in robotics problems. When solving compound tasks in FSIL
problem, the policy needs to learn both perception and path
planning. This makes solving compound tasks challenging.
Yu et al. (2019) leverages an additional phase predictor to
split the compound tasks, and then the policy only needs to
adapt to each stage. The disadvantage is that the number of
stages needs to be known in advance.

In this work, we propose a novel stage conscious atten-
tion network (SCAN). SCAN takes both demonstrations and
playouts as input to learn the mapping due to the character-
istic of DC method. Furthermore, SCAN applies novel stage
conscious attention to let each playout frame has its atten-
tion score to each frame in the demonstrations. The frame
features of demonstrations are weighted by attention scores
to produce the same shape contexts. We then average them
to generate the informative task-embedding. With stage con-
scious attention, SCAN can retrieves knowledge from few
demonstrations simultaneously. Experimental results show
that SCAN has a significant performance improvement com-
pared to baselines with explainable visualizations. The over-
all contributions are summarized as follows:

• SCAN is the first to solve the FSIL problem under the
settings of the compound task, length-variant demonstra-
tions, and learning from a different type of expert.

• The novel stage conscious attention detects important
frames of misalignment stages and is robust to length-
variant demonstrations.

• Extensive experiment results express proposed SCAN is
powerful, and explainable visualization also proves the
effectiveness of novel stage conscious attention.

Related Work
Few-shot Learning. Few-shot learning (FSL) has become
popular since collecting a huge amount of labeled data is
difficult in most research problems. The objective of FSL is
to infer the unlabeled data (query set) by leveraging few la-
beled data (support set). FSL is first studied on image classi-
fication. There are many influential and well-known metric-
learning-based FSL methods, such as Matching network
(Vinyals et al. 2016), Prototypical network (Snell, Swersky,
and Zemel 2017), and Relation Network (Sung et al. 2018).
They try to learn the relationship between support and query
sets rather than inferring the unlabeled data directly. More-
over, optimization-based method (Finn, Abbeel, and Levine
2017) seeks a meta-parameter set that can quickly adapt to
unseen tasks. Nowadays, FSL has been extended to many re-
search fields. For instance, image segmentation (Tian et al.
2020), object detection (Karlinsky et al. 2021), and imita-
tion learning (Silver et al. 2020). Our work aims to develop
a method that can learn unseen compound tasks with few-
shot length-variant demonstrations from a different expert.

Few-shot Imitation Using RL/IRL. Reinforcement
learning (RL) methods assume the reward function of
environments is known. But, it is difficult to design re-
ward functions that give precise feedback to policies in
real-world problems. Therefore, inverse RL (IRL) (Ng,
Harada, and Russell 1999) infers a reward function from
few expert demonstrations. Then, IRL policy can be trained
by interacting with the environment under the inferred
reward function. In addition, modern IRL methods (Ho and
Ermon 2016; Reddy, Dragan, and Levine 2020) are usually
GAN-like (Goodfellow et al. 2014). They assign a high
reward to the states from demonstrations but a low reward
to the states from collected agent samples. Since these
methods only use rewards of states to train their model,
they can handle the demonstrations without actions, which
differs from BC. However, both RL and IRL methods need
to interact with the target environment to train the policy.
In other words, the learned reward function (IRL) or the
well-trained policy (RL) do not be applicable to novel
environments. In our FSIL problem, policies can only use
demonstrations to fine-tune but cannot interact with the
novel environment before performance evaluation. Thus,
most RL and IRL methods are not available in our work.

A recent work (Dance, Perez, and Cachet 2021), named
demonstration-conditioned RL (DCRL), overcomes the lim-
itation. DCRL requires interactions with environments in
training. But, it solves FSIL tasks without fine-tuning in test-
ing. Because DCRL is a DC policy method, it needs ex-
pert demonstrations from training environments to achieve
fine-tuning-free. They store the tuples of (playout his-
tory, rewards, demonstrations) into the replay buffer to
train the policy. The policy is a transformer-based archi-
tecture that its encoder generates task embeddings using
cross-demonstration attention and the decoder predicts the
actions. Moreover, the concept of “demonstration condi-
tioned” echoes our motivations. But, designing all reward
functions in training environments is quite time-consuming.
Thus, we only compare SCAN with BC-based methods.
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Compound Task. A compound task consists of multiple
stages. The main challenge of compound tasks is that there
is no signal (label) in demonstrations to identify each stage
when testing. Nevertheless, the policies for distinct stages
are pretty different. Hence, it becomes impractical to use a
single policy to solve compound tasks.

An intuitive solution is to link the relationship between
stage and primitive. The term primitive, which comes from
the robotics field (Flash and Hochner 2005; Manschitz
et al. 2015), represents single elementary movements and
is widely used in compound task problems. To be specific,
each stage may corresponds to a single or multiple robot mo-
tions (primitives), such as pushing and grasping. Therefore,
previous RL (Zeng et al. 2018; Marzari et al. 2021) and IL
works (Yu et al. 2019; Lee et al. 2019; Lee and Seo 2020)
assume these primitives are known before testing since the
end effector (gripper) are only capable for these primitives.
Then, they develop a hierarchical structure that trains poli-
cies for each stage separately and use a high-level control
network to decide which policy should be executed with the
current observation. Phase predictors (Yu et al. 2019) or task
transition models (Lee et al. 2019; Lee and Seo 2020) are
proposed to identify whether a stage is done. Unfortunately,
most of these components cannot be trained from scratch
with actor networks due to the hierarchical architecture. In-
stead of recognizing stages with an additional model, SCAN
detects which stage the current observation locates by an at-
tention module. Unlike above methods, SCAN does not need
to know the primitives beforehand, and all its components
can be trained end-to-end.

Few-Shot Imitation Learning (FSIL)
To emphasize, we treat FSIL problem as imitation learning
under FSL setting. In previous works, a policy is (trained
or) tested over several tasks that are essentially the same but
with different objects in the environments. Thus, we use the
base environments Eb and novel environments En in prob-
lem statement. Notations are listed in Table 1.

Problem Statement
A few-shot imitation learning (FSIL) problem is given by a
base environment set Eb and a novel environment set En,
where Eb ∩ En = ∅. Each environment e∗ in Eb or En

contains a set of expert demonstrations (support set) D∗ and
a set of agent playouts (query set) P∗. In addition, samples
in D∗ or P∗ are in the same environment e∗ with distinct
initial/end states. Moreover, the expert could be humans or
other robot arms compared to the agent in playouts.

A policy πθ with parameter θ is meta-trained in eb from
base environments Eb and meta-tested in en from novel en-
vironments En. The policy πθ needs to generate an action a
when receiving a current state s from the playout pn ∈ Pn.
Then, the success rates of playout executions in all en are
used as performance evaluation. Thus, the playout samples
in en only contain the initial state s0, and the following states
are provided according to the action taken by the policy.
At last, the objective of FSIL problem is to maximize the
performance expectation of the policy where the expecta-
tion is taken over en ∈ En. Furthermore, the policy can

notation meaning
f, f crp frame, crop frame
v⃗ vector
s := (f, f crp, v⃗) state
a action
F := [f0, f1, ..., ft] sequence of frames
Fcrp := [f crp

0 , f crp
1 , ..., f crp

t ] sequence of crop frames
V⃗ := [v⃗0, v⃗1, ..., v⃗t] sequence of vector
S := [s0, s1, ..., st] sequence of state
A := [a0, a1, ..., at] sequence of action
p∗ := (S,A)∗ playout
d∗ := (F,A)∗ demonstration
P∗,D∗ set of p∗, d∗
e∗ environment
E∗ set of e∗
∗ ∈ {b, n} b: base, n: novel

Table 1: Defined notations

only fine-tune its parameters using the demonstrations Dn

in en(if needed), which means no interaction with novel en-
vironments are allowed before performance evaluation.

Methodology
We introduce the stage conscious attention networks
(SCAN) in detail. SCAN needs following inputs: K expert
demonstrations (without actions) FD = {Fdi | i ∈ [0,K]}
and playout states that contains frames Fp, end-effector (EE)
cropped frames Fcrp, and EE vector V⃗p (position and open
amount). These inputs are widely used in FSIL works. More-
over, we apply inverse kinematics to compute joint param-
eters of the agent. Therefore, SCAN only needs to compute
two outputs for each playout state: target positions (x, y, z in
continuous space) and the probabilities for EE open/closing.
SCAN is composed of three main components, including vi-
sual heads, stage conscious attention, and an ActorNet. We
describe these components in following paragraphs, and the
overall architecture of SCAN is shown in Figure 2.

Visual Head. The objective of visual head is to retrieve
meaningful embeddings of RGB-D frames either from FD

or Fp. We leverage two resnet18 to extract RGB images
and depth images separately, inspired by (Shao et al. 2020).
Moreover, since SCAN does not have object detection com-
ponents, we insert a modified self-attention module at the
head and tail of resnet18. The self-attention module is orig-
inally proposed in (Zhang et al. 2019), we make the output
dimension of the query-layer and key-layer the same as input
dimensions and add the channel-wise softmax layer behind
them. Detailed architecture is shown in supplementary.

Then, given a 4D frame inputs (sequence length lp for
Fp or ldi for Fdi , channel C, height H , width W ), the
visual head splits it into RGB and depth images and use
the corresponding resnet18 to generate feature embeddings
(FEs). These two FEs are concatenated and passed over a
dense layer to obtain the output with shape (lp or ldi , 128).
As shown in Figure 2, a shared-weights V isualrgbd ex-
tracts embp from Fp and each embdi from Fdi . Another
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Figure 2: Architecture of stage conscious attention network (SCAN). Given a set of length-variant demonstrations (images only)
and current playout data (images, end-effector (EE) cropped images, EE vector), SCAN uses a shared-weight V isualrgbd to
extract feature embeddings (FEs) embdi from demonstrations and embp from current playout. Meanwhile, another V isualcrop
generates FEs of EE cropped images embcrp. Then, embdi are passed into a bidirectional LSTM (BiLSTM, encoder) to generate
hdi that contains time information. In addition, the attention maps are the results of matrix multiplications of embp and a
learnable matrix Wa and each hdi . Afterwards, attention maps matrix multiplies by each hdi to get contexts. Until now, length-
various demonstrations are projected to same shape contexts. The task embedding (mean of contexts) contains the knowledge
that each playout state focuses on. We named this process as stage conscious attention (SCA). At last, embp, embcrp, ee vector
and task-embeddings are fed into ActorNet (decoder) for predicting actions.

V isualcrop extracts embcrp from Fcrp.

Stage Conscious Attention (SCA). We assume that each
frames in each demonstration Fdi (support sample) has a dif-
ferent importance to each frame in playout Fp (query sam-
ple). Unlike the cross-demonstration attention (temporal-
awareness attention) in (Dance, Perez, and Cachet 2021),
SCAN leverages a stage conscious attention that lets each
frame of current playout has its own interpretation of each
demonstration. The overall structure is shown in Fig. 2.

We feed each embdi into a bidirectional LSTM (BiLSTM)
to obtain hdi that contains temporal information. Then, the
general form of global attention motivated by (Luong, Pham,
and Manning 2015) is applied to generate an attention map
attnp

di
between hdi and FEs of playout embp. To be specific,

attnp
di

is the result of matrix multiplied of embp and a learn-
able matrix Wa and hdi . The Wa makes sure the embp has
a same latent size of hdi , which is useful when dealing with
two different shape matrix. Then, a softmax layer makes
each row (attention scores at each frame in the demonstra-
tion di given by each frame in current playout) of attention
map are summed to 1. Next, the context cdi is the result of
matrix multiplication of attnp

di
and each hdi . At last, the

task-embedding embtask is the mean of K contexts cdi .

attnp
di

= softmax(embpWa(h
di)T )

cdi = attnp
di

· hdi

ActorNet. ActorNet predicts actions in continuous space
rather than discrete spaces. It allows the agent to perform
more precise actions. The overall picture of ActorNet is
shown in Figure 3. In ActorNet, there are two components,
action head and inverse dynamics model. The action head
concatenates four inputs (embp, embcrp, EE vector V⃗p,
embtask) and add 1D positional encoding PE1D to provide
auxiliary time information. Then the action head predicts
target positions and probability of open/close for each state
in current playout (history), we denote the output as outact.

inact = PE1D([embp; embcrp; V⃗p; embtask])

The outact is a vector of pairs [µ⃗t, gt] for the time t state in
the playout history. The µ⃗t = [µx, µy, µz] is a vector which
contains means of three uni-variate Gaussian distributions
that generate positions at time t. We use an additional learn-
able vector σ⃗ for the standard deviation of the distributions.
Besides, the gt is the probability of open/close control.

Afterwards, the inverse dynamic model concatenates time
t embp, embcrp and time t+1 embp, embcrp as input ininv ,
and use the similar architecture of action head to predict ac-
tions outinv for each state in playout history (except for the
latest frame). The inverse dynamic model aims to help the
action head know how actions cause frame changes.

ininv = [[embpt , embcrpt ], [embpt+1, embcrpt+1]]

To train SCAN, we use negative-log-likelihood (NLL) as
loss functions. Lpos

∗ calculates the NLL loss for the output
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Figure 3: Architecture of ActorNet. In ActorNet, an action
head concatenates four input embeddings and adds a 1D po-
sitional encoding. Following by the several dense layers, the
action head computes positions and probabilities of open/-
close control. In the meantime, an inverse dynamics model
uses

[
embpt ; embcrpt ; embpt+1; embcrpt+1

]
as inputs and pre-

dicts the actions using a similar architecture of action head.
The inverse dynamics model helps the action head know the
precise actions that cause changes between frames.

(a) pick & place (PP) (b) pick & place & push (PPP)

Figure 4: Environments of PP and PPP task . PP and PPP
task are compound tasks that contains two and three stages,
respectively. Objects are unseen during training.

out∗ of the predicted positions. Besides, ∗ could be act or
inv. And the a⃗ = [ax, ay, az] is the vector of labeled actions.

Lpos
∗ = − 1

K

K∑
i=1

∑
j∈[x,y,z]

1

2
ln(2π) + ln(σ⃗j) +

(aj − µj)
2

2σ2
j

We use the following loss for open/close control. The
glabel ∈ {0, 1} is true probability of open the gripper. And,
∗ indicates action head act or inverse dynamics model inv.

Lg
∗ = − 1

K

K∑
i=1

glabel ln g + (1− glabel) ln(1− g)

The total loss is the weighted sum of all losses, and λpos,
λg are the hyper-parameters.

Ltotal = λpos(Lpos
act + Lpos

inv) + λg(Lg
act + Lg

inv)

Experiments
The goal of our experiments is to verify following assump-
tions: (1) the novel stage conscious attention has the abil-
ity to locate each stage in length-variant demonstrations
and highlight important frames for each playout frame. (2)
SCAN can learn a relationship mapping between different

types of experts and agent. (3) Based on above assumptions,
SCAN can retrieve knowledge from few demonstrations si-
multaneously and get a boosted performance rather than sep-
arately handling each demonstration.

Experiment Settings. We have two main experiments. (1)
we evaluate all methods on two compound tasks, pick &
place (PP) and pick & place & push (PPP), as shown in
Figure 4. In PP task (2 stages), the agent needs to pick the
cube and place it in the target bowl. Another bowl serves as
the disruptor. Next, in PPP task (3 stages), the agent needs
to push the sky-blue cup off the table after placing the cube.
Note that the target bowl might be the front one or rear one.
This means the directions of the trajectory are quite differ-
ent, which makes our experiment challenging. Moreover, we
follow the evaluation protocol in FSL problem. There are 56
novel environments composed of unseen objects. For each
environment, we let methods play 20 times with different
initial scenes and calculate the success rate. The average of
successful rate and standard deviation in all novel environ-
ments are provided in Table 2. The experiment aims to eval-
uate if SCAN can locate important frames and achieve dom-
inating performance. (2) We design an extremely length-
biased case to observe the robustness of methods when en-
countering sub-optimal demonstrations (still complete the
task but with trivial moves) that have not been processed.
To be clear, all methods are trained with optimal demon-
strations. Then, we give few sub-optimal demonstrations in
testing to analyze the relation between attention mechanism
and performance changes, as shown in Figure 7 and 8. For
all experiments, we build environments in CoppeliaSim and
use the pyrep (James, Freese, and Davison 2019) toolkit to
communicate with environments. We use Panda arm as the
agent, and experts may be Panda arm or UR5.

Compared Baselines. Baselines are introduced below. All
methods use our visual head and ActorNet for fair com-
parisons. Only the parts that handle few demonstrations
are implemented. (1) BC: a conventional BC model takes
states as input, no task-embedding generated. (2) meta-BC:
a conventional BC is trained via MAML (Finn, Abbeel, and
Levine 2017) in same expert setting and trained via DAML
(Yu et al. 2018) in different expert setting. (3) TaskEmb: a
DC method (James, Bloesch, and Davison 2018) averages
concatenated embeddings of first and last frames as task-
embeddings.(4) TANet: our implemented DC method that
averages the output of cross-demonstration attention (at each
timestamp) and apply the global attention to get the task-
embeddings. The key idea of TANet is similar to the method
in (Dance, Perez, and Cachet 2021), however, it is hard to
build a transformer-based model with our visual head and
ActorNet. Therefore, we design the TANet to evaluate the
effectiveness of cross-demonstration attention.

Performance Comparison
We analyze the performance results of experiment 1 in Ta-
ble 2. The success rate and standard deviation average from
56 novel environments. We have several observations from
the results. (1) Methods achieve better performance in 5-
shot setting rather than 1-shot setting, except for TaskEmb.
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Type Models Finetune PP task PPP task
1-shot 5-shot 1-shot 5-shot

same

BC 01.70% ± 03.31% 03.30% ± 4.04%
meta-BC ✓ 12.86% ± 12.74% 28.84% ± 09.82% 05.54% ± 09.76% 28.57% ± 12.67%

TaskEmb
35.09% ± 34.99% 34.11% ± 34.50% 17.77% ± 18.47% 18.39% ± 19.66%

✓ 54.20% ± 25.74% 83.39% ± 13.47% 47.23% ± 18.85% 58.39% ± 18.49%

TANet (ours)
28.75% ± 14.24% 40.75% ± 12.37% 46.43% ± 21.69% 48.13% ± 18.79%

✓ 53.93% ± 20.54% 64.82% ± 15.84% 52.05% ± 21.04% 68.57% ± 14.16%

SCAN (ours)
67.05% ± 21.31% 75.45% ± 17.66% 46.34% ± 13.18% 47.86% ± 13.69%

✓ 64.64% ± 21.50% 85.00% ± 10.69% 55.80% ± 20.24% 58.48% ± 22.56%

differ

meta-BC ✓ 06.52% ± 09.95% 05.80% ± 08.17% 00.00% ± 00.00% 00.00% ± 00.00%
TaskEmb 18.04% ± 09.81% 18.66% ± 09.61% 12.32% ± 14.70% 12.23% ± 15.12%

TANet (ours) 42.50% ± 14.82% 47.95% ± 14.63% 24.02% ± 26.30% 25.54% ± 27.20%
SCAN (ours) 60.89% ± 14.70% 65.27% ± 13.74% 31.52% ± 10.60% 32.41% ± 11.38%

Table 2: Success rate on compound tasks. The average of success rate and standard deviation in all novel environments are
provided. The type column represents whether the expert and the agent are the same or not. In the same expert setting, model
can fine-tune when expert actions are provided. From the table, we have three main findings. (1) the 5-shot performance usually
outperforms the 1-shot performance. (2) fine-tuning is helpful in most cases, but it might let model overfit on the demonstration
in one-shot setting. (3) SCAN has the best adaptation ability and performance except for the case of same expert in PPP task.

TaskEmb only uses frame features when generating task-
embedding, and there is no other conversion process. There-
fore, it is susceptible to frame features from novel environ-
ments. Without fine-tuning, TaskEmb performance of 1-shot
and 5-shot is not much different. (2) The performance of DC
methods has been dramatically improved after fine-tuning.
But SCAN has slightly worse performance in PP task un-
der the 1-shot setting. We infer that using only one demon-
stration to fine-tune may let models overfit. Therefore, the
generalization of models is reduced. (3) SCAN has the best
adaptability in most cases, regardless of whether the expert
is the same as the agent. We claim that the proposed SCA
learns the mapping from demonstration to playout. And, the
learned mapping can provide enough information for SCAN
to behave in a novel environment even without fine-tuning.

Furthermore, we also observe an interesting phenomenon.
TANet has trouble in PP task, even with fine-tuning. Be-
cause the time misalignment between demonstrations in PP
tasks is serious, averaging information at each timestamp
like TANet causes the task to be incomprehensible. Our
SCAN identifies the location of critical frames in demon-
strations. Therefore, SCAN can learn and behave smoothly
in PP task. However, TANet outperforms SCAN in the PPP
task under the same expert setting. We infer two possible
reasons regarding this phenomenon: (1) Although demon-
strations of PPP task have longer lengths and more steps,
their time misalignment are not severe. (2) Bowls are at the
front of the agent, and many bowls have similar colors to the
agent in novel environments, which interferes with SCAN
that needs to pay attention to each frame.

Effectiveness of Stage Conscious Attention (SCA)
Attention Result in Compound Tasks. To verify whether
SCA can detect crucial frames and generate informative
task-embedding, Figure 5 and Figure 6 visualize attention
maps and contexts generated by SCA in the compound tasks

(a) PP task (2 stages) (b) PPP task (3 stages)

Figure 5: Attention maps of SCAN on compound tasks.
Each row and column represent the frame from the playout
and the demonstration. Besides, a lighter cell has a higher
score, and we mark each stage with the same color. The at-
tention results show that SCAN can focus on corresponding
frames (beginning of same stage) in the demonstration when
executing each stage (in both tasks).

of experiment 1. To emphasize, all visualizations are under
the setting of 5-shot and different experts. In Figure 5, atten-
tion scores of the stage where the agent is in progress focus
on the same stage in demonstrations, whether the compound
task has 2 or 3 stages. Notably, SCA locate critical frames in
novel environments without fine-tuning. Furthermore, we do
not use any hard restriction or loss function to guide SCA.
It learns the ability proactively. On the other hand, Figure
6 illustrates t-SNE (van der Maaten and Hinton 2008) re-
sults of contexts and task-embeddings in the playout of Fig-
ure 5. The contexts come from different demonstration are
tagged with distinct marker. In addition, we highlight stage
locations in t-SNE results. At the beginning, generated con-
texts and task-embeddings are diverse since the initial states
of demonstrations are various. Specially, contexts aggregate
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(a) PP task (2 stages) (b) PPP task (3 stages)

Figure 6: t-SNE of SCAN contexts. The X, Y axes are the
projection of t-SNE, and the T-axis represents the times-
tamp. A context at time t (datapoint at (x, y, t)) is generated
by time t playout frame and a demonstration. Besides, con-
texts from different demonstrations are tagged with distinct
marker. We illustrate how the relationship between contexts
changes over time. Since initial states of demonstrations are
various, the contexts are diverse. Surprisingly, contexts ag-
gregate after end of stages, which implies that the contexts
indeed contain the task-related knowledge.

when each stage is over. The rest of contexts are generated
during moving, such as moving to target cubes or bowls. It
is impressive that contexts have these cluster attributes.

Robustness to Sub-optimal Demonstrations. Figure 7
and Figure 8 demonstrate the result of experiment 2. We
choose one from 56 novel environments as the target envi-
ronment and generate the sub-optimal demonstrations. Ex-
perts still completed the task in sub-optimal demonstrations
but with trivial movements. In other words, the demonstra-
tion set is extremely length-biased, which all methods have
never encountered during training. Then, we run all methods
20 times for the performance evaluation. Attention maps of
SCAN and TANet baseline in this experiment are shown in
Figure 7. It is the comparison with zero or three sub-optimal
demonstrations in the demonstration set. Both methods work
well when there are no sub-optimal demonstrations (bot-
tom). However, TANet cannot handle the case that there are
three sub-optimal demonstrations (top). Because the time
misalignment is severe in the case, TANet is hard to retrieve
knowledge by averaging at each timestamp of demonstra-
tions, which can be reflected in success rates of Figure 8.

In Figure 8, TANet performs poorly when the number of
sub-optimal demonstrations increases. Our SCAN is also af-
fected by sub-optimal demonstrations, but it did not cause
such a big reduction in performance. Moreover, TaskEmb
only focuses on first and last frames of demonstrations, and
thus, sub-optimal demonstrations would not affect its per-
formance. However, first and last frames cannot provide ef-
ficient information when solving compound tasks, TaskEmb
has a lower performance compared to other methods.

Conclusion
In this work, we conduct the FSIL problem under three
challenging settings, including compound tasks, few length-
variant demonstrations and learning from a different type of

Figure 7: Attention in extremely length-biased case. Meth-
ods are trained with optimal demonstrations, but the demon-
stration set contains sub-optimal demonstrations (with triv-
ial moves) in testing. In the no sub-optimal demonstrations
case, both methods can find important frames. However,
the attention result of TANet becomes unexplainable in 3
sub-optimal demonstrations case. Because TANet averages
cross-demonstration contexts by each timestamp, the infor-
mation is mixed and hard to retrieve. By contrast, SCAN
generates attention to each demonstration individually and
then averages the results. Since unimportant frames is fil-
tered out, SCAN can still extract important information.

Figure 8: Model robustness in extremely length-biased case.
We analyze the relation between success rate and the num-
ber of sub-optimal demonstrations. TANet cannot handle
sub-optimal demonstrations since they average attention by
timestamp. Its performance dramatically decreases while the
number of sub-optimal demonstrations increases. In the con-
trary, our SCAN is more robust to the demonstrations with
extremely different length. TaskEmb only considers the first
and last frame, therefore, it does not matter in this case.

expert. Meanwhile, we found that most of works can only
handle one demonstration at once or need external loss to
learn from another expert. Hence, a novel SCAN method
is proposed to retrieve knowledge from few demonstrations
simultaneously and behave in novel environments without
fine-tuning. Our stage conscious attention locates critical
frames for each playout frame to alleviate the demonstration
misalignment problem. Explainable visualization and out-
standing performance illustrates the effectiveness of SCAN.
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