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Abstract

Inspired by two basic mechanisms in animal visual systems,
we introduce a feature transform technique that imposes in-
variance properties in the training of deep neural networks.
The resulting algorithm requires less parameter tuning, trains
well with an initial learning rate 1.0, and easily generalizes to
different tasks. We enforce scale invariance with local statis-
tics in the data to align similar samples at diverse scales.
To accelerate convergence, we enforce a GL(n)-invariance
property with global statistics extracted from a batch such
that the gradient descent solution should remain invariant un-
der basis change. Profiling analysis shows our proposed mod-
ifications takes ~ 5% of the computations of the underly-
ing convolution layer. Tested on convolutional networks and
transformer networks, our proposed technique requires fewer
iterations to train, surpasses all baselines by a large margin,
seamlessly works on both small and large batch size training,
and applies to different computer vision and language tasks.

Introduction

The pupillary light reflex constricts the pupil in bright light
and dilates the pupil in dim light (Bear, Connors, and Par-
adiso 2020). This mechanism controls the amount of light
passing into the eye, allowing common features to be ex-
tracted from signals of different scales. In addition, retinal
receptive fields use center-surround structures to filter and
sharpen images (Hubel and Wiesel 1962) (Supp. Fig. 2 a,
b) , removing a bell-shaped autocorrelation present in real-
world visual signals. Intriguingly, all other receptive field
configurations discovered in Hubel and Wiesel’s seminal re-
search (Supp. Fig. 2 c, d, e) have found artificial analogs in
the first layer filters learned by modern convolutional neural
networks (Zeiler and Fergus 2014) (Fig. 5 a,b).

While convolutional networks continue to push the en-
velope in computer vision tasks, state-of-the-art training
recipes are still limited by scope and scale. Specifically,
when moving from image classification to object detection,
different normalization techniques need to be used. Most al-
gorithms perform well at a specific scale, and there is usually
a significant drop in accuracy when the training batch size is
too large or too small.
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Figure 1: (a) Validation AP curves of a Mask R-CNN net-
work when trained with network deconvolution++ (ND++),
frozen batch normalization and group normalization. (b)
Top-1 validation accuracy of ResNet-50 when trained on
ImageNet with ND++ and SyncBN using batch size of
2048, the training finishes better and faster than using batch
size 256 using the same hardware. (c) mloU curves of
DeepLabv3 with a ResNet-101 backbone trained on the
Cityscapes dataset using ND++ and SyncBN. ND++ con-
sistently outperforms baselines and produces more stable
mloU curves. (d) ND++ significantly improves upon ND
when training ViT-B_16 on the CIFAR datasets.

In this paper, we conduct a study of a one-layer linear
network to understand the origin of these limitations. Draw-
ing inspiration from this study, the structure of animal visual
systems mentioned above, and recent related work (Ye et al.
2020), we derive two invariance properties that enhance the
training of deep neural networks. We implement cross-GPU
synchronization to aggregate the computation required to
enforce the invariance, surpassing the widely-used synchro-
nized batch normalization (Peng et al. 2017) method signif-
icantly. This implementation supports both small batch and



large batch training without algorithm change. By enforcing
the invariance properties at every layer of the network, we
accelerate training convergence and surpass baseline accu-
racy by a large margin on the ImageNet (Deng et al. 2009),
MS COCO (Lin et al. 2014), and Cityscapes (Cordts et al.
2016) datasets for image classification, object detection, and
semantic segmentation, respectively (Fig. 1). In our supple-
mentary materials, we also show promising results for train-
ing transformers on multiple vision and language tasks.
Our main findings are the following:

* We propose a drop-in modification before the linear lay-
ers in a network to explicitly enforce these two invariance
properties, significantly reducing training iterations and
surpassing baseline accuracy by a large margin.

* Training with this modification is robust to different op-
timizer configurations; using the theoretically optimal
learning rate for the linear case of 1.0 can successfully
train a wide range of deep networks.

 Our implementation takes ~ 5% (Supp. Table 1) of the
cost of the underlying convolution layer and incorporates
a cross-GPU synchronization which surpasses synchro-
nized batch normalization by a large margin in both small
and large batch regime.

* The benefits of the proposed modification generalize to
emerging architectures in vision and language.

Background
Backward Correction Methods

The complicated loss landscapes (Li et al. 2017) of neu-
ral networks create numerous challenges for training. Deep
neural networks are generally over-parameterized. The pres-
ence of strong correlation between features induces areas of
pathological curvature in the landscape and inhibits effec-
tive training. Small gradients are common in these patholog-
ical regions, and the problem is exacerbated by small linear
layers and common activation functions. These issues were
traditionally addressed by correcting the gradients (Nocedal
and Wright 2006; Martens et al. 2010; Ye et al. 2017), that is,
by modifying the backward pass. The most popular methods
normalize the gradient scale to avoid the vanishing gradient
problem and smooth the direction by using previous gra-
dients as a momentum term (Kingma and Ba 2014). More
advanced methods, such as Newton’s method, use approxi-
mate curvature information to modify the gradient direction
(Fig. 2). However, high computational costs limit these algo-
rithms to small-scale problems (Martens and Grosse 2015;
Desjardins et al. 2015). They have not been widely shown to
surpass first-order gradient descent methods.

Forward Correction Methods

Forward transforms provide an alternative approach to
address the challenges in training deep neural net-
works (Huang et al. 2020). Batch normalization (Ioffe and
Szegedy 2015) is a common and powerful example that stan-
dardizes the distribution of features in each dimension. This
stretching with a diagonal matrix works perfectly only for
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Figure 2: A toy picture of loss landscapes and gradient steps.
The red arrows correspond to the gradients found through
backward correction or Newton’s method and the green ar-
rows correspond to the gradients used in gradient descent
iterations. (a) Highly correlated, non-standardized data. (b)
Correlated but standardized data. (¢c) With standardized and
uncorrelated data, vanilla gradient descent coincides with
Newton’s method (Proposition 1).

uncorrelated, axis-aligned features, suggesting that the op-
timality of standardization depends on the choice of basis.
Given the inherent correlation in real-world data, the fea-
ture covariance matrix is generally ill-conditioned and not
diagonal. As a result, gradient descent training usually takes
unnecessary steps towards the solution (Fig. 2(b)). Recently,
more accurate transforms have been proposed to utilize the
covariance matrix and remove the pairwise correlation be-
tween features (Huang et al. 2018; Ye et al. 2018; Huang
et al. 2019; Pan et al. 2019; Ye et al. 2020). If the features
are transformed to be axis-aligned and have unit-variance,
the loss landscape is more isotropic. Gradient descent con-
verges more quickly and accurately (Fig. 2(c)).

Motivations

We start our investigation with a toy example of a one-
layer network (Eq. 1). Rigorous analysis of this simple setup
reveals a surprising depth of insight into the fundamental
training problem. The analysis explains the utility of vari-
ous modern techniques to facilitate training and leads us to
a more advantageous design.

Assume we are given a linear regression problem with a
mean squared error loss (Eq. 1). ¢ is the continuous or dis-
crete response data to be regressed. This formulation can be
used for prediction or classification. In the typical setting,
the output y = Xw is given by multiplying the inputs X
with an unknown weight vector w for which we are solving.
Let N be the number of samples, d the feature dimension,
and X either the N X d or augmented N X (d + 1) data
matrix (X|1), if we include a bias.

1 . 1 .
Lossyise = §E(|y — 9P = WHXU) 917 )

Local Statistics vs Global Statistics

Given a N x d data matrix X, we refer to the column statis-
tics as the global statistics and the row statistics as local
statistics. Mini-batch statistics represent an approximation



to the global statistics of the whole dataset. Batch normal-
ization (Ioffe and Szegedy 2015) standardizes the d column
vectors. This can be visualized as a coordinate transform
that stretches the data along each axis based on global statis-
tics (Fig. 2 (a) to (b)). Training then solves for a new set of
weights wp in this transformed space.

On the other hand, sample-based normalization (Ba,
Kiros, and Hinton 2016; Wu and He 2018; Singh and Kr-
ishnan 2020) stretches each sample by removing the scale
and bias in each row of X according to the local statistics.
Viewed from the original space, training corresponds to find-
ing N sets of sample-variant weights {w; } that both stretch
the samples and fit the model.

GL(n)-invariance

One may ask whether the solution of Eq. 1 found using a
given algorithm changes under a change of basis. That is,
if we use any invertible linear transform, i.e., a member of
the general linear group GL(n) (Artin 2011), to transform
the features, will we simply reach an equivalent solution in a
different coordinate system? If the solution is invariant under
the operation of GL(n), we will call the training algorithm
G L(n)-invariant.

Assuming X!'X is invertible for our toy problem, the
unique solution can be found by setting the gradient to 0,

Loss — LXH(Xw —15) =0,

w=(X'X)"" Xty )

Let us consider the impact of different correction methods
on the ability of gradient descent-based algorithms to find
this solution.

Case 1 (backward correction/Newton’s method): For
simplicity, suppose we start from wy = 0, then % lwo
— % X'g. Letting H = {X'X = V2 Loss, we see from
Eq. 2 that w = —H~12L9%2 Thjs derivation shows us how
the gradients can be manipulated in the backward fashion
to accelerate convergence (Martens and Grosse 2015; Des-
jardins et al. 2015; Ye et al. 2017): (1) approximate the cur-
vature with H and erl%ply an inverse correction to decorrelate
the gradient, H -1 %, then (2) take a descent step using
a learning rate of 1.0: w = wy — 1.0 - H~12Less G (n)
invariance can be achieved because the optimal solution can
be found in one step by following the corrected negative gra-
dient in any basis (found as the red arrows in Fig. 2).

Case 2 (forward correction): Instead of the Newton’s
method, we adopt a forward correction point of view. Sim-
ple forward corrections include standardization using global
statistics, which results in standardized columns, while us-
ing local statistics results in standardized rows. In terms of
convergence rate, using global statistics is slightly superior,
as after correction %H = %X ¢X is guaranteed to have
unit diagonal. Therefore, the loss landscape has better statis-
tical properties and convergence is accelerated.! However,
standardization with either local or global statistics does not

"Normalization with local statistics works on X X, which is
less related to the convergence.
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remove correlations between features. On an elongated en-
ergy landscape, gradient descent algorithms generally do not
converge in one step and the optimal solution cannot be
found under an arbitrary basis change. The following propo-
sition demonstrates that forward correction can achieve the
power of Newton’s method if we (1) decorrelate the feature
columns with global statistics and (2) use a learning rate 1.0.

Proposition 1. The optimal solution can be found in one
step with the forward correction if and only if the feature
columns are standardized and uncorrelated.

Proof. With these features we have & X'X = I, and the
optimal explicit solution (Eq. 2) simplifies to w = - X'g.

After one iteration of gradient descent, Wpew = Woid —
N+ (X" Xweq — X'9). By substituting +X'X = I, we

find that = 1.0 is optimal and yields convergence in a
single iteration. O

Scale Invariance

In our toy problem, the output scales linearly with the in-
put, (aX)w = a(Xw). In fact, this property generalizes to
common networks with linear layers and ReLU-like activa-
tion functions. If we consider a task such as bounding box
prediction, this suggests that we can scale the box size by
simply changing the input brightness, which should clearly
be avoided. Through the pupillary light reflex, animal vi-
sual systems introduce a scale invariance property so that
differently scaled inputs generate similarly scaled features.
Although transforming using global statistics can guarantee
G L(n)-invariance as discussed above, it does not result in
scale invariance. Since scale invariance is a concern in some
tasks, we utilize both global and local statistics (where sam-
ples are transformed individually) in our algorithm design,
and we defer the explanation of details to the next section.

Optimizing the Formulation

Influenced by the batch normalization, most normalization
algorithms (Ba, Kiros, and Hinton 2016; Wu and He 2018;
Singh and Krishnan 2020; Huang et al. 2018, 2019; Pan
et al. 2019) adopt a post-normalization design, normalizing
the output y = Xw of the linear transform rather than nor-
malizing the input X. Since post-normalization restricts the
representation power of y, two extra parameters are intro-
duced to remove this limitation: Lossysp = 5k ||(Xw —
)Xty + B — g]|%. As a result, the toy problem contains
more than necessary parameters (w, 7, /3 instead of w) to be
optimized. However, the optimal convergence property that
we find on the toy problem no longer holds with the redun-
dancy. This motivates us to optimize our design to remove
the redundancy while maintaining full representation power.

Enforcing Invariance in Training Neural
Networks

The motivations naturally lead us to a new formulation by
applying the principles derived from the toy problem. We
start from identifying the data matrices X, in three common
linear layers. Then we remove the correlation between the



features to accelerate the convergence and insert scale in-
variance to pre-align features at different scales.

Case 1. For a fully-connected layer, the data matrix X of
N samples is constructed straightforwardly by stacking NV
rows of d or d + 1 dimensional feature vectors. The training
convergence is suboptimal with gradient descent approaches
if the columns are correlated (Fig. 2 (a,b)).

Case 2. For a convolution layer, the computation can be
expressed in three ways in the spatial domain, expressed as
y=xzxw =Wz = Xwsppeq. We call them the (a) direct
convolution, (b) convolution matrix and (¢) data matrix for-
mulation respectively. For (b) we expand the kernel of size
kintoa (n — k + 1) x n convolution matrix W. For (c) we
unroll (known as ¢m2col) the overlapping windows of z into
a(n—k+1) x k data matrix X. We illustrate the matrices
of a 1d convolution example of (b, ¢) using k& = 3 (in the
‘valid’ mode according to Matlab terminology):

Y1 w3 W2 Wi €
Y2 w3 W2 Wi €2
Yn—k Tn—1
Yn—k+1 ws w2 Wy Tn
x1 T2 T3
X X x
$2 $3 x4 w3
_ 3 4 5 wo
. wy
Tn-3 Tp—2 Tp-—-1
Tpn—2 Tp-1 T

By closely looking at the different columns in the convo-
lution data matrix X (in case 2 (c)), one can find a rarely
discussed problem in the training of networks. Since real-
world data exhibits strong autocorrelation, and the neighbor-
ing columns of the data matrix correspond to shifting the sig-
nal by one pixel, the feature dimensions in the convolution/-
correlation data matrices are heavily correlated. Therefore
gradient descent training cannot converge efficiently with
existing standardization techniques (Fig. 2 (b)) or just by
decorrelating the feature channels in a layer.

Case 3. The correlation operation (also called transposed
convolution, or misnomered as deconvolution) is the adjoint
operation of the convolution, and involves padding the data
by k — 1 on each side (corresponding to the ‘full” mode
in Matlab terminology) and using the unflipped kernel. The
data matrix of correlation only differs from that in the con-
volution by the zero padding and is omitted here. The corre-
lation operation shares the same convergence problem with
the convolution case.

0

0

1 w; Wy W3 1
Y2 B wp W2 W3 Zo

Yn—1 -

wyp w2 w3 "

Yn 0
0
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Connection with Frequency Domain Normalization

For convolution and correlation, removing such pixel-wise
autocorrelation has a long history and can be achieved
through a process called whitening deconvolution (Gonza-
lez and Woods 2006). This correlation removal process can
be applied to every layer of a convolution neural network
and we call this procedure network deconvolution. Usually
this is achieved in the frequency domain through spectral
whitening, i.e. a normalization in the frequency domain:

F(z) _ F(z) : At
7@~ w7 This elegant normalization shows a

profound insight: the optimal standardization for the convo-
Iution operation should in fact be carried out in the frequency
domain. Note that frequency multiplication corresponds to
a spatial domain convolution, and the frequency division
corresponds to a spatial domain deconvolution. Moreover,
the deconvolution kernel 7" ({z(;y7) has been found to re-
semble the center-surround structures in animal visual sys-
tems (Supp. Fig. 2(a,b)) (Hubel and Wiesel 1962; Hyvrinen,
Hurri, and Hoyer 2009; Ye et al. 2020). Four lines of Matlab

code are provided here for a quick verification (Fig. 3).

inss

(a)

I=double(imread('cameraman.tif'))/255;
f=ifft2(1./(abs(fft2(I))+eps));
f=circshift(f,[7,71);
figure;surf(f(1:15,1:15), 'FaceAlpha',0.5)

(b

Figure 3: Visualizing a frequency domain deconvolution fil-
ter in the spatial domain leads to a structure that has positive
center values and negative surround values, resembling an
on-center cell in animal visual systems (Hubel and Wiesel
1962) (Supp. Fig. 2(a)).

Spatial Domain Implementation

Algorithm 1: Proposed Computation for a Convolution
Layer

1: Input: Feature tensor X xxcx HxWw
2: Scale features along first dimension X qjeq = SX
Convert feature channels to data matrices along second
dimension
foric {1,...,C} do
X; = im2col(Xscated[:, 1y 1, 1))
end for
X = [Xy, ..., X¢] %Horizontally Concatenate
Cov = £ X' X %Cross GPU Sync

D ~ (Cov + ¢ - I)~2 %via Inverse Newton Iterations
Output: Y = Conv(SX, DW)

W

@Y XN R

For a practical implementation for convolutional net-
works, it is better to carry out the deconvolution computa-
tion in the spatial domain using the data matrix X with the
consideration of kernel size, stride, and boundary condition
that are found in practice. All three linear transforms share
the following correlation removal process: we calculate the



covariance matrix Cov = %X tX, find its unique princi-

pal inverse square root D = Cov™2, and then use this ma-
trix to transform the data matrix: Xy = X - D. Note that
L Xt Xo=Cov~2 - Cov - Cov™% = I. As the transformed
features are uncorrelated and standardized, faster conver-
gence is achieved in this corrected space (Fig. 2(c)). We
track the correction D during training and use the running
average during testing.

For a convolution/correlation layer with C' channels, we
construct the data matrix for each channel then horizontally
concatenate the C' data matrices into a wider matrix (with
Ck/Ck? columns for 1d/2d). Deconvolution with this wider
matrix removes the correlation of k/k? nearby pixels and C
feature channels at once (see Algorithm 1).

Our experiments show that the above formulation works
well for simple classification tasks that do not require scale
invariance. However, it may not work well for some other
tasks such as object detection and instance segmentation
where scale invariance plays an important role. To gener-
alize to these tasks, we incorporate local statistics to remove
a scale factor in each individual sample. This simple strat-
egy is inspired by the biological observation that animal vi-
sual systems also use two sets of statistics for visual anal-
ysis (Hubel and Wiesel 1962; Bear, Connors, and Paradiso
2020). The retinal light reflex (Bear, Connors, and Paradiso
2020) suggests local statistics is used to adjust the scale of
the signal. For a fully-connected layer, local statistics are
calculated from each row of the data matrix X. For a convo-
lution/correlation layer, local statistics can be calculated for
one or more rows of the data matrix or even the full fea-
ture tensor at each layer. We have found empirically that
the last option works well and does not introduce an ex-
cessive computational cost. At each layer we standardize
each sample by its sample statistics, interchangeably with
Layer N orm (Ba, Kiros, and Hinton 2016), or with [; norm
E(|z|) if we just consider the scale. Combined with the lin-
ear transform weights, our proposed feature transform is:

y=5-X-D-w. 3)

Here S is the standardization operating on the rows of X,
a diagonal matrix (U%_) if we only consider the scaling or
augmented with an extra column (_%) if we also consider
the bias, and D is the decorrelation operating on the columns
of S - X. The weights are trained in the transformed space
based on the uncorrelated features S - X - D.

Our formulation transforms both the rows and columns
of X without introducing redundancy. Normalization using
local statistics enforces scale invariance, aligning features
of different scales. Normalization with global statistics en-
forces G L(n)-invariance, leading to faster convergence.

Implementation Details
Cross-GPU Synchronization

To leverage the latest advancements in hardware develop-
ment, we implement cross-GPU synchronization to improve
the quality of the estimates (see (Pan et al. 2019) for an-
other independent implementation). At each layer, the co-
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variance matrix is computed on each GPU and synchro-
nized across all the GPUs. On an 8-GPU machine, the syn-
chronization cost is negligible. This implementation allows
us to collect reliable statistics throughout the training for
all practical batch sizes. In our development, we have con-
sistently achieved satisfactory results using per-GPU batch
sizes ranging from from 2 to 1024.

Acceleration Techniques

We use several techniques to simplify computation and re-
duce the complexity of the proposed algorithm to a small
fraction (~ 5%) of the cost of a convolution layer (Supp.
Table 1). The memory accessing time of extracting the data
matrix from a convolution/correlation layer in existing pack-
ages takes significantly more time than the underlying con-
volution operation. We adopt a 3x-subsampling for Ima-
geNet scaled images and 5x-subsampling for MS COCO
scaled images. The data and covariance matrices are com-
puted using tensor patches sampled at the strided locations,
reducing the construction cost by 9x and 25X respectively.
Since the involved number of pixels is usually more than
enough, this strategy maintains accuracy while keeping the
computational footprint low. When the covariance matrix
becomes too large, we divide the columns into blocks and
decorrelate between the blocks (Ye et al. 2017; Huang et al.
2018). In our experiments, we set the number of blocks
B = 256 for fully-connected layers and B = 64 x k? for
convolution/correlation layers.

There are multiple ways (Huang et al. 2018; Ye et al.
2018; Huang et al. 2019; Ye et al. 2020) to calculate the
principal inverse square root of a matrix but algorithms that
are both efficient and stable are scarce. Since explicit eigen-
value decomposition is slow, Newton-Schultz iteration be-
comes a faster alternative. However, the vanilla Newton-
Schultz method is unstable under finite arithmetic (Ye et al.
2020)(Fig. 7), so we adopt a coupled inverse Newton it-
eration method that is numerically stable and works well
under finite precision arithmetic (Guo and Higham 2006).
Starting with Xg = I, My = Cov, the coupled inverse
Newton iteration calculates Xz41 = X k(?’lgiM"), Mpy =
(315Mi)2 0 fy and produces X — Cov™2. Empirically,
using 5 iterations yields good results. We also add a small
diagonal matrix e/ to the covariance matrix to avoid rank-
deficiency.

Note that for a large data matrix X, decorrelating columns
of X can require excessive computation. Previous appli-
cations are usually restricted to a small number of lay-
ers (Huang et al. 2018, 2019; Pan et al. 2019), which adds
to the network design complexity. We adopt a universal
design and avoid excessive computation by reordering the
computation by transforming the model weights instead,
y=(S-X)-(D-w) (see Algorithm 1).

Experiments

We refer to our improved implementation as Network De-
convolution++ (ND++). ND++ introduces scale invariance,
generalizes the G L(n)-invariance to all three common linear
transform layers (convolution/correlation/linear) in modern



Network | SyncBN | ND++

VGG-11 71.11 | 72.24
ResNet-50 76.25 | 77.95
ResNet-101 7737 | 79.40
DenseNet-121 74.65 | 76.11

Table 1: Top-1 Validation Accuracy on the Ima-
geNet Dataset. ND++ also surpasses the top-1 accu-
racy rates of the deeper networks in the model zoo:
VGG-13:  71.55%,ResNet-101:  77.37%,ResNet-152:
78.32%,DenseNet-169: 76.00%.

| MB | MLPerf | Detectron2

ND++ | 37.36 37.37 39.01
BN 36.78 36.35 37.9
GN 36.04 359 38.54

Table 2: Bounding box AP of three Faster R-CNN imple-
mentations on the COCO 2017 dataset.

architectures, and uses cross-GPU synchronization to allow
reliable training at different scales. In the following experi-
ments, all linear transform layers are enhanced with ND++.
In fine-tuning experiments, the pretrained backbone network
is replaced with a backbone pretrained with ND++. For a fair
comparison, we have also experimented with training from
scratch to verify the gain is not only from the improved back-
bone. Standard stochastic gradient descent is used for all ex-
periments. We continue to use learning rate decay in the face
of inherent non-linearity and mini-batch training.

Image Classification

We demonstrate improved training on three popular CNN
architectures (VGG, ResNet, DenseNet) at three scales
(10/50/100 layers). With ND++, we have seamlessly in-
creased the training to batch size 2048, eight times larger
than the model zoo default setting of 256. We train in one-
eighth the number of iterations but produce superior models
(Table 1). All three network architectures, VGG-11/ResNet-
50/ResNet-101/DenseNet-121, surpass their deeper coun-
terparts in the model zoo after standard 90-epoch training
with cosine learning rate decay. Using the official PyTorch
recipe, it takes less than one day to train on a machine
with 8 Nvidia A100 GPUs. On the popular ResNet-50/101
network, the 77.95%/79.40% top-1 accuracy we reach is
among the highest numbers reported when training for 90
epochs (Fig. 1(c)).

Object Detection

We test ND++ on Faster R-CNN and Mask R-CNN,
milestone object detectors from three major benchmarks,
maskrcnn-benchmark(MB), MLPerf, and Detectron2. We
use ResNet-50 with FPN as backbones and two fully-
connected layers in the box heads. In Mask R-CNN, the
mask head contains convolution and correlation layers.
ND++ is used to enhance all layers. We report our num-
bers and evaluation curves on the COCO 2017 dataset (Ta-
bles 2, 3, Fig. 1(a,b)). Results with ResNet-101 can be found
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MB MLPerf Detectron2
Athox; APmaSk Atho;p APmask APbbom Apmask
ND++| 38.62 35.65| 38.36 35.07| 3991 36.87
BN 37.67 34.28| 37.14 33.97 38.6 35.2
GN 37.82  34.75| 36.32 33.52] 3896 35.93

Table 3: Bounding box and mask AP of three Mask R-CNN
implementations on the COCO 2017 dataset.

LR APbbow APmask
ND++ | 0.02 37.81 34.87
GN 0.02 37.76 34.8
ND++ | 0.1 38.86 35.56
GN 0.1 35.21 33.66

Table 4: Mask R-CNN trained from scratch on the COCO
2017 dataset.

in Supp. Sec. , Supp. Tab. 2.

On all three benchmarks and with both Faster R-CNN
(Table 2) and Mask R-CNN (Table 3), ND++ consistently
outperforms baselines with frozen batch normalization and
group normalization (Wu and He 2018) in terms of Aver-
age Precision(AP) (Fig. 1(a,b)). When training from scratch,
ND++ benefits from increase the learning rate to 0.1 while
group normalization ends up with worse results (Table 4,
Supp. Fig. 4).

Though researchers have encountered severe challenges
in scaling up the training of Mask R-CNN (Peng et al. 2017;
Wang et al. 2020), we have been able to seamlessly increase
the batch size and achieve good results without ad hoc tech-
niques. Here we take the MLPerf implementation, remove
the warmup stage, and fix the learning rate to 0.1 with a mo-
mentum of 0.9. We notice that frozen/synchronized batch
normalization explodes at all scales without warmup while
ND++ produces superior results. ND++ significantly sur-
passes the MLPerf accuracy goal® within the standard 12-
epoch fine-tuning with batch sizes up to 256, an order of
magnitude larger than most existing baseline settings (Ta-
ble 5, Supp. Fig. 5).

LAMB MegDet ND++
Batch Apbbo:r APbboz APbbox APmask
128 36.7 37.7 38.61 35.54
256 36.7 37.7 38.40 35.26
512 36.5 - 37.45 34.5

Table 5: Large-scale training performance of Mask R-
CNN using ND++. Our reported numbers are based on
the NVIDIA implementation. ND++ significantly surpasses
MegDet (Peng et al. 2017) and LAMB (Wang et al. 2020)
that utilize SyncBN, warmup and optimizer change.



Network | SyncBN | ND++

DLv3-RN-50 (scratch, 200 ep.) 69.30 72.69
DLv3-RN-50 (finetune, 200 ep.) 75.70 77.50
DLv3-RN-101 (finetune, 200 ep.) 77.28 79.23
DLv3-RN-50 (finetune, 50 ep.) - 76.47
DLv3-RN-50 (finetune, 500 ep.) 75.71 -

Table 6: Validation mloU when fine-tuning and training
from scratch on the Cityscapes dataset. DLv3 stands for
DeepLabv3 and RN stands for ResNet.

ResNet-50 | Mask R-CNN (MLPerf) | DeepLabv3-RN-50
top-1 AP bbox AP mask mloU (Scratch)
77.66 \ 38.26 35.41 \ 71.64

Table 7: Experiments with an initial learning rate 1.0 and no
momentum.

Semantic Segmentation

To demonstrate the usefulness of ND++ for semantic seg-
mentation, we add ND++ layers to the DeepLabv3 architec-
ture (Chen et al. 2017) with both ResNet-50 and ResNet-
101 backbones and test the performance on the Cityscapes
dataset (Cordts et al. 2016). We use a base resolution of 1024
for the images. We train for 200 epochs for all experiments
unless stated otherwise. We perform fine-tuning experiments
with a ResNet-50 backbone pretrained on ImageNet an ini-
tial learning rates of 0.01 and 0.1 and momentum 0.9 for
both ND++ and the SyncBN baseline, and we report the re-
sults with learning rate 0.01 for SyncBN and 0.1 for ND++
in Table 6 since these produced the best results for each
network configuration. Our ResNet-50 model with ND++
achieves an mloU of 77.50 on Cityscapes, comparable to the
ResNet-101 model from the original paper with 77.82 mIoU
for single-scale evaluation (Chen et al. 2017).

ND++ substantially improves over the synchronized batch
norm baseline, and the acceleration is especially apparent
early in training. For example, it takes less than 50 epochs
for a network equipped with ND++ to beat the performance
of a network trained using SyncBN for 500 epochs (Supp.
Fig. 7 and Table 6) if we fine-tune using a pretrained ResNet-
50 backbone.

Experiments with Learning Rate 1.0

Existing deep neural network models are trained with
stochastic gradient descent algorithm variants with momen-
tum. Although the momentum term usually reduces noise
and accelerates convergence, we notice that with ND++,
many networks train well with a initial learning rate 1.0 and
without the use of the momentum term, presumably thanks
to the GL(n)-invariance property (Table 7).

Training a Vision Transformer Model

The techniques discussed in this paper naturally general-
ize to emerging architectures. To demonstrate, we compare
a 10, 000-step training using ND++ and compare with ND

237.7 for bounding box AP and 33.9 for mask AP.
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and the standard training of a vision transformer (ViT-B_16)
on the CIFAR-10/100 datasets. Mostly following the orig-
inal setting, we resize images to 224, set the learning rate
of SGD to 0.1 and the weight decay to 0.0001, and use a
batch size of 512 when training from scratch®. Note that
even though fine-tuning Transformers has shown promising
results on various language and vision tasks, training trans-
formers from scratch leaves large room for improvements.
When training from scratch on the CIFAR-10 dataset, the
baseline 10, 000-step (102 epochs) training yields an accu-
racy of only 70%. We drop in our modifications in every
linear layer of the network and remove the original Lay-
erNorms in the network. Interestingly, we observe GL(n)-
invariance suffices and significantly improves the testing ac-
curacy curve. Adding scale invariance further improve the
results (Fig. 1(d)) to 80%. More training from scratch results
for language tasks can be found in the supplementary materi-
als. The wall-time of the baseline/ND/ND++ is 180/200/220
minutes, respectively, when run on 8 GPUs.

. .
Ablation Studies
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Figure 4: Ablation study with the Mask R-CNN architecture.

Cross-GPU synchronization and scale invariance produce
larger improvements in the more advanced two-stage detec-
tor Mask R-CNN as indicated by ablation experiments on
the MLPerf benchmark (Fig. 4 (a)). To further study the ef-
fect of enforcing scale invariance, we separately plot the ob-
jectness classification and regression losses for the region
proposal network (RPN) (Fig. 4 (b,c)). Without scale invari-
ance, the object classification loss remains lower throughout
the training, but the bounding box regression loss is higher.
The inaccurate proposals likely pull down the final results
(Fig. 4 (a) the purple curve). Further studies can be found in
the experiment details in the supplementary materials.

Discussion

The transform we propose has simple and intuitive geomet-
ric meanings. To achieve scale invariance, each sample is
stretched individually using local statistics. The global ge-
ometry of the loss landscape, however, depends on the full
collection of data. We therefore utilize the global distribu-
tion of data to find a unique optimal feature transform and
achieve G L(n)-invariance. The unique gradient direction in
this space corresponds to the optimal direction in the linear
case and leads to significantly accelerated training of deep
neural networks.

3The Vision transformer is accessed from:

https://github.com/jeonsworld/ViT-pytorch
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