
LOGICDEF: An Interpretable Defense Framework against Adversarial Examples
via Inductive Scene Graph Reasoning

Yuan Yang, James C Kerce and Faramarz Fekri
Georgia Institute of Technology

{yyang754@, clayton.kerce@gtri., faramarz.fekri@ece.}gatech.edu

Abstract

Deep vision models have provided new capability across a
spectrum of applications in transportation, manufacturing, agri-
culture, commerce, and security. However, recent studies have
demonstrated that these models are vulnerable to adversarial
attack, exposing a risk-of-use in critical applications where
untrusted parties have access to the data environment or even
directly to the sensor inputs. Existing adversarial defense meth-
ods are either limited to specific types of attacks or are too
complex to be applied to practical vision models. More im-
portantly, these methods rely on techniques that are not inter-
pretable to humans. In this work, we argue that an effective
defense should produce an explanation as to why the system
is attacked, and by using a representation that is easily read-
able by a human user, e.g. a logic formalism. To this end, we
propose logic adversarial defense (LOGICDEF), a defense
framework that utilizes the scene graph of the image to pro-
vide a contextual structure for detecting and explaining object
classification. Our framework first mines inductive logic rules
from the extracted scene graph, and then uses these rules to
construct a defense model that alerts the user when the vision
model violates the consistency rules. The defense model is
interpretable and its robustness is further enhanced by incor-
porating existing relational commonsense knowledge from
projects such as ConceptNet. In order to handle the hierarchi-
cal nature of such relational reasoning, we use a curriculum
learning approach based on object taxonomy, yielding addi-
tional improvements to training and performance.

Introduction
Deep learning models have achieved great success in many
visual tasks, such as object classification and detection. How-
ever, a wealth of research has shown that these models are not
robust in situations where an attacker can modulate the input
with only small perturbations, since such data modulation
can significantly alter the model predictions (Szegedy et al.
2013; Biggio et al. 2013; Brown et al. 2017).

Multiple mechanisms have been proposed to defend
against perturbation attacks. Some methods rely on empirical
techniques, such as training with adversarial examples (Good-
fellow, Shlens, and Szegedy 2014; Tramèr et al. 2017). This
defense is straightforward to apply but is limited to the attack
types seen in the training phase. Subsequent studies showed

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Scene Graph

Defense via Scene Graph Reasoning

Original Image

Adversarial
Patch

Car

Tree

Attacked Image

Image with Rich Context

“Something that has , and runs
on should be a train”

?
Window

Tracks

Door

Person

Number

? Door

Window

Person

TrackOn Has

HasNear

Number

Train

Cat

Door Window

Track

On

𝒙𝟏 𝒙𝟐

𝒙𝟑

Figure 1: Defending the adversarial patch by reasoning over
the scene graph.

this defense to be vulnerable to carefully designed adversar-
ial attacks (Carlini and Wagner 2017; Athalye and Carlini
2018). Other methods such as certifiable defenses seek to
protect the classifier by verifying its prediction is within a
prescribed `p ball around the input (Raghunathan, Steinhardt,
and Liang 2018; Chiang et al. 2020; Cohen, Rosenfeld, and
Kolter 2019). However, these methods are developed specifi-
cally for `p-norm attacks; furthermore, their computational
expense and the architectural limitations they impose limit
their practical application.

Despite their sophistication, we note that most of these
attacks can be easily detected by humans. In contrast to
machine learning models, humans recognize and describe
objects using a component hierarchy and by correlating co-
occurring ancillary scene features, properties, and entities.
This association with relevant entities suggests it as a natural
defense mechanism against such attacks. For example, con-
sider an image of a train as shown in Figure 1. The “train”
object in the image is classified as a “cat” by the deep object
classifier due to the adversarial attack. How would a human
detect the object is misclassified? One can say that “a cat is
an animal with paws and a tail” and these details are absent
from the image. Furthermore, the bounded object has compo-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

8840

nents “door” and “window”, and is above “tracks”, and these
relationships are more likely associated with “train”.

In this case, one detects the attack by reasoning over the
relations of all the scene objects using commonsense knowl-
edge. This process is beneficial for two reasons: first, com-
monsense reasoning is general and does not rely on visual
features, which makes it robust against arbitrary attacks on
the visual domain when contextual information is preserved.
Secondly, in contrast to other defenses, the reasoning process
is self-explanatory (As shown in Figure 1) and can be easily
understood by human users.

Inspired by this observation, we raise a challenging ques-
tion: “Can we propose a method that utilizes human-like
reasoning to defend against the adversarial examples?”

To this end, we propose logic adversarial defense (LOG-
ICDEF), an interpretable defense framework for the adversar-
ial examples. Our framework considers the scenario where,
apart from the attacked object, it can access the rich context
of the image in the form of a scene graph which represents
the visual objects and their relations as nodes and edges of
a directed graph. Given a scene graph, LOGICDEF mines
commonsense knowledge that is predictive to the objects and
represents them into logic rules through inductive logic pro-
gramming (ILP). These rules are interpretable and serve as
the framework’s belief on how objects are associated in the
real world. We then construct a defense model that integrates
the rule knowledge as constraints into the deep classifier
in a principled manner, i.e. posterior regularization (PR).
Additionally, as the knowledge is stored in symbolic form,
LOGICDEF can incorporate existing commonsense knowl-
edge base such as ConceptNet (Speer, Chin, and Havasi 2017)
for zero-shot defense. It can also utilize the natural object
taxonomy for curriculum learning to achieve improved per-
formance in defenses with fewer labeled data.

In summary, our contributions are as follows:
• We propose LOGICDEF, an interpretable defense frame-

work that performs inductive reasoning over the scene
graph to defend the adversarial examples.

• LOGICDEF relies on commonsense knowledge that is
mined from the data or imported from ConceptNet, mak-
ing it highly interpretable and robust against the attacks
in the visual domain.

• LOGICDEF is tested against the adversarial patch attack
on the Visual Genome dataset (Krishna et al. 2016). The
defended model achieves 97% of the accuracy obtainable
when no attack is present and can achieve 86% accuracy
with zero-shot defense. We show that LOGICDEF can
incorporate knowledge and taxonomy from ConceptNet to
obtain additional improvements with curriculum learning.

Related Work
Adversarial examples Adversarial example methods gen-
erate additive perturbations to the input to fool the deep
models. Some methods generate global perturbations over
the whole image (Szegedy et al. 2013; Goodfellow, Shlens,
and Szegedy 2014; Kurakin, Goodfellow, and Bengio 2016).
However, perturbing the whole image is usually impractical
for physically realizable attacks (Chiang et al. 2020; Liu et al.

2018). Recent methods focus on generating localized pertur-
bations that change a small part of the image. Adversarial
patch (Brown et al. 2017), for example, learns to generate an
image patch that can fool the classifier when put next to the
visual object.

Note that, while we use the scene graphs to identify multi-
ple image objects and their relations, we do not seek to defend
against object detection attacks where the global structures
(i.e. scene graphs) change significantly, as in Dense Adver-
sary Generation (Xie et al. 2017) or DPatch (Liu et al. 2018).
We instead aim to defend against adversarial patch attacks on
an object classifier, that is, the attack targets the classification
of a single object in the scene (e.g. the “train” in Figure 1).
As the main motivation of this work is to explore how human-
like reasoning could lead to interpretable defense, we treat
the scene graph as background context that can be influenced
by the attack but is not adversarially targeted.

Adversarial defenses Many defense methods have been
proposed to mitigate adversarial attacks. Adversarial training
(Goodfellow, Shlens, and Szegedy 2014; Tramèr et al. 2017)
achieves robustness by building adversarial attacks into the
training phase. On the other hand, certified defense meth-
ods (Raghunathan, Steinhardt, and Liang 2018; Chiang et al.
2020) study the principled defenses by verifying the model’s
prediction is within a bounded `p distance from the input.
Such certified methods are computationally expensive and do
not usually scale to large vision models, although the recent
work of random smoothing (Cohen, Rosenfeld, and Kolter
2019) does so within the limitations of `2 norm attacks.

Our framework is different from most of the existing de-
fense methods, as LOGICDEF achieves robustness through
human-like commonsense reasoning. Some work shares the
same motivation as our framework. For example, the attacks
meet interpretability (Tao et al. 2018) technique detects at-
tacks on face recognition by extracting face attributes that are
perceptible by humans. The LOGICDEF approach differs in
that it mines inductive logic rules from explicit scene graph
data to detect attacks across arbitrary classes.

Inductive logic programming (ILP) LOGICDEF per-
forms inductive reasoning on the scene graph to learn logic
rules for adversarial defenses. This process is referred to
as Inductive logic programming (ILP) and is studied exten-
sively in the literature of inductive reasoning (Guu, Miller,
and Liang 2015; Lao and Cohen 2010; Das et al. 2016) and
formal logic. Classical ILP methods (Lavrac and Dzeroski
1994; Galárraga et al. 2015) rely on search-based techniques
and are not tolerant to typical scene graph labeling errors. In
this work, we utilize a differentiable ILP method for rule
mining. Such methods fall into two categories: forward-
chaining methods (Evans and Grefenstette 2018; Payani and
Fekri 2019; Campero et al. 2018) propose rules from tem-
plates and verify them through repetitive deductive reasoning.
Backward-chaining methods (Yang and Song 2020; Yang,
Yang, and Cohen 2017) construct the rules on the fly by
searching for the patterns that answer a given query. LOG-
ICDEF uses backward-chaining due to its scalability.

8841

Reasoning on graphs Defending the attacks with a scene
graph can be also viewed as a graph completion problem
which seeks to infer missing components, such as attributes
or links in a given graph. This problem can be addressed
with a variety of approaches including embedding-based
methods (Bordes et al. 2013; Sun et al. 2019), graph neu-
ral networks (Yang et al. 2018; Zhang et al. 2020), or RNN
architectures (Zellers et al. 2018). Compared to LOGICDEF,
these methods can solve the problem directly, although using
black-box models that do not provide human-readable expla-
nations as to the decisions are made. Therefore, it is difficult
to use general graph completion models for defenses due to
this lack of interpretability. Similarly, these models are also
not capable of utilizing prior knowledge such as ConceptNet.

Problem Setup
Attacks in context-rich environment In this work, we
aim to create an environment where the model is tasked
to defend the attack by reasoning over relevant objects and
their relations in the scene.

Specifically, we consider the attack scenario where: 1) the
scene contains multiple objects; 2) an object classifier infers
the class label for each object, and 3) a localized attack such
as the adversarial patch (Brown et al. 2017) is applied to
one object in the scene to fool the classifier. We refer to this
scenario as attacks in context-rich environment.

Formally, let I denotes the image and XI = {x1, x2, ...}
be the set of objects in the image. Let Ix be the localized
region that contains the object x. We define the object classi-
fier as f : X 7→ C where C denotes the set of all class labels.
It takes in the image region Ix and predicts its class label
as C = f(Ix; θ) ∈ C, where θ represents the trained deep
model parameter set. Let A (δ, Ix, l) be the “apply” function
which adds perturbation δ to Ix at location l, we define the
patch attack on the object x in the scene as

δ̂ = arg min
δ

EI∼I,l∼Lx1[f (A (δ, Ix, l) ; θ) = C], (1)

where C is the ground-truth class label of x, and 1[·] is
the indicator function that returns 1 if the equation inside
is true. And I and Lx denote the set of all images and the
set of all locations within the region of Ix. Note that Eq.(1)
is adopted from adversarial patch formulation (Brown et al.
2017). However, it is different that the attack is optimized
with respect to a single object x instead of the whole image
I (e.g. the “train” in Figure 1).

Nevertheless, the δ̂ is still applied to the original image, as
Ix ⊆ I . As a result, the perturbation will partially alter the
scene information. But since δ̂ is local, most of the contextual
information is retained. We will discuss its impact on the
scene graph in the next section.

Note that this scenario not only provides a rich context
for defenses but is also practical in real-world applications,
as it resembles the physical-world attacks (Chen et al. 2018;
Eykholt et al. 2018) in many aspects except that the perturba-
tions are added in a post hoc manner.

Defense via inductive scene graph reasoning Our frame-
work uses the contextual information in the form a scene

graph to construct the defense model. Formally, a scene graph
is represented as a collection of relations and attributes of the
objects G = {XI , TI , CI}. A triple P (x, x′) ∈ TI indicates
that a pair of entities x, x′ ∈ XI are connected by relation
(or binary predicate) P . For example, Has, Near are binary
predicates. Similarly, a class label C (x) ∈ CI is viewed as an
object’s attribute (or unary predicate). For example, Train
and Person are class labels.

Because LOGICDEF operates without prior knowledge of
any scene ground truth, we assume that the scene graph is
obtained after the attack is applied to the image. We denote
this potentially imperfect scene graph estimate as Ĝ. It is
collected in two steps: 1) the class labels are obtained from
the classifier CI = {f(Ix; θ)|x ∈ XI} and, therefore, contain
misclassified label; 2) relations TI are obtained either from a
graph generator such as Graph R-CNN (GRCNN) (Yang et al.
2018) or from ground-truth labels such as those provided in
Visual Genome dataset. Formally, we define the scene graph-
based defense as follows:
Def 1 (Defense via inductive scene graph reasoning)
Given the object classifier f , find an interpretable defense
model Mdef : X 7→ C such that the following holds

Mdef(Ix + δ̂; Ĝ,R) = f(Ix; θ)

for all images I ∈ I and objects x ∈ XI , where Ix + δ̂ de-
notes the perturbed image region of object x, andR denotes
a set of inductive logic rules.

Proposed Method
To construct the defense model Mdef, one needs to address
three challenges: 1) Scene graph generation: given the per-
turbed image I + δ̂ and class labels CI , how to generate the
scene graph Ĝ over which one can reason with commonsense?
2) Rule mining and defense: how to collect a set of logic
rules R? And how to use them for defense? 3) Knowledge
integration: how to incorporate the rule knowledge into the
classifier f in a principled manner such that the inference is
robust against attack? We discuss each item in more detail.

Scene Graph Generation
In the context-rich environment, we assume the object bound-
ing boxes are given together with the image I , that is, the
object detection XI is ground-truth. The classifier then infers
the class labels CI on the perturbed image I + δ̂. Since δ̂ is
generated with respect to one object in the scene, one label in
CI is corrupted intentionally. This can also lead to misclassifi-
cation on a few other objects if their bounding boxes overlap.
Apart from the class labels, a complete scene graph Ĝ should
also include object relations TI . We propose to collect them
in two ways.

Ground-truth graphs We collect the ground-truth graphs
from the Visual Genome (VG) dataset to get relations TI .
The original VG is noisy and contains labeling errors (Zellers
et al. 2018). We follow the same protocol as in (Yang et al.
2018) to pre-process the data, keeping the top 50 relation
types.

8842

Training Phase Attack Phase

Graph Generator

Scene Graph

Train Images

Object Classifier

Graph Generator

Scene Graph

Test Images Adversarial Patch

Patched Image

ILP model

Logic Rules

x N

ConceptNet

Collect Rules Defense Model Object Label

Figure 2: Overview of the LOGICDEF model construction and the evaluation framework.

Graph generator We also consider a more practical sce-
nario where no ground-truth relations are provided. In this
case, we obtain the relations with a pre-trained scene graph
generator, that is Graph R-CNN (GRCNN) (Yang et al. 2018).
This setting is more challenging, as there are potentially more
errors in relations compared to the ground truth. In this way,
we evaluate the robustness of LOGICDEF as it needs to per-
form correct inference in the presence of partial errors in the
scene graph developed from the image under evaluation.

Rule Mining and Defenses
First-order logic Our framework utilizes the framework
of restricted first-order logic (FOL) to represent the defense.
A FOL system consists of (i) a set of predicates, (ii) a set of
logical variables, and (iii) logical operations {∧,∨,¬}. For
example,

Train(X)←Has(X,Y) ∧ Door(Y)∧
On(X,Z) ∧ Tracks(Z) (2)

involves unary predicates (or class label) Train, Door
and Tracks, and binary predicates (or relations) Has and
On. Here, X , Y and Z are logical variables and “←” de-
notes the logic implication where p ← q is equivalent to
p ∨ ¬q. Components such as Has(X,Y) are called atoms.
One can view atoms as boolean functions that take logical
variables as inputs. To evaluate an atom, one instantiates
the logical variables into the specific objects. For example,
let XI = {x1, x2, x3, ...} as shown in Figure 1, we evaluate
Has(x1/X, x2/Y) by instantiating X and Y into x1 and
x2 respectively. This yields True because “x1 has x2 as its
component” is True. A logic rule such as Eq.(2) consists of
a set of atoms and can be evaluated in a similar manner. One
instantiates all variables in the rule, obtains the binary outputs
of all atoms, then executes the prescribed logical operations
to get the final output.

By using the logical variables, the rule encodes the induc-
tive knowledge as it does not depend on the specific data.
Such representations are interpretable by human users.

Logic rules for adversarial defense For defense purpose,
we aim to learn logic rules similar to Eq.(2) which entails the
existence of a Train by checking if it has Door and is on
Tracks. Formally, we define logic entailment rules by
R(X) : C(X)← P1(X,Y1)∧P2(Y1, Y2)...∧Cn(Z). (3)

Logic rules with this form encodes the knowledge that “X
belongs to class C if and only if the condition P1(X,Y1) ∧
P2(Y1, Y2)... ∧ Cn(Z) is True”. Note that Z is a free vari-
able and can be instantiated into any class instance in the
graph (e.g. Tracks(z/Z)), which we refer to as the anchor
object. In other words, R : X 7→ {0, 1} can be seen as a
binary classifier that infers if an object x/X belongs to class
C by verifying whether the condition holds in the given scene
graph. Therefore, if we collect a set of such rules R for all
classes, we can apply them to the scene graph Ĝ and use their
inference results to detect the misclassified labels in CI .

Mining rules with ILP The defense rule setR is collected
in two ways: rule mining and human-generated prior knowl-
edge. For rule mining, we apply backward-chaining inductive
logic programming (ILP) (Yang and Song 2020; Yang, Yang,
and Cohen 2017) to mine the inductive patterns in scene
graphs and represent them into logic entailment rules.

Formally, a backward-chaining ILP model is defined as
MILP : X 7→ Ω, where R ∈ Ω denotes the space of rules
in Eq.(3). Given a scene graph G and a query x ∈ XI , the
ILP model searches for the rule in G that answers the query
R←MILP (x;G) such that the query score is maximized:

score(x;R) = x>M1 ·M2... ·Mn−1 · z,

where x, z ∈ {0, 1}|XI | are the one-hot vectors of query
object x and anchor object z, and M1, ...,Mn−1 ∈
{0, 1}|XI |×|XI | are the adjacency matrices of relations
P1, ..., Pn−1 of logic rule R.

Mining such rule can be formulated as a learning problem
with the differentiable ILP paradigm, where the hard search
is parameterized by attention mechanisms in differentiable
models. Let Dtrain = {〈Ii,Gi〉}Ni=1 be the set of images and
scene graphs provided in the training phase (as shown in
Figure 2). In this phase, we learn a differentiable ILP model
such that

max
ω

∑
G∈Dtrain

∑
x∈XI

score(x;MILP(x;ω,G)), (4)

where ω denotes the parameters of the ILP model. After train-
ing, we collect all rules learned from Dtrain as the defense
rule setR = {MILP(x;ω,G)|x ∈ XI ,G ∈ Dtrain}.

8843

Rule confidence As a simple binary classifier, a logic rule
can be inaccurate. We want to quantify the quality of a logic
rule such that our defense model favors the high-quality ones.
We follow the common practice and use the rule precision as
its confidence score which we denote as λ.

Commonsense knowledge and curriculum learning
LOGICDEF is capable of incorporating prior knowledge from
existing sources like ConceptNet (Speer, Chin, and Havasi
2017) which is a semantic network that contains crowd-
sourced commonsense knowledge. Objects in ConceptNet
are represented with a set of attributes and their relations

ConceptNet contains numerous relation types. In this work,
we focus on the HasA and IsA relations. The HasA asso-
ciates objects with their natural properties such as compo-
nents. For example, Cat HasA−−−→ Tail. We collect all the
HasA(X,Y) triples in the ConceptNet that involves entities
in our class vocabulary C. We convert each triple into a pair
of symmetric entailment rules

C1(X)← HasA(X,Y) ∧ C2(Y),

C2(Y)← PartOf(Y,X) ∧ C1(X),

where C1, C2 are class labels of objects X and Y . We obtain
total of 297 rules from ConceptNet .In experiments, we show
that this rule set is powerful by itself: our defense model
achieves 86% of the best performance by solely relying on
the ConceptNet rules.

On the other hand, IsA associates the objects with their
taxonomic superclasses, for example Cat IsA−−→ Animal

and Train IsA−−→ Vehicle. We collect objects in C that are
linked by this relation. We organize them into a taxonomy
tree: we create an abstract class Object as the root of the
tree. We put most of the classes as leave nodes and some
classes such as Person as branch nodes as they subsume
other classes such as Boy. This tree provides a natural cur-
riculum for learning the logic rules for the objects: the rules
learned for the superclass can be inherited into its subclasses.
In the experiments, we demonstrate that this taxonomy-based
curriculum learning helps LOGICDEF to achieve better per-
formance with fewer data.

Knowledge Integration
There are many ways the rule setR can be used to infer the
class label of an object in the scene graph. In LOGICDEF,
we need to construct the defense model Mdef that incorpo-
rates the rule knowledge into the object classifier in a princi-
pled manner. To this end, we propose to utilize the posterior
regularization (PR) (Ganchev et al. 2010) technique which
converts rule knowledge into constraints on the posterior
distributions of the classifier model.

Formally, let Mdef (Ix;R) be the defense model we aim
to construct and use for the final robust prediction (we omit δ̂
and Ĝ for notational simplicity). Through PR, we obtain the
model by solving the following convex optimization problem

min
M,ξ1...ξ|R|

KL (Mdef (Ix;R) ‖f (Ix; θ)) + π

|R|∑
j=1

ξj , (5)

s.t.λj(1− E [Rj(x)]) ≤ ξj , j = 1, ..., |R|. (6)

Here, ξ1, ..., ξ|R| denotes the slack variables and π is the reg-
ularization coefficient. The inequality constraint of Eq.(6)
specifies that, for each rule Rj , its negative weighted expecta-
tion should be less than the variable ξj . And the optimization
of Eq.(5) specifies that the defense model Mdef should stay
close to the classifier f such that the inference is faithful to
the original output. This problem is solved analytically

Mdef (Ix;R) ∝ f (Ix; θ) exp

π |R|∑
j=1

λjRj(x)

 . (7)

We note that a logic rule like Eq.(3) is a binary classifier
associated with a single class. In Eq.(7), we want to aggregate
the results of all classes into a probabilistic vector. To do this,
we parameterize the output of a rule into a one-hot vector
y ∈ R|C|, that is if the head predicate is Ci then its i-th
element yi is either 1 or 0 and the rest are always 0. In
this way, the output ȳ ∈ R|C| is the product of f (Ix; θ)
and the exponential of the sum of one-hot vectors from R
weighted by their confidence scores. This PR integration
gives a principled way to balance between rule constraints
and faithfulness and has been proven effective in similar
applications with logic rules (Guo et al. 2018; Hu et al. 2016).

Candidate filtering In Eq.(7), aggregating inference re-
sults from all classes can lead to decreased accuracy. This
is because most of the scene graph data available in the lit-
erature are sparse and not exhaustive. For example, one can
identify both Plane and Bird by checking if the object has
Tail and Wing. However, to distinguish between these two
classes, one needs more evidence such as the existence of
an Engine. And if the evidence is absent (which is true in
many scene graphs), it can lead to false positives.

To address this issue, we note that, in practice, the adver-
sarial attacks are typically bounded for how much change
they can impose on the image. For example, a `p-norm attack
bounds the perturbation to be within the `p ball of the input.
This means the perturbed object is close to the original one
in the latent space of the object classifier. Therefore, one
can filter out irrelevant classes by measuring the distances
from the perturbed object to the centroids of each class in the
latent space. The intuition is that the visual latent space is
different from that of the scene graph, such that objects that
are confusing in the scene graph (e.g. Plane and Bird) are
usually distinct in the visual domain.

Specifically, for each class C, we collect embeddings of
the training samples from the last convolution layer of the
object classifier. We compute and store the class mean uC
and covariance matrix SC . During the attack phase, given
the embedding of the perturbed object h, we compute the
Mahalanobis distance between h and all classes as dC =√

(h− uC)>S−1C (h− uC), C ∈ C. We rank the classes
in increasing order and keep only the top-K closest classes
for Eq.(7) inference.

Training Figure 2 illustrates the overview of LOGICDEF.
The implementation and supplementary materials are avail-
able at here1

1https://github.com/gblackout/logic-adversarial-defense

8844

Classes

Accuracy of ResNet-101 classifier

Imp. with GRCNN Scene Graph Imp. with GT Scene Graph

Adv LOGICDEF LOGICDEF LOGICDEF LOGICDEF LOGICDEF LOGICDEF Clean
Train CN AUTO HYB CN AUTO HYB Accuracy

Bed 0.362 0.342 0.341 0.341 0.398 0.465 0.465 0.466
Building 0.061 0.730 0.650 0.694 0.699 0.803 0.804 0.639
Cat 0.271 0.372 0.556 0.571 0.495 0.592 0.593 0.772
Man 0.056 0.442 0.357 0.408 0.472 0.606 0.606 0.638
Sign 0.138 0.711 0.705 0.711 0.708 0.713 0.714 0.721
Tree 0.002 0.616 0.525 0.614 0.728 0.708 0.731 0.601

Overall 0.152 0.295 0.314 0.316 0.313 0.336 0.349 0.361

Table 1: Defending against adversarial patch attacks on VG dataset with Adv-Train and LOGICDEF methods. The object classifier
has the best performance when defended by LOGICDEF-HYB, achieving 97% of the accuracy obtainable when no adversarial
attack is present (clean accuracy). On the other hand, LOGICDEF-CN achieves 86% accuracy as a zero-shot defense.

Experiments
Dataset We evaluate LOGICDEF on the Visual Genome
(VG) dataset (Krishna et al. 2016). Compared to common
benchmarks such as MNIST and CIFAR-10, whose images
typically contain only a single labeled object, VG contains
around 100K images annotated with scene graphs, provid-
ing the rich context required for evaluating models targeted
towards real-world application. We use the pre-processing
module provided in (Yang et al. 2018) to generate and split
the data. The resulting dataset contains 56K images in the
training set Dtrain and 26K images in the test set Dtest for
150 object classes and 50 relations. We evaluate LOGICDEF
in two settings: GRCNN Scene Graph where relations are
generated by GRCNN, and GT Scene Graph with given
ground-truth relations.

Models For the object classifier f , we use the pre-trained
ResNet-101 provided in (Yang et al. 2018). We freeze the
weights of convolutional layers and only finetune the fully
connected layer. For each image I ∈ Dtrain, we collect Ix
for all x ∈ XI and resize them to 224 × 224 patches and
then feed them to f for training. For the ILP model, we train
NLIL (Yang and Song 2020) on scene graphs in Dtrain and
store the learned rules as rule setR. The scene graph genera-
tor is the pre-trained GRCNN model (Yang et al. 2018).

We evaluate LOGICDEF in 3 modes: CN, AUTO and
HYB. Specifically, LOGICDEF-CN only uses logic rules ex-
tracted from ConceptNet, making it a zero-shot mode as
it does not involve any training; LOGICDEF-AUTO uses
MILP to mine logic rules from the VG scene graphs; and
LOGICDEF-HYB is the hybrid mode which combines the
rule sets from the previous two modes for better performance.

Attack, defense, and evaluation We test LOGICDEF with
the adversarial patch attack. For each Ix in the test set, we
generate one attack instance by applying a square patch with
a maximum patch size fraction of 0.2 (i.e. 20% of the size of
an Ix). Since this work focuses on defenses, the patch does
not need to be transferable. We generate a patch for each Ix
with 50 iterations individually. We also compare LOGICDEF
with adversarial training (Adv-Train) (Tramèr et al. 2017;

Madry et al. 2017), a defense method that increases robust-
ness by injecting adversarial samples during training. For
adversarial patch and Adv-Train, we use the implementations
provided here2. For hyper-parameters, we run grid search
over a held-out validation set, where we set π = 20 and
K = 15. Computations were done on a desktop computer
with an Intel i7-8700K CPU and a GTX1080Ti.

Results
Table 1 shows the overall accuracy of the object classifier
together with class-wise accuracy of 6 exemplar classes. The
ResNet-101 classifier achieves clean accuracy of 0.361, that
is the model accuracy in the absence of the attack. This clas-
sification task is significantly harder than benchmarks such
as MNIST and CIFAR, due to both the bounding box and
labeling errors in VG (Zellers et al. 2018) and the 150-way
classification. As a reference, the reported mean average pre-
cision at 0.5 intersections over union (mAP@0.5) of object
detection on VG is 24.8 (Yang et al. 2018; Xu et al. 2017).

The classifier achieves the best accuracy with LOGICDEF-
HYB on the GT scene graph which is 97% of the clean accu-
racy. Adv-Train method achieves 42% of the clean accuracy.
This is because the adversarial patch is inherently difficult
to defend with only visual features and Adv-Train is shown
to be sensitive to the randomness of the adversaries (Carlini
et al. 2019).

GRCNN vs GT Scene Graph Scene graphs generated
with GRCNN have a higher error rate than the GT scene
graphs. As a reference, the reported recall@50 for relation
generation of GRCNN is 58.1. However, LOGICDEF is in-
sensitive to the noises in the relations. For all 3 modes, our
framework maintains at least 90% of the accuracy as those
with GT scene graphs.

Zero-shot performance We also note that LOGICDEF-CN
is the training-free version that only relies on commonsense
knowledge extracted from ConceptNet. Yet it achieves 86%

2https://adversarial-robustness-
toolbox.readthedocs.io/en/latest/index.html

8845

0.94:Airplane(X) ←Has(X, Y) ∧ Engine(Y)

0.90:Airplane(X) ← Has(X, Y) ∧Wing(Y)

Defense Logic Rules

Scene Graph

0.85:Building(X) ←Of(Y, X) ∧Window(Y)

0.89:Builing(X) ← Has(X, Y) ∧ Light(Y)

Defense Logic Rules

Scene Graph

Adversarial Patch on “Airplane”

Adversarial Patch on “Building”

Figure 3: Examples of defending the adversarial patch attack with LOGICDEF-AUTO. Attacks are detected with interpretable
logic rules and the decisions are self-explanatory.

of the clean accuracy. This suggests that human-generated
prior knowledge is a powerful data source.

Interpreting the defense model One of the main advan-
tages of LOGICDEF is its interpretability. We show defense
examples by LOGICDEF-AUTO in Figure 3. The left column
shows the patched images and the objects that are attacked.
The middle column shows the scene graphs and the logic
rules that are used for defenses. For the right column, the first
row shows the probability output of the classifier on a clean
and patched image respectively and the second row shows
the probability output of the logic rules and the final defense
model, respectively.

Curriculum Learning
The taxonomy tree we extracted from the ConceptNet pro-
vides a natural curriculum of learning objects. We conduct
top-down learning of MILP on the object classes: for each
branch node (e.g. Animal), the model learns from its own
training data and also 10% randomly sampled data from its
subclasses. When learning the leave nodes (e.g. Cat), the
model is initialized with the weights of its superclass model.
The intuition is that the rules learned for the superclasses
should also transfer to the subclasses. To validate this, we test
LOGICDEF by training it on the subset of Dtrain, where 50,
100, and 500 random samples are provided for the leaf nodes.
The results (see Table 2) suggest that curriculum learning
leads to better performance with fewer data.

Ablation Study
In the ablation study, we investigate the effect of PR and
candidate filtering. For PR, we compare LOGICDEF-AUTO

K-shots
GRCNN Scene Graph GT Scene Graph

LOGICDEF LOGICDEF LOGICDEF LOGICDEF
AUTO AUTO-CL CN AUTO-CL

50 0.195 0.231 0.257 0.289
100 0.212 0.234 0.264 0.303
500 0.248 0.254 0.315 0.319

Table 2: LOGICDEF-AUTO-CL achieves better accuracy with
taxonomy-based curriculum learning.

with a version where Eq.(7) is replaced with plain summation.
The results suggest that PR leads to 30% better accuracy and
50% lower false positive rate. For candidate filtering, we
evaluate LOGICDEF with different K values from 1 to 150.
The results suggest that a small K indeed increases model
accuracy and the best range is 10∼15 (see details in the
supplement).

Conclusion
We propose LOGICDEF, an interpretable framework that
defends the adversarial patch attack via inductive scene graph
reasoning. The framework mines logic rules about objects
from scene graphs and the commonsense knowledge from
ConceptNet, and uses them to construct a defense model with
posterior regularization. Experiments show that LOGICDEF
is highly interpretable and can achieve 94% of the clean
accuracy in hybrid mode and 86% in zero-shot mode.

References
Athalye, A.; and Carlini, N. 2018. On the robustness of the
cvpr 2018 white-box adversarial example defenses. arXiv

8846

preprint arXiv:1804.03286.

Biggio, B.; Corona, I.; Maiorca, D.; Nelson, B.; Šrndić, N.;
Laskov, P.; Giacinto, G.; and Roli, F. 2013. Evasion attacks
against machine learning at test time. In Joint European
conference on machine learning and knowledge discovery in
databases, 387–402. Springer.
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. In Advances in neural information
processing systems, 2787–2795.
Brown, T. B.; Mané, D.; Roy, A.; Abadi, M.; and Gilmer, J.
2017. Adversarial patch. arXiv preprint arXiv:1712.09665.
Campero, A.; Pareja, A.; Klinger, T.; Tenenbaum, J.; and
Riedel, S. 2018. Logical Rule Induction and Theory
Learning Using Neural Theorem Proving. arXiv preprint
arXiv:1809.02193.
Carlini, N.; Athalye, A.; Papernot, N.; Brendel, W.; Rauber,
J.; Tsipras, D.; Goodfellow, I.; Madry, A.; and Kurakin, A.
2019. On evaluating adversarial robustness. arXiv preprint
arXiv:1902.06705.
Carlini, N.; and Wagner, D. 2017. Adversarial examples are
not easily detected: Bypassing ten detection methods. In Pro-
ceedings of the 10th ACM workshop on artificial intelligence
and security, 3–14.
Chen, S.-T.; Cornelius, C.; Martin, J.; and Chau, D. H. P.
2018. Shapeshifter: Robust physical adversarial attack on
faster r-cnn object detector. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases,
52–68. Springer.
Chiang, P.-y.; Ni, R.; Abdelkader, A.; Zhu, C.; Studor, C.;
and Goldstein, T. 2020. Certified defenses for adversarial
patches. arXiv preprint arXiv:2003.06693.
Cohen, J.; Rosenfeld, E.; and Kolter, Z. 2019. Certified adver-
sarial robustness via randomized smoothing. In International
Conference on Machine Learning, 1310–1320. PMLR.
Das, R.; Neelakantan, A.; Belanger, D.; and McCallum,
A. 2016. Chains of reasoning over entities, relations,
and text using recurrent neural networks. arXiv preprint
arXiv:1607.01426.
Evans, R.; and Grefenstette, E. 2018. Learning explanatory
rules from noisy data. Journal of Artificial Intelligence Re-
search, 61: 1–64.
Eykholt, K.; Evtimov, I.; Fernandes, E.; Li, B.; Rahmati, A.;
Xiao, C.; Prakash, A.; Kohno, T.; and Song, D. 2018. Robust
physical-world attacks on deep learning visual classification.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 1625–1634.
Galárraga, L.; Teflioudi, C.; Hose, K.; and Suchanek, F. M.
2015. Fast rule mining in ontological knowledge bases with
AMIE+. The VLDB Journal—The International Journal on
Very Large Data Bases, 24(6): 707–730.
Ganchev, K.; Graça, J.; Gillenwater, J.; and Taskar, B. 2010.
Posterior regularization for structured latent variable models.
The Journal of Machine Learning Research, 11: 2001–2049.

Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.
Guo, S.; Wang, Q.; Wang, L.; Wang, B.; and Guo, L. 2018.
Knowledge graph embedding with iterative guidance from
soft rules. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 32.
Guu, K.; Miller, J.; and Liang, P. 2015. Traversing knowledge
graphs in vector space. arXiv preprint arXiv:1506.01094.
Hu, Z.; Ma, X.; Liu, Z.; Hovy, E.; and Xing, E. 2016. Har-
nessing deep neural networks with logic rules. arXiv preprint
arXiv:1603.06318.
Krishna, R.; Zhu, Y.; Groth, O.; Johnson, J.; Hata, K.; Kravitz,
J.; Chen, S.; Kalantidis, Y.; Li, L.-J.; Shamma, D. A.; Bern-
stein, M.; and Fei-Fei, L. 2016. Visual Genome: Connecting
Language and Vision Using Crowdsourced Dense Image An-
notations. arXiv preprint arXiv:1602.07332.
Kurakin, A.; Goodfellow, I.; and Bengio, S. 2016. Ad-
versarial examples in the physical world. arXiv preprint
arXiv:1607.02533.
Lao, N.; and Cohen, W. W. 2010. Relational retrieval using
a combination of path-constrained random walks. Machine
learning, 81(1): 53–67.
Lavrac, N.; and Dzeroski, S. 1994. Inductive Logic Program-
ming. In WLP, 146–160. Springer.
Liu, X.; Yang, H.; Liu, Z.; Song, L.; Li, H.; and Chen, Y.
2018. Dpatch: An adversarial patch attack on object detectors.
arXiv preprint arXiv:1806.02299.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and Vladu,
A. 2017. Towards deep learning models resistant to adversar-
ial attacks. arXiv preprint arXiv:1706.06083.
Payani, A.; and Fekri, F. 2019. Inductive Logic Program-
ming via Differentiable Deep Neural Logic Networks. arXiv
preprint arXiv:1906.03523.
Raghunathan, A.; Steinhardt, J.; and Liang, P. 2018. Certi-
fied defenses against adversarial examples. arXiv preprint
arXiv:1801.09344.
Speer, R.; Chin, J.; and Havasi, C. 2017. ConceptNet 5.5: An
Open Multilingual Graph of General Knowledge. In AAAI
Conference on Artificial Intelligence, 4444–4451.
Sun, Z.; Deng, Z.-H.; Nie, J.-Y.; and Tang, J. 2019. Ro-
tate: Knowledge graph embedding by relational rotation in
complex space. arXiv preprint arXiv:1902.10197.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.;
Goodfellow, I.; and Fergus, R. 2013. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199.
Tao, G.; Ma, S.; Liu, Y.; and Zhang, X. 2018. Attacks meet in-
terpretability: Attribute-steered detection of adversarial sam-
ples. arXiv preprint arXiv:1810.11580.
Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.; Boneh,
D.; and McDaniel, P. 2017. Ensemble adversarial training:
Attacks and defenses. arXiv preprint arXiv:1705.07204.
Xie, C.; Wang, J.; Zhang, Z.; Zhou, Y.; Xie, L.; and Yuille, A.
2017. Adversarial examples for semantic segmentation and
object detection. In Proceedings of the IEEE International
Conference on Computer Vision, 1369–1378.

8847

Xu, D.; Zhu, Y.; Choy, C. B.; and Fei-Fei, L. 2017. Scene
graph generation by iterative message passing. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 5410–5419.
Yang, F.; Yang, Z.; and Cohen, W. W. 2017. Differentiable
learning of logical rules for knowledge base reasoning. In
Advances in Neural Information Processing Systems, 2319–
2328.
Yang, J.; Lu, J.; Lee, S.; Batra, D.; and Parikh, D. 2018.
Graph r-cnn for scene graph generation. In Proceedings of
the European conference on computer vision (ECCV), 670–
685.
Yang, Y.; and Song, L. 2020. Learn to Explain Efficiently via
Neural Logic Inductive Learning. In International Confer-
ence on Learning Representations.
Zellers, R.; Yatskar, M.; Thomson, S.; and Choi, Y. 2018.
Neural motifs: Scene graph parsing with global context. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 5831–5840.
Zhang, Y.; Chen, X.; Yang, Y.; Ramamurthy, A.; Li, B.;
Qi, Y.; and Song, L. 2020. Efficient probabilistic logic
reasoning with graph neural networks. arXiv preprint
arXiv:2001.11850.

8848

