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Abstract
Improving sample efficiency has been a longstanding goal
in reinforcement learning. This paper proposes VRMPO algo-
rithm: a sample efficient policy gradient method with stochas-
tic mirror descent. In VRMPO, a novel variance-reduced policy
gradient estimator is presented to improve sample efficiency.
We prove that the proposed VRMPO needs only O(ε−3) sam-
ple trajectories to achieve an ε-approximate first-order sta-
tionary point, which matches the best sample complexity for
policy optimization. Extensive empirical results demonstrate
that VRMPO outperforms the state-of-the-art policy gradient
methods in various settings.

Introduction
Policy gradient (Williams 1992; Sutton et al. 2000) is widely
used to search the optimal policy in reinforcement learning
(RL), and it has achieved significant successes in challeng-
ing fields such as playing Go (Silver et al. 2016, 2017) or
robotics (Duan et al. 2016). However, policy gradient meth-
ods suffer from high sample complexity, since many existing
popular methods require to collect a lot of samples for each
step to update its parameters (Haarnoja et al. 2018; Yang
et al. 2021; Xing et al. 2021; Yang et al. 2022), which par-
tially reduces the effectiveness of the samples. Besides, it
is still very challenging to provide a theoretical analysis of
sample complexity for policy gradient methods instead of
empirically improving sample efficiency.

To improve sample efficiency, this paper addresses how to
design an efficient and convergent algorithm with stochastic
mirror descent (SMD) (Nemirovskij and Yudin 1983). SMD
keeps the advantage of low memory requirement and low
computational complexity (Lei and Tang 2018), which im-
plies SMD needs less samples to learn a model. However,
the significant challenges of applying the existing SMD to
RL are two-fold: 1) The objective of policy-based RL is a
typical non-convex function, Ghadimi et al. (2016) show that
it may cause instability and even divergence when updating
the parameter of a non-convex objective by SMD via a sin-
gle sample. 2) The large variance of policy gradient estima-
tor is a critical bottleneck of improving sample efficiency for
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policy optimization with SMD. The non-stationary sampling
process with the environment will lead to a large variance
on the policy gradient estimator (Papini et al. 2018), which
requires more samples to get a robust policy gradient and
results in poor sample efficiency (Liu et al. 2018).

To address the above challenges, we provide a theory
analysis of the dilemma of applying SMD to policy opti-
mization. Result (18) shows that under the Assumption 1,
deriving the algorithm directly via SMD can not guarantee
the convergence for policy optimization. Furthermore, we
propose a new algorithm MPO that keeps a provable conver-
gence guarantee (see Theorem 2). Designing a new gradient
estimator according to historical information of policy gra-
dient is the key to MPO.

Then, we propose a variance-reduced mirror policy op-
timization algorithm (VRMPO): an efficient sample method
via constructing a variance reduced policy gradient estima-
tor. Concretely, we design an efficiently computable pol-
icy gradient estimator (see Eq.(26)) that utilizes fresh in-
formation and yields a more accurate estimation of the pol-
icy gradient, which is the key to improve sample efficiency.
Theorem 3 illustrates that VRMPO needs O(ε−3) sample tra-
jectories to achieve an ε-approximate first-order stationary
point (ε-FOSP). To our best knowledge, the proposed VRMPO
matches the best sample complexity among the existing lit-
erature. Particularly, although SRVR-PG (Xu et al. 2020; Xu
2021) achieves the same sample complexity as VRMPO, our
approach needs less assumptions than Xu et al. (2020); Xu
(2021), and our VRMPO unifies SRVR-PG. Besides, empirical
result shows VRMPO converges faster than SRVR-PG.

Background and Stochastic Mirror Descent
Reinforcement learning (RL) is often formulated as Markov
decision processes (MDP) M = (S,A, P,R, ρ0, γ), where
S is state space, A is action space; P (s

′ |s, a) is the prob-
ability of the state transition from s to s

′
under playing a;

R(·, ·) : S × A → [−Rmax, Rmax] is the reward function,
where Rmax is a certain positive scalar. ρ0(·) : S → [0, 1] is
the initial state distribution and γ ∈ (0, 1).

Policy πθ(a|s) is a probability distribution on S ×A with
a parameter θ ∈ Rp. Let τ = {st, at, rt+1}Hτt=0 be a trajec-
tory, where s0 ∼ ρ0(s0), at ∼ πθ(·|st), rt+1 = R(st, at),
st+1 ∼ P (·|st, at), and Hτ is the finite horizon of τ . The
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expected return function J(θ) is defined as follows,

J(θ)
def
=

∫
τ

P (τ |θ)R(τ)dτ = Eτ∼πθ [R(τ)], (1)

where P (τ |θ) = ρ0(s0)
∏Hτ
t=0 P (st+1|st, at)πθ(at|st) is

the probability of generating τ , R(τ) =
∑Hτ
t=0 γ

trt+1 is
the accumulated discounted return. Let J (θ) =: −J(θ), the
central problem of policy-based RL is to solve the problem:

θ? = arg max
θ
J(θ)⇐⇒ θ? = arg min

θ
J (θ). (2)

Computing∇J(θ) analytically, we have

∇J(θ) = Eτ∼πθ

∑
t≥0

∇θ log πθ(at|st)R(τ)

 . (3)

Let g(τ |θ) =
∑Hτ
t=0∇θ log πθ(at|st)R(τ), which is an un-

biased estimator of ∇J(θ). Vanilla policy gradient (VPG) is
a straightforward way to solve problem (2) as follows,

θ ← θ + αg(τ |θ),
where α is step size.
Assumption 1. (Papini et al. 2018) For each pair (s, a) ∈
S×A, θ ∈ Rp, and all components i, j, there exists positive
constants G, F such that:

|∇θi log πθ(a|s)| ≤ G,
∣∣∣∣ ∂2

∂θi∂θj
log πθ(a|s)

∣∣∣∣ ≤ F. (4)

Assumption 1 implies ∇J(θ) is L-Lipschiz (Papini et al.
2018, Lemma B.2), i.e.,

‖∇J(θ1)−∇J(θ2)‖ ≤ L‖θ1 − θ2‖, (5)

where L = RmaxHτ (HτG
2 + F )/(1 − γ), Besides, under

Assumption 1, Shen et al. (2019) have shown the property:

‖g(τ |θ)−∇J(θ)‖22 ≤ G2R2
max/(1− γ)4 =: σ2. (6)

SMD and Bregman Gradient
Now, we review some basic concepts of stochastic mirror
descent(SMD) and Bregman gradient.

Let’s consider the stochastic optimization problem,

min
θ∈Dθ

{f(θ) = E[F (θ; ξ)]}, (7)

where Dθ ∈ Rn is a nonempty convex compact set, ξ is a
random vector whose probability distribution µ is supported
on Ξ ∈ Rd and F : Dθ × Ξ → R. We assume that the
expectation E[F (θ; ξ)] =

∫
Ξ
F (θ; ξ)dµ(ξ) is well defined

and finite-valued for every θ ∈ Dθ.
Definition 1 (Proximal Operator). Let T be defined on a
closed convex X , and α > 0. The proximal operator of T is

Mψ
α,T (z) = arg min

x∈X

{
T (x) +

1

α
Dψ(x, z)

}
, (8)

where ψ(·) is a continuously-differentiable, ζ-strictly convex
function satisfies 〈x−y,∇ψ(x)−∇ψ(y)〉 ≥ ζ‖x−y‖2, ζ >
0, Dψ(·, ·) is Bregman distance: ∀ x, y ∈ X ,

Dψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉.

Stochastic Mirror Descent (SMD). The SMD solves (7)
by generating an iterative solution as follows,

θt+1 =Mψ
αt,`(θ)

(θt) = arg min
θ∈Dθ

{
〈gt, θ〉+

1

αt
Dψ(θ, θt)

}
,

(9)

where αt > 0 is step-size, `(θ) = 〈gt, θ〉 is the first-order
approximation of f(θ) at θt, gt = g(θt, ξt) is stochastic
subgradient such that g(θt) = E[g(θt, ξt)] ∈ ∂f(θ)|θ=θt ,
{ξt}t≥0 represents a draw form distribution µ, and ∂f(θ) =
{g|f(θ)−f(ω) ≤ g>(θ−ω), ∀ω ∈ dom(f)}. If we choose
ψ(x) = 1

2‖x‖
2
2, then Dψ(x, y) = 1

2‖x − y‖22, since then
iteration (9) is reduced to stochastic gradient decent (SGD).

Convergence Criteria: Bregman Gradient. Recall X is
a closed convex set on Rn, α > 0, T (x) is defined on X .
The Bregman gradient of T at x ∈ X is defined as:

Gψα,T (x) = α−1(x−Mψ
α,T (x)), (10)

where Mψ
α,T (·) is defined in Eq.(8). If ψ(x) = 1

2‖x‖
2
2,

according to Bauschke, Combettes et al. (2011, Theorem
27.1), then x? is a critical point of T if and only if
Gψα,T (x?) = ∇T (x?) = 0. Thus, Bregman gradient (10)
is a generalization of standard gradient. Remark 1 provides
us some insights to understand Bregman gradient as a con-
vergence criterion.
Remark 1. Let T (·) be a convex function, according to
Bertsekas (2009, Proposition 5.4.7): x? is a stationarity
point of T (·) if and only if

0 ∈ ∂(T + δX )(x?), (11)

where δX (·) is the indicator function on X . Furthermore, if
ψ(x) is twice continuously differentiable, let x̃ =Mψ

α,T (x),

by the definition ofMψ
α,T (·) (8), we have

0 ∈ ∂(T + δX )(x̃) +
(
∇ψ(x̃)−∇ψ(x)

)
(∗)
≈ ∂(T + δX )(x̃) + αGψα,T (x)∇2ψ(x), (12)

Eq.(∗) holds due to Taylor expansion of ∇ψ(x) on first or-
der. If Gψα,T (x) ≈ 0, Eq.(12) implies the origin point 0 is
near the set ∂(T+δX )(x̃), i.e., according to the criteria (11),
x̃ is close to a stationary point. For the iteration (9), we fo-
cus on the time when it makes the Gψα,T (θt) near origin point
0. Formally, we are satisfied with finding an ε-approximate
first-order stationary point (ε-FOSP) θε such that

‖Gψα,T (θε)
(θε)‖2 ≤ ε. (13)

Particularly, for policy optimization (2), we would choose
T (θ) = 〈−∇J(θt), θ〉.

Stochastic Mirror Policy Optimization
In this section, we solve the problem (2) via SMD. Firstly,
we analyze the theoretical dilemma of applying SMD di-
rectly to policy optimization, and result shows that under
the common Assumption 1, there still lacks a provable guar-
antee of solving (2) via SMD directly. Then, we propose a
convergent mirror policy optimization algorithm (MPO).
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Theoretical Dilemma
For each k ∈ [1, N − 1], τk = {st, at, rt+1}

Hτk
t=0 ∼ πθk , and

we receive the gradient information as follows,

−g(τk|θk) = −
∑
t≥0

∇θ log πθ(at|st)R(τk)|θ=θk . (14)

According to (9), we define the update rule as follows,

θk+1 =Mψ
αk,〈−g(τk|θk),θ〉(θk) (15)

= arg min
θ

{
〈−g(τk|θk), θ〉+

1

αk
Dψ(θ, θk)

}
,

where αk is step-size. After (N − 1) episodes, we receive a
collection {θk}Nk=1. Since −J(θ) is non-convex, according
to Ghadimi, et al (2016), a standard strategy for analyzing
non-convex optimization is to pick up the output θ̃N from
the following distribution (16) over {1, 2, · · · , N}:

P(θ̃N = θk) =
ζαk − Lα2

k∑N
i=1(ζαi − Lα2

i )
, k ∈ [1, N ], (16)

where step-size αk ∈ (0, ζ/L).
Theorem 1. (Ghadimi, et al (2016)) Under Assumption 1,
consider the sequence {θk}Nk=1 generated by (15), the output
θ̃N = θk follows the distribution (16). Let `(g, u) = 〈g, u〉,
gk = (τk|θk), Let ∆ = J(θ?)− J(θ1). Then,

E
[
‖Gψαk,`(−gk,θk)(θ̃N )‖22

]
≤

∆ + σ2/ζ
∑N
i=1 αi∑N

i=1(ζαi − Lα2
i )
. (17)

Unfortunately, the lower bound of (17) reaches

J(θ?)− J(θ1)+σ2/ζ
∑N
i=1 αi∑N

i=1(ζαi − Lα2
i )

≥ σ2

ζ2
, (18)

which can not guarantee the convergence of (15), no matter
how the step-size αk is specified. Thus, under Assumption
1, updating parameters according to (15) and the output fol-
lowing (16) lacks a provable convergence guarantee.
Discussion 1 (Open Problems). Eq.(15) is a general rule
that unifies many existing algorithms. If ψ(θ) = 1

2‖θ‖
2
2, then

(15) is VPG (Williams 1992). The update (15) is natural pol-
icy gradient (Kakade 2002) if we chooseψ(θ) = 1

2θ
>F (θ)θ,

where F (θ) = Eτ∼πθ [∇θ log πθ(s, a)∇θ log πθ(s, a)>] is
Fisher information matrix. If ψ is Boltzmann-Shannon en-
tropy, then Dψ is KL divergence and update (15) is reduced
to relative entropy policy search (Peters et al. 2010). Despite
extensive works around above methods, existing works are
scattered and fragmented in both theoretical and empirical
aspects (Agarwal et al. 2020). Thus, it is of great signifi-
cance to establish the fundamental theoretical convergence
properties of iteration (15):

What conditions guarantee the convergence of (15)?
This is an open problem. From the previous discussion, intu-
itively, the iteration (15) is a convergent scheme since par-
ticular mirror maps ψ can lead (15) to some popular em-
pirically effective policy-based RL algorithms, but there still
lacks a complete theoretical convergence analysis of (15).

Algorithm 1: MPO

1: Initialize: parameter θ1, step-sizeαk > 0, g0 = 0, para-
metric policy πθ(a|s), and map ψ.

2: for k = 1 to N do
3: Generate a trajectory τk = {st, at, rt+1}

Hτk
t=0 ∼ πθk ,

temporary variable g0 = 0.

gk ←
Hτk∑
t=0

∇θ log πθ(at|st)R(τk)|θ=θk (21)

ĝk ←
1

k
gk + (1− 1

k
)ĝk−1 (22)

θk+1 ← arg min
ω
{〈−ĝk, ω〉+

1

αk
Dψ(ω, θk)} (23)

4: end for
5: Output θ̃N according to (16).

MPO: A Convergent Implementation
In this section, we propose a convergent mirror policy opti-
mization (MPO) as follows, for each step k:

θk+1 =Mψ
αk,〈−ĝk,θ〉(θk)

= arg min
θ∈Θ
{〈−ĝk, θ〉+

1

αk
Dψ(θ, θk)}, (19)

where ĝk is an arithmetic mean of previous episodes’ gradi-
ent estimate {g(τi|θi)}ki=1:

ĝk =
1

k

k∑
i=1

g(τi|θi). (20)

We present the details of an implementation of MPO in Al-
gorithm 1. Eq.(22) is an incremental implementation of the
average (20), thus, (22) enjoys a lower storage cost than (20).

For a given episode, the gradient flow (20)/(22) of MPO
is slightly different from the traditional VPG, REINFORCE
(Williams 1992), or DPG (Silver et al. 2014) whose gradient
estimator (14) follows the current episode, while our MPO
uses an arithmetic mean of all the previous policy gradients.
The gradient estimator (14) is a natural way to estimate the
term −∇J(θt) = −E[

∑Hτt
k=0∇θ log πθ(ak|sk)R(τt)], i.e.,

using the current trajectory to estimate policy gradient.

Theorem 2 (Convergence of Algorithm 1). Under Assump-
tion 1, and the total trajectories are {τk}Nk=1. Consider the
sequence {θk}Nk=1 generated by Algorithm 1, and the output
θ̃N = θn follows the distribution of (16). Let 0 < αk <

ζ
L ,

`(g, u) = 〈g, u〉, ĝk = 1
k

∑k
i=1 gi, and ∆ = J(θ?)− J(θ1),

where gi =
∑Hτi
t=0 ∇θ log πθ(at|st)R(τi)|θ=θi . Then the

output θ̃N = θn satisfies

E[‖Gψαn,`(−gn,θn)(θn)‖22] ≤
∆+σ2/ζ

∑N
k=1

αk
k∑N

k=1(ζαk − Lα2
k)
. (24)

For the proof, see Appendix A. Let αk = ζ/2L,

E[‖Gψαn,`(−ĝn,θn)(θn)‖2] ≤ 4L∆+2σ2 ∑N
k=1

1
k

Nζ2 = O( lnN
N ).
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VRMPO: Variance Reduction Mirror Policy
Optimization

In this section, we propose a variance reduction version of
MPO: VRMPO. Inspired by the above work of (Nguyen et al.
2017a), we provide an efficiently computable policy gradi-
ent estimator; then, we prove that the VRMPO needs O(ε−3)
sample trajectories to achieve an ε-FOSP that matches the
best sample complexity.

Methodology. For any initial θ0, let {τ0
j }Nj=1 ∼ πθ0 , we

estimate the initial policy gradient as follows,

G0 = −∇̂NJ(θ0)
def
= − 1

N

N∑
j=1

g(τ0
j |θ0). (25)

Let θ1 = θ0−αG0, for each step k ∈ N+, let {τkj }Nj=1 be the
trajectories generated by πθk , we define the policy gradient
estimator Gk and update rule as follows,

Gk = Gk−1 +
1

N

N∑
j=1

(
− g(τkj |θk) + g(τkj |θk−1)

)
, (26)

θk+1 = arg min
θ
{〈Gk, θ〉+

1

α
Dψ(θ, θk)}. (27)

In (26),−g(τkj |θk) and g(τkj |θk−1) share the same trajectory
{τkj }Nj=1, which plays a critical role in reducing the variance
of gradient estimator (Shen et al. 2019). Besides, it is dif-
ferent from (20), we admit a simple recursive formulation
to conduct the gradient estimator, see (26), which captures
the technique from SARAH (Nguyen et al. 2017a). For each
step k, the term 1

N

∑N
j=1

(
− g(τkj |θk) + g(τkj |θk−1)

)
can

be seen as an additional “noise” for the policy gradient es-
timate. A lot of practices show that conducting a gradient
estimator with such additional “noise” enjoys a lower vari-
ance and speeding up the convergence (Reddi et al. 2016).
More details are shown in Algorithm 2.

Theorem 3 (Convergence Analysis). Consider {θ̃k}Kk=1
generated by Algorithm 2. Under Assumption 1, and let ζ >
5
32 . For any positive scalar ε, let batch size of the trajectories
of the outer loop N1 =

(
1

8Lζ2 + 1
2(ζ− 5

32 )

(
1 + 1

32ζ2

))
σ2

ε2 ,

m−1 = N2 =
√(

1
8Lζ2 + 1

2(ζ− 5
32 )

(
1 + 1

32ζ2

))
σ
ε , the outer

loop times K =
8L(E[J (θ̃0)]−J (θ?))(1+ 1

16ζ2
)√(

1
8Lζ2

+ 1

2(ζ− 5
32

)

(
1+ 1

32ζ2

))(
ζ− 5

32

) σε , and

step size α = 1
4L . Then, Algorithm 2 outputs θ̃K satisties

E
[
‖Gψ

α,〈−∇J(θ̃K),θ〉(θ̃K)‖
]
≤ ε. (30)

For its proof, see Appendix C. Theorem 3 illustrates that
VRMPO needsK(N1+(m−1)N2) = 8L(E[J (θ̃0)]−J (θ∗))

(ζ− 5
32 )

(
1+

1
16ζ2

)(
1 +

√(
1

8Lζ2 + 1
2(ζ− 5

32 )

(
1 + 1

32ζ2

))
σ
ε

)
1
ε2 = O( 1

ε3 )

random trajectories to achieve the ε-FOSP. As far as we
know, our VRMPO matches the best sample complexity as
HAPG (Shen et al. 2019) and SRVR-PG (Xu et al. 2020; Xu
2021). In fact, according to Shen et al. (2019), REINFORCE

Algorithm 2: VRMPO.

1: Initialize: Policy πθ(a|s) with parameter θ̃0, mirror
map ψ, step-size α > 0, epoch size K,m.

2: for k = 1 to K do
3: θk,0 = θ̃k−1, generate Tk = {τi}N1

i=1 ∼ πθk,0
4: θk,1 = θk,0 − αGk,0, where Gk,0 =

−∇̂N1J(θk,0) = − 1
N1

∑N1

i=1 g(τi|θk,0).
5: for t = 1 to m− 1 do
6: Generate {τj}N2

j=1 ∼ πθk,t

Gk,t = Gk,t−1 (28)

+
1

N2

N2∑
j=1

(−g(τj |θk,t) + g(τj |θk,t−1)),

θk,t+1 = arg min
ω
{〈Gk,t, ω〉+

1

α
Dψ(ω, θk,t)}.

(29)

7: end for
8: θ̃k = θk,t with t chosen uniformly randomly from

{0, 1, ...,m}.
9: end for

10: Output: θ̃K .

needs O(ε−4) random trajectories to achieve the ε-FOSP,
and no provable improvement on its complexity has been
made so far. The same order of sample complexity of
REINFORCE is shown by Xu et al. (2019). With the additional
assumptions Var[

∏H
h=0

πθ0 (ah|sh)

πθt (ah|sh) ],Var[g(τ |θ)] < +∞, Pa-
pini et al. (2018) show that the SVRPG achieves the sample
complexity of O(ε−4). Later, under the same assumption as
Papini et al. (2018), Xu et al. (2019) reduce the sample com-
plexity of SVRPG to O(ε−

10
3 ). We summarize it in Table 1.

Remark 2. It’s remarkable that although our VRMPO
shares sample complexity with HAPG, SRVR-PG, and VR-
BGPO(Huang et al. 2021), the difference between our VRMPO
and theirs are at least three aspects: Firstly, Shen et al.
(2019) derive their HAPG from the information of Hessian
policy, our VRMPO provides a simple recursive formulation to
conduct the gradient estimator. Secondly, if the mirror map
ψ is reduced to the `2-norm, then VRMPO is SRVR-PG exactly,
i.e., VRMPO unifies SRVR-PG. From Table 1, we see VRMPO
needs less conditions than Xu et al. (2020) to achieve the
same sample complexity. Finally, Shen et al. (2019), Xu et al.
(2020) and Huang et al. (2021) only provide an off-line (i.e.,
Monte Carlo) policy gradient estimator, which is limited in
complex domains. We have provided an on-line version of
VRMPO, and discuss some insights of practical tracks to the
application to the complex domains, please see the section
of experiment on MuJoCo task, Appendix E.1.

Related Works
Stochastic Variance Reduced Gradient in RL. To our best
knowledge, Du et al. (2017) firstly introduce SVRG (Johnson
and Zhang 2013) to off-policy evaluation (Yang et al. 2018).
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Algorithm Conditions Complexity
VPG

REINFORCE
Assumption 1

Var[g(τ |θ)] < +∞ O(ε−4)

TRPO
(Shani et al. 2020) Assumption 1 O(ε−4)

TRPO
(Liu et al. 2019) Assumption 1 O(ε−8)

SVRPG
(Papini et al. 2018)

Assumption 1
Var[ρt] < +∞

Var[g(τ |θ)] < +∞
O(ε−4)

SVRPG
(Xu et al. 2019)

Assumption 1;
Var[ρt] < +∞

Var[g(τ |θ)] < +∞
O(ε−10/3)

HAPG
(Shen et al. 2019) Assumption 1 O(ε−3)

SRVR-PG
(Xu et al. 2020; Xu 2021)

Assumption 1
Var[ρt] < +∞

Var[g(τ |θ)] < +∞
O(ε−3)

VR-PGPO
(Huang et al. 2021)

Assumption 1
Var[ρt] < +∞

Var[g(τ |θ)] < +∞
O(ε−3)

VRMPO
(Our Work) Assumption 1 O(ε−3)

Table 1: Comparison of complexity achieves ‖∇J(θ)‖ ≤ ε.
If ψ(θ) = 1

2‖θ‖
2
2, then the result (30) of our VRMPO is also

measured by gradient. Beside, ρt
def
=
∏H
i=0

πθ0 (ai|si)
πθt (ai|si)

.

Du et al. (2017) transform the empirical policy evaluation
problem into a convex-concave saddle-point problem, then
they solve the problem via SVRG straightforwardly. Later, to
improve sample efficiency for complex RL, Xu et al. (2017)
combine SVRG with TRPO (Schulman et al. 2015). Similarly,
Yuan et al. (2019) introduce SARAH (Nguyen et al. 2017a)
to TRPO to improve sample efficiency. However, the results
presented by Xu et al. (2017) and Yuan et al. (2019) are
empirical, which lacks a strong theory analysis. Metelli et
al. (2018) present a surrogate objective function with Rényi
divergence (Rényi et al. 1961) to reduce the variance. Re-
cently, Papini et al. (2018) propose a stochastic variance re-
duced version of policy gradient (SVRPG), and they define
the gradient estimator via importance sampling:

G̃k−1 +
1

N

N∑
j=1

(
− g(τkj |θt) +

H∏
i=0

πθ0(ai|si)
πθt(ai|si)

g(τkj |θt−1)
)
,

where G̃k−1 is an unbiased estimator according to the trajec-
tory generated by πθk−1

. Although SVRPG is practical em-
pirically, its gradient estimate is dependent heavily on im-
portance sampling. This fact partially reduces the effective-
ness of variance reduction. Later, Shen et al. (2019) remove
the importance sampling term, and they construct a Hessian
aided policy gradient. Our VRMPO is different from Du et al.
(2017); Xu, et al. (2017); Papini et al. (2018), which admits a
stochastic recursive iteration to estimate the policy gradient.
VRMPO exploits fresh information to improve convergence
and reduces variance. Besides, VRMPO reduces the storage
cost since it doesn’t require to store the complete historical
information.
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Figure 1: Convergence comparison between our MPO algo-
rithm and REINFORCE/VPG on the SASC domain.

Baseline Methods. Baseline (also also known as con-
trol variates) is a widely used technique to reduce the vari-
ance (Weaver and Tao 2001; Greensmith et al. 2004). For
example, A2C (Sutton and Barto 1998; Mnih et al. 2016)
introduces the value function as baseline function, Wu et
al. (2018) consider action-dependent baseline, and Liu et
al. (2018) use the Stein’s identity (Stein 1986) as base-
line. Q-Prop (Gu et al. 2017) makes use of both the lin-
ear dependent baseline and GAE (Schulman et al. 2016) to
reduce variance. Cheng et al. (2019) present a predictor-
corrector framework transforms a first-order model-free al-
gorithm into a new hybrid method that leverages predictive
models to accelerate policy learning. Mao et al. (2019) de-
rive a bias-free, input-dependent baseline to reduce variance,
and analytically show its benefits over state-dependent base-
lines. Recently, Grathwohl et al. (2018); Cheng, et al. (2019)
provide a standard explanation for the benefits of such ap-
proaches with baseline function. However, the capacity of
all the above methods is limited by their choice of baseline
function (Liu et al. 2018). In practice, it is troublesome to
design a proper baseline function to reduce the variance of
policy gradient estimate. Our VRMPO avoids the selection of
baseline function, and it uses the current trajectories to con-
struct a novel, efficiently computable gradient to reduce vari-
ance and improve sample efficiency.

Experiments

Our experiments cover the following three different aspects:
• We provide a numerical analysis of MPO, and compare

the convergence rate of MPO with REINFORCE and VPG on
the Short Corridor with Switched Actions (SASC) domain
(Sutton and Barto 2018).

• We provider a better understand the effect of how the mir-
ror map affects the performance of VRMPO.

• To demonstrate the stability and efficiency of VRMPO on
the MuJoCo continuous control tasks, we provide a com-
prehensive comparison to state-of-the-art policy optimiza-
tion algorithms.
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Figure 2: Comparison of the empirical performance of VRMPO between different mirror maps and REINFORCE.

Numerical Analysis of MPO
SASC Domain (see Appendix B): The task is to estimate the
optimal value function of state s1, V (s1) = G0 ≈ −11.6.
Let φ(s, right) = [1, 0]> and φ(s, left) = [0, 1]>, s ∈ S .
Let Lθ(s, a) = φ>(s, a)θ, (s, a) ∈ S × A, where A =
{right, left}. πθ(a|s) is the soft-max distribution defined
as πθ(a|s) = exp{Lθ(s,a)}∑

a
′∈A exp{Lθ(s,a′ )} . The initial parameter

θ0 ∼ U [−0.5, 0.5], where U is the uniform distribution.
Before we report the results, it is necessary to explain

why we only compare MPO with VPG and REINFORCE.
VPG/REINFORCE is one of the most fundamental policy gra-
dient methods in RL, and extensive modern policy-based al-
gorithms are derived from VPG/REINFORCE. Our MPO is a
new policy gradient algorithm to learn the parameter. Thus,
it is natural to compare with VPG and REINFORCE. The re-
sult of Figure 1 shows that MPO converges faster significantly
than both REINFORCE and VPG.

Effect of Mirror Map on VRMPO
If ψ(·) is `p-norm, then ψ?(y) = (

∑n
i=1 |yi|q)

1
q is the con-

jugate map of ψ, where y = (y1, y2, · · · , yn)>, 1
p + 1

q = 1,
and p, q > 1. According to Beck and Teboulle (2003), itera-
tion (27) is equivalent to

θk+1 = ∇ψ?(∇ψ(θk) + αGk),

where ∇ψj(x) =
sign(xj)|xj |p−1

‖x‖p−2
p

,∇ψ?j (y) =
sign(yj)|yj |q−1

‖y‖q−2
q

,

and j is coordinate index of the vector∇ψ, ∇ψ?.
To compare fairly, we use the same random seed for

each domain. The hyper-parameter p runs in the set [P ] =
{1.1, 1.2, · · · , 1.9, 2, 3, 4, 5}. For the non-Euclidean dis-
tance case, we only show the results of p = 3, 4, 5 in Figure
2, and “best” is a certain hyper-parameter p ∈ [P ] achieves
the best performance among the set [P ]. We use a two-layer
feedforward neural network of 200 and 100 hidden nodes,
respectively, with rectified linear units (ReLU) activation
function between each layer. We run the discounter γ = 0.99
and the step-size α is chosen by a grid search from the set
{0.01, 0.02, 0.04, 0.08, 0.1}.

The result of Figure 2 shows that the best method is pro-
duced by non-Euclidean distance (p 6= 2), not the Euclidean

distance (p = 2). The traditional policy gradient methods
such as REINFORCE, VPG, and DPG are all the algorithms
update parameters by Euclidean distance. This experiment
gives us some light that one can create better algorithms with
existing approaches via non-Euclidean distance. Addition-
ally, the result of Figure 2 shows our VRMPO converges faster
than REINFORCE, i.e., VRMPO needs less sampled trajectories
to reach a convergent state, which supports the complexity
analysis in Table 1. Although SRVR-PG achieves the same
sample complexity as our VRMPO, result of Figure 2 shows
VRMPO converges faster than SRVR-PG.

Evaluate VRMPO on Continuous Control Tasks
It is noteworthy that the policy gradient (26) of VRMPO is
an off-line estimator likes REINFOECE. As pointed by Sut-
ton and Barto (2018), REINFOECE converge asymptotically
to a local minimum, but like all off-line methods, it is in-
convenient for continuous control tasks, and it is limited in
the application to some complex domains. This could also
happen in VRMPO.

Now, we introduce some practical tricks for on-line im-
plementation of VRMPO. We have provided the complete up-
date rule of on-line VRMPO in Algorithm 3.

Details of Implementation. Firstly, we extend Algorithm
2 to be an actor-critic structure, i.e., we introduce a critic
structure to Algorithm 2. Concretely, for each step t, we
construct a critic network Qω(s, a) with the parameter ω,
sample {(si, ai)}Ni=1 from a data memory D, and learn the
parameter ω via minimizing the critic loss as follows,

Lω =
1

N

N∑
i=1

(ri+1 + γQωk−1
(si, ai)−Qω(si, ai))

2.

(31)
For more details, please see Line 17-20 of Algorithm 3.
Then, for each pair (s, a) ∼ D, we conduct the actor loss

Lθ(s, a) = − log πθ(s, a)Qωk−1
(s, a)

to replace J(θ) to learn parameter θ. For more details, please
see Line 9-16 of Algorithm 3 (Appendix E.1).

Score Performance Comparison. From the results of
Figure 3 and Table 2, overall, VRMPO outperforms the base-
line algorithms in both final performance and learning pro-
cess. Our VRMPO also learns considerably faster with better
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(b) HalfCheetah-v2
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(c) Reacher-v2
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Figure 3: Learning curves for continuous control tasks. The shaded region represents the standard deviation of the score over
the best three trials. Curves are smoothed uniformly for visual clarity.

performance than the popular TD3 on Walker2d, HalfChee-
tah, Hopper, InvDoublePendulum (IDP), and Reacher do-
mains. On the InvDoublePendulum task, our VRMPO has only
a small advantage over other algorithms. The InvPendu-
lum task is relatively easy, the advantage of our VRMPO be-
comes more powerful when the task is more difficult. It is
worth noticing that on the HalfCheetah domain, our VRMPO
achieves a significant max-average score 16000+, which
outperforms far more than the second-best score 11781.

Stability. The stability of an algorithm is also an impor-
tant topic in RL. Although DDPG exploits the off-policy sam-
ples, which promotes its efficiency in stable environments.
DDPG is unstable on the Reacher task, while our VRMPO learn-
ing faster significantly with lower variance. DDPG fails to
make any progress on InvDoublePendulum domain, which
is corroborated by (Dai et al. 2018). Although TD3 takes the
minimum value between a pair of critics to limit overestima-
tion, it learns severely fluctuating in the InvertedDoublePen-
dulum environment. In contrast, our VRMPO is consistently
reliable and effective in different tasks.

Variance Comparison. As we can see from the results
in Figure 3, our VRMPO converges with a considerably low
variance in the Hopper, InvDoublePendulum, and Reacher.
Although the asymptotic variance of VRMPO is slightly larger
than other algorithms in HalfCheetah, the final performance
of VRMPO outperforms all the baselines significantly. The re-
sult of Figure 3 also implies conducting a proper gradient
estimator not only reduces the variance of the score during
the learning but speeds the convergence of training.

Environment VRMPO TD3 DDPG PPO TRPO

Walker2d 5251.83 4887.85 5795.13 3905.99 3636.59
HalfCheetah 16095.51 11781.07 8616.29 3542.60 3325.23
Reacher -0.49 -1.47 -1.55 -0.44 -0.66
Hopper 3751.43 3482.06 3558.69 3609.65 3578.06
IDP 9359.82 9248.27 6958.42 9045.86 9151.56
InvPendulum 1000.00 1000.00 907.81 1000.00 1000.00

Table 2: Max-average return over final 50 epochs, where we
run 5000 iterations for each epoch. Maximum value for each
task is bolded.

Conclusion
In this paper, we analyze the theoretical dilemma of apply-
ing SMD to policy optimization. Then, we propose a sample
efficient algorithm VRMPO, and prove the sample complex-
ity of VRMPO achieves only O(ε−3). To our best knowledge,
VRMPO matches the best sample complexity so far. Finally,
we conduct extensive experiments to show our algorithm
outperforms state-of-the-art policy gradient methods.
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