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Abstract

Deep reinforcement learning (DRL) has demonstrated impres-
sive performance in various gaming simulators and real-world
applications. In practice, however, a DRL agent may receive
faulty observation by abrupt interferences such as black-out,
frozen-screen, and adversarial perturbation. How to design a
resilient DRL algorithm against these rare but mission-critical
and safety-crucial scenarios is an essential yet challenging task.
In this paper, we consider a deep q-network (DQN) framework
training with an auxiliary task of observational interferences
such as artificial noises. Inspired by causal inference for obser-
vational interference, we propose a causal inference based
DQN algorithm called causal inference Q-network (CIQ). We
evaluate the performance of CIQ in several benchmark DQN
environments with different types of interferences as auxiliary
labels. Our experimental results show that the proposed CIQ
method could achieve higher performance and more resilience
against observational interferences.

Introduction
Deep reinforcement learning (DRL) methods have shown en-
hanced performance, gained widespread applications (Mnih
et al. 2015, 2016; Silver et al. 2017), and improved robot
learning (Gu et al. 2017) in navigation systems (Tai, Paolo,
and Liu 2017; Nagabandi et al. 2018). However, most suc-
cessful demonstrations of these DRL methods are usually
trained and deployed under well-controlled situations. In con-
trast, real-world use cases often encounter inevitable observa-
tional uncertainty (Grigorescu et al. 2020; Hafner et al. 2018;
Moreno et al. 2018) from an external attacker (Huang et al.
2017) or noisy sensor (Fortunato et al. 2018; Lee et al. 2018).
For examples, playing online video games may experience
sudden black-outs or frame-skippings due to network insta-
bilities, and driving on the road may encounter temporary
blindness when facing the sun. Such an abrupt interference
on the observation could cause serious issues for DRL al-
gorithms. Unlike other machine learning tasks that involve
only a single mission at a time (e.g., image classification), an
RL agent has to deal with a dynamic (Schmidhuber 1992) or
even learn from latent states with generative models (Schmid-
huber 1991; Jaderberg et al. 2017; Ha and Schmidhuber 2018;
Hafner et al. 2018; Lynch et al. 2020) to anticipate future
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rewards in complex environments. Therefore, DRL-based
systems are likely to propagate and even enlarge risks (e.g.,
delay and noisy pulsed-signals on sensor-fusion (Yurtsever
et al. 2020; Johansen et al. 2015)) induced from the uncertain
interference.

In this paper, we investigate the resilience ability of an
RL agent to withstand unforeseen, rare, adversarial and po-
tentially catastrophic interferences, and to recover and adapt
by improving itself in reaction to these events. We consider
a resilient generative RL framework with observational in-
terferences as an auxiliary task. At each time, the agent’s
observation is subjected to a type of sudden interference at
a predefined possibility. Whether or not an observation has
interfered is referred to as the interference label.

Specifically, to train a resilient agent, we provide the agent
with the interference labels during training. For instance, the
labels could be derived from some uncertain noise genera-
tors recording whether the agent observes an intervened state
at the moment as a binary causation label. By applying the
labels as an intervention into the environment, the RL agent
is asked to learn a binary causation label and embed a la-
tent state into its model. However, when the trained agent
is deployed in the field (i.e., the testing phase), the agent
only receives the interfered observations but is agnostic to
interference labels and needs to act resiliently against the
interference.

For an RL agent to be resilient against interference, the
agent needs to diagnose observations to make the correct
inference about the reward information. To achieve this, the
RL agent has to reason about what leads to desired rewards
despite the irrelevant intermittent interference. To equip an
RL agent with this reasoning capability, we exploit the causal
inference framework. Intuitively, a causal inference model
for observation interference uses an unobserved confounder
(Pearl 2009, 2019, 1995; Saunders et al. 2018; Bareinboim,
Forney, and Pearl 2015; Zhang, Zhang, and Li 2020; Khe-
makhem et al. 2021) to capture the effect of the interfer-
ence on the rewards (outcomes) collected from the envi-
ronment. In recent works, RL is also showing additional
benefits incorporating generative causal modeling, such as
providing interpretability (Madumal et al. 2020), treatment
estimation (Zhang and Bareinboim 2020, 2021), imitation
learning (Zhang, Kumor, and Bareinboim 2020), enhanced in-
variant prediction (Zhang et al. 2020), and generative model
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for transfer learning (Killian, Ghassemi, and Joshi 2020).
When such a confounder is available, the RL agent can

focus on the confounder for relevant reward information and
make the best decision. As illustrated in Figure 1, we pro-
pose a causal inference based DRL algorithm termed causal
inference Q-network (CIQ). During training, when the in-
terference labels are available, the CIQ agent will implicitly
learn a causal inference model by embedding the confounder
into a latent state. At the same time, the CIQ agent will also
train a Q-network on the latent state for decision making.
Then at testing, the CIQ agent will make use of the learned
model to estimate the confounding latent state and the in-
terference label. The design of CIQ is inspired by causal
inference on state variable and using treatment switching
method (Shalit, Johansson, and Sontag 2017) to learn latent
variable by incorporating observational interference.

The history of latent states is combined into a causal infer-
ence state, which captures the relevant information for the
Q-network to collect rewards in the environment despite of
the observational interference.

Figure 1: The proposed causal inference Q-network (CIQ)
training and test framework, where the latent state is an un-
observed (hidden) confounder variable. We refer the readers
to Figure 3 for detailed descriptions on its graphical model.

In this paper, we evaluate the performance of our method
in four environments: 1) Cartpole-v0 – the continuous con-
trol environment (Brockman et al. 2016); 2) the 3D graphical
Banana Collector (Juliani et al. 2018)); 3) an Atari environ-
ment LunarLander-v2 (Brockman et al. 2016), and 4) pixel
Cartpole – visual learning from the pixel inputs of Cartpole.
For each of the environments, we consider four types of inter-
ference: (a) black-out, (b) Gaussian noise, (c) frozen screen,
and (d) additive noise from adversarial perturbation.

In the testing phase mimicking the practical scenario that
the agent may have interfered observations but is unaware of
the true interference labels (i.e., happens or not), the results
show that our CIQ method can perform better and more re-
silience against all the four types of interference. Furthermore,
to benchmark the level of resilience of different RL models,
we propose a new robustness measure, called CLEVER-Q, to
evaluate the robustness of Q-network based RL algorithms.
The idea is to compute a lower bound on the observation
noise level such that the greedy action from the Q-network

will remain the same against any noise below the lower bound.
According to this robustness analysis, our CIQ algorithm in-
deed achieves higher CLEVER-Q scores compared with the
baseline methods. The main contributions of this paper in-
clude 1) a framework to evaluate the resilience of DQN-based
DRL methods under abrupt observational interferences; 2)
the proposed CIQ architecture and algorithm towards train-
ing a resilient DQN agent, and 3) an extreme-value theory
based robustness metric (CLEVER-Q) for quantifying the
resilience of Q-network based RL algorithms.

Related Works
Causal Inference for Generative Reinforcement Learning:
Causal inference (Greenland, Pearl, and Robins 1999; Pearl
2009; Pearl, Glymour, and Jewell 2016; Pearl 2019; Robins,
Rotnitzky, and Zhao 1995) has been used to empower the
learning process under noisy observation and have better in-
terpretability on deep learning models (Shalit, Johansson, and
Sontag 2017; Louizos et al. 2017), also with efforts (Jaber,
Zhang, and Bareinboim 2019; Forney, Pearl, and Barein-
boim 2017; Bareinboim, Forney, and Pearl 2015; Bennett
et al. 2021; Jung, Tian, and Bareinboim 2021) on causal on-
line learning and bandit methods. Defining causation and
applying causal inference framework to DRL still remains
relatively unexplored. Recent works (Lu, Schölkopf, and
Hernández-Lobato 2018; Tennenholtz, Mannor, and Shalit
2019) study this problem by defining action as one kind of
intervention and estimating the causal effects. In contrast,
we introduce observational interference into generative DRL
by applying extra noisy and uncertain inventions. Inspired
by the treatment switching and representation learning mod-
els (Shalit, Johansson, and Sontag 2017; Louizos et al. 2017;
Helwegen, Louizos, and Forré 2020), we leverage the causal
effect of observational interferences on states, and design
an end-to-end structure for learning a causal-observational
representation evaluating treatment effects on rewards.

Adversarial Perturbation: An intensifying challenge
against deep neural network based systems is adversarial
perturbation for making incorrect decisions. Many gradient-
based noise-generating methods (Goodfellow, Shlens, and
Szegedy 2015; Huang et al. 2017; Everett 2021) have been
conducted for misclassification and mislead an agent’s output
action. As an example of using DRL model playing Atari
games, an adversarial attacker (Lin et al. 2017; Yang et al.
2020) could jam in a timely and barely detectable noise to
maximize the prediction loss of a Q-network and cause mas-
sively degraded performance.

Partially Observable Markov Decision Processes
(POMDPs): Our resilient RL framework can be viewed as a
POMDP with interfered observations. Belief-state methods
are available for simple POMDP problems (e.g., plan graph
and the tiger problem (Kaelbling, Littman, and Cassandra
1998)), but no provably efficient algorithm is available for
general POMDP settings (Papadimitriou and Tsitsiklis 1987;
Gregor et al. 2018). Recently, Igl et. al (Igl et al. 2018) have
proposed a DRL approach for POMDPs by combining varia-
tional autoencoder and policy-based learning, but this kind
of methods do not consider the interference labels available
during training in our resilient RL framework.
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Resilient Reinforcement Learning
In this section, we formally introduce our resilient RL frame-
work and provide an extreme-value theory based metric
called CLEVER-Q for measuring the robustness of DQN-
based methods.

We consider a sequential decision-making problem where
an agent interacts with an environment. At each time t, the
agent gets an observation xt, e.g. a frame in a video envi-
ronment. As in many RL domains (e.g., Atari games), we
view st = (xt−M+1, . . . , xt) to be the state of the environ-
ment where M is a fixed number for the history of obser-
vations. Given a stochastic policy π, the agent chooses an
action at ∼ π(st) from a discrete action space based on
the observed state and receives a reward rt from the envi-
ronment. For a policy π, define the Q-function Qπ(s, a) =
E
[∑∞

t=0 γ
trt|s0 = s, a0 = a, π

]
where γ ∈ (0, 1) is

the discount factor. The agent’s goal is to find the opti-
mal policy π∗ that achieves the optimal Q-function given
by Q∗(s, a) = maxπ Q

π(s, a).

Resilience Base on an Interventional Perspective
To evaluate the resilience ability of RL agents, we introduce
additional interference as auxiliary information (as illustrated
in Fig 1 ) as an empirical process (Pearl 2009; Louizos et al.
2017) for observation. Given a type of interference I, the
agent’s observation becomes:

x′
t = F I(xt, it) = it × I(xt) + (1− it)× xt (1)

where it ∈ {0, 1} is the label indicating whether the observa-
tion is interfered at time t or not, and I(xt) is the interfered
observation.

We assume that interference labels it follow an i.i.d.
Bernoulli process with a fixed interference probability pI

as a noise level.1 For example, when pI equals to 10%, each
observational state has a 10% chance to be intervened under
a perturbation. In this work, we consider the original obser-
vations, as illustrated in Figure 2 (a), under four types of
interference as described below.

Gaussian Noise. Gaussian noise or white noise is a
common interference to sensory data (Osband et al. 2019;
Yurtsever et al. 2020). The interfered observation becomes
I(xt) = xt + nt with a zero-mean Gaussian noise nt. The
noise variance is set to be the variance of all recorded states
as illustrated in Figure 2 (b).

Adversarial Observation. Following the standard adver-
sarial RL attack setting, we use fast gradient sign method
(FGSM) (Szegedy et al. 2014) to generate adversarial pat-
terns against the DQN loss (Huang et al. 2017) as illus-
trated in Figure 2 (c). The observation is given by I(xt) =
xt + ϵ sign (∇xt

Q(xt, y; θ)) where y is the optimal action
by weighting over possible actions.

Observation Black-Out. Off-the-shelf hardware can af-
fect the entire sensor networks as a sensing background (Yurt-
sever et al. 2020) over-shoot with I(xt) = 0 (Yan, Xu, and
Liu 2016). This perturbation is realistic owing to overheat

1The i.i.d. assumption could be extended to a Markovian dy-
namic interference model. We show experiments with dynamic
interference in Appendix D.

hardware and losing the observational information of sensors.

Frozen Frame. Lagging and frozen frame(s) (Kalashnikov
et al. 2018) often come from limited data communication
bottleneck bandwidth. A frozen frame is given by I(xt) =
xt−1. If the perturbation is constantly present, the frame will
remain the first frozen frame since the perturbation happened.

Figure 2: Visualization of perturbed observation (state) under
uncertainty: (a) original state; (b) Gaussian perturbation; (c)
adversarial perturbation (Huang et al. 2017), and (d) black-
out perturbation (a white-out ablation in the Appendix E).

Resilient Reinforcement Learning Framework
With observational interference, instead of the actual state
st, the agent only observes s′t = (x′

t−M+1, . . . , x
′
t). The

agent now needs to choose its actions at ∼ π(s′t) based
on the interfered observation. The resilient RL objective
for the agent is to find a policy π to maximize rewards
in this environment under observational interference. Un-
der the resilient framework, the goal of a Q-learning based
agent is to learn the relation between s′t and Qt where
Qt(a) = maxπ E

[∑∞
τ=t γ

(τ−t)rτ |s′t, at = a, π
]

denotes
the Q-values given the interfered observation s′t at time t.

From the RL model and the observation model of Eq.
(1), the relation among the observation s′t, Q-values Qt, and
interference it can be described by a causal graphical model
(CGM) in Figure 3. In the CGM, zt = (st, it−M+1, . . . , it)
includes the actual state st of the system together with the
interference labels which causally affects all s′t, Qt, and
it. Note that zt is not observable to the agent due to the
interference; zt could be viewed as a hidden confounder in
causal inference.

Since only the interfered observation s′t is available, the
interference label it is also non-observable in evaluating the
resilience ability of an agent. However, the interference infor-
mation is often accessible in the training phase, such as the
use of a navigation simulator recorded with noisy augmen-
tation (Grigorescu et al. 2020) for simulating interference in
the training environment. We will discuss in the next subsec-
tion the benefit of utilizing the interference labels to improve
learning efficiency.

Learning with Interference Labels
The goal of a resilient RL agent is to learn P (Qt|s′t) to infer
the Q-value Qt based on the interfered observation s′t. Note
that one can compute P (Qt|s′t) by determining the joint
distribution P (zt, s

′
t, it, Qt) of all variables in the CGM in

Figure 3. Despite the presence of the hidden variable zt,
similar to causal inference with hidden confounders (Louizos
et al. 2017), estimating the joint distribution P (zt, s

′
t, it, Qt)

could be done efficiently when the agent is provided the
interference labels it during training. On the other hand,
if only the observation s′t is available, the agent can only
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directly estimate P (Qt|s′t), which is less efficient in terms of
training sample usage.

We provide the interference type I and the interference
labels it to efficiently train a resilient RL agent as shown in
Figure 3(b); however, in the actual testing environment, the
agent only has access to the interfered observations x′

t as in
Figure 3(a).

zt

its′t

Qt

(a) Training

zt

its′t

Qt

(b) Testing

Figure 3: Causal graphical model (CGM) for the training
phase (a) and the testing phase (b). White nodes s′t and Qt

are observable. Node zt = (st, it−M+1, . . . , it), colored by
white, is not observable. Node it, colored by white in (b), is
only observable during training.

Causal Inference Q-Network
With the observable variables (s′t, it, Qt) in Figure 3(a) dur-
ing training, we aim to learn a model to infer the Q-values by
estimating the joint distribution P (zt, s

′
t, it, Qt). Despite the

underlying dynamics in the RL system, when we view the in-
terference as a treatment, the CGM in Figure 3(a) resembles
some common causal inference models with binary treatment
information and hidden confounders (Louizos et al. 2017). In
this kind of causal inference problems, by leveraging on the
binary property for treatment information, TARNet (Shalit,
Johansson, and Sontag 2017) and CEVAE (Louizos et al.
2017) introduced a binary switching neural architecture to
efficiently learn latent models for causal inference.

Inspired by the switching mechanism for causal inference,
we propose the causal inference Q-network, referred as CIQ,
that maps the interfered observation s′t into a latent state zt,
makes proper inferences about the interference condition it,
and adjusts its policy based on the estimated interference.

Figure 4: CIQ architecture. The notation itraint denotes the
inference label available during training, whereas ĩt is sam-
pled during inference as it is unknown.

We approximate the latent state by a neural network
z̃t = f1(x

′
t; θ1). From the latent state, we generate the es-

timated interference label ĩt ∼ p(̃it|zt) = fI(zt;ϕ). We
denote sCI

t = (z̃t−M+1, ĩt−M+1, . . . , z̃t, ĩt) to be the causal

inference state. As discussed in the previous subsection, the
causal inference state acts as a confounder between the in-
terference and the reward. Therefore, instead of using the
interfered state s′t, the causal inference state sCI

t contains
more relevant information for the agent to maximize rewards.
Using the causal inference state helps focus on meaningful
and informative details even under interference.

With the causal inference state sCI
t , the output of the Q-

network Q(sCI
t ; θ) is set to be switched between two neural

networks f2(sCI
t ; θ2) and f3(s

CI
t ; θ3) by the interference la-

bel. Such a switching mechanism prevents our network from
over-generalizing the causal inference state. During training,
switching between the two neural networks is determined
by the training interference label itrain

t . We assume that the
true interference label is available in the training phase so
itrain
t = it. In the testing, when it is not available, we use the

predicted interference label ĩt as the switch to decide which
of the two neural networks to use.

All the neural networks f1, f2, f3, fI have two fully con-
nected layers2 with each layer followed by the ReLU acti-
vation except for the last layer in f2, f3 and fI . The overall
CIQ model is shown in Figure 4 and θ = (θ1, θ2, θ3, ϕ) de-
notes all its parameters. Note that, as common practice for
discrete action spaces, the Q-network output Q(sCI

t ; θ) is
an A-dimensional vector where A is the size of the action
space, and each dimension represents the value for taking the
corresponding action.

Finally, we train the CIQ model Q(s′t; θ) end-to-end by
the DQN algorithm with an additional loss for predicting
the interference label. The overall CIQ objective function is
defined as:

LCIQ(θ1, θ2, θ3, ϕ) = itrain
t · LDQN(θ1, θ2, ϕ)

+ (1− itrain
t ) · LDQN(θ1, θ3, ϕ) + λ · (itrain

t log p(̃it|z̃t; θ1, ϕ)
+ (1− itrain

t ) log(1− p(̃it|z̃t; θ1, ϕ))), (2)

where λ is a scaling constant and is set to 1 for simplicity. Due
to the design of the causal inference state and the switching
mechanism, we will show that CIQ can perform resilient
behaviors against the observation interferences. We introduce
how to quantify the robustness of a Q-network under noisy
observation in next subsection. The CIQ training procedure
(Algorithm 1) and an advanced CIQ based on variational
inference (Louizos et al. 2017) are described in Appendix B.

CLEVER-Q: A Robustness Evaluation Metric for
Q-Networks
Here we provide a comprehensive score (CLEVER-Q) for
evaluating the robustness of a Q-network model by extending
the CLEVER robustness score (Weng et al. 2018) designed
for classification tasks to Q-network based DRL tasks. Con-
sider an ℓp-norm bounded (p ≥ 1) perturbation δ to the state
st. We first derive a lower bound βL on the minimal pertur-
bation to st for altering the action with the top Q-value, i.e.,
the greedy action. For a given st and a Q-network, this lower

2Though such manner may lead to the myth of over-
parameterization, our ablation study proves that we can achieve
better results with almost the same amount of parameters.
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bound βL provides a robustness guarantee that the greedy ac-
tion at st will be the same as that of any perturbed state st+δ,
as long as the perturbation level ∥δ∥p ≤ βL. Therefore, the
larger the value βL is, the more resilience of the Q-network
against perturbations can be guaranteed. Our CLEVER-Q
score uses the extreme value theory to evaluate the lower
bound βL as a robustness metric for benchmarking different
Q-network models. The proof of Theorem 1. is available in
Appendix B.

Theorem 1. Consider a Q-network Q(s, a) and a state st.
Let A∗ = argmaxa Q(st, a) be the set of greedy (best) ac-
tions having the highest Q-value at st according to the Q-
network. Define ga(st) = Q(st,A∗) − Q(st, a) for every
action a, where Q(st,A∗) denotes the best Q-value at st.
Assume ga(st) is locally Lipschitz continuous3 with its local
Lipschitz constant denoted by La

q , where 1/p+ 1/q = 1 and
p ≥ 1. For any p ≥ 1, define the lower bound

βL = mina/∈A∗ga(st)/L
a
q . (3)

Then for any δ such that ∥δ∥p ≤ βL, we have
argmaxa Q(st, a) = argmaxa Q(st + δ, a).

(a) (b)

Figure 5: Illustration of our environments on: (a) a 3D navi-
gation task, banana collector (Juliani et al. 2018), and (b) a
video game, LunarLander (Brockman et al. 2016).

Experiments
Environments for DQNs
Our testing platforms were based on (a) OpenAI Gym (Brock-
man et al. 2016), (b) Unity-3D environments (Juliani et al.
2018), (c) a 2D gaming environment (Brockman et al. 2016),
and (d) visual learning from pixel inputs of cart pole. Our
test environments cover some major application scenarios
and feature discrete actions for training DQN agents with the
CLEVER-Q analysis. For instance, Atari games and space-
invaders are popular real-world applications. Unity 3D ba-
nana navigation is a physical simulator but provides virtual
to real options for further implementations.

Vector Cartpole: Cartpole (Sutton et al. 1998) is a clas-
sical continuous control problem. We use Cartpole-v0 from
Gym (Brockman et al. 2016) with a targeted reward = 195.0.
The defined environment is manipulated by adding a force of
+1 or −1 to a moving cart.

Banana Collector: The Banana collector (a) is one of
the Unity 3D baseline (Juliani et al. 2018) (shown in Fig. 5
(a).) Different from the MuJoCo simulators with continuous
actions, the Banana collector is controlled by four discrete
actions corresponding to moving directions. The targeted

3Here locally Lipschitz continuous means ga(st) is Lipschitz
continuous within the ℓp ball centered at st with radius Rp. We
follow the same definition as in (Weng et al. 2018).

reward is 12.0 points by accessing correct bananas (+1). The
state-space has 37 dimensions included velocity and a ray-
based perception of objects around the agent.

Lunar Lander: Similar to the Atari gaming environments,
Lunar Lander-v2 (Fig. 5 (b)) is a discrete action environment
from OpenAI Gym (Brockman et al. 2016) to control firing
ejector with a targeted reward of 200. The state is an eight-
dimensional vector that records the lander’s position, velocity,
angle, and angular velocities. The episode finishes if the
lander crashes or comes to rest, receiving a reward −100 or
+100 Firing ejector costs −0.3 each frame with +10 for each
ground contact.

Pixel Cartpole: To further evaluate our models, we con-
duct experiments from the pixel inputs in the cartpole envi-
ronment as a visual learning task. The size of input state is
400× 600. We use a max-pooling and a convolution layer to
extract states as network inputs. The environment includes
two discrete actions {left, right}, which is identical to the
Cartpole-v0 of the vector version.

Baseline Methods
In the experiments, we compare our CIQ algorithm with two
sets of DQN-based DRL baselines to demonstrate the re-
silience capability of the proposed method. We ensure all the
models have the same number of 9.7 millions parameters
with careful fine-tuning to avoid model capacity issues.

Pure DQN: We use DQN as a baseline in our experiments.
The DQN agent is trained and tested on interfered state s′t. We
also evaluate common DQN improvements in Appendix C
and find the improvements (e.g., DDQN) have no significant
effect against interference.

DQN with an interference classifier (DQN-CF): In the
resilient reinforcement learning framework, the agent is given
the true interference label itrain

t at training. Therefore, we
would like to provide this additional information to the DQN
agent for a fair comparison. During training, the interfered
state s′t is concatenated with the true label itrain

t as the input for
the DQN agent. Since the true label is not available at testing,
we train an additional binary classifier (CF) for the DQN
agent. The classifier is trained to predict the interference
label, and this predicted label will be concatenated with the
interfered state as the input for the DQN agent during testing.

DQN with safe actions (DQN-SA): Inspired by shielding-
based safe RL (Alshiekh et al. 2018), we consider a DQN
baseline with safe actions (SA). The DQN-SA agent will
apply the DQN action if there is no interference. However, if
the current observation is interfered, it will choose the action
used for the last uninterfered observation as the safe action.
This action-holding method is also a typical control approach
when there are missing observations (Franklin et al. 1998).
Similar to DQN-CF, a binary classifier for interference is
trained to provide predicted labels at testing.

DVRLQ and DVRLQ-CF: Motivated by deep variational
RL (DVRL) (Igl et al. 2018), we provide a version of DVRL
as a POMDP baseline. We call this baseline DVRLQ because
we replace the A2C-loss with the DQN loss. Similar to DQN-
CF, we also consider another baseline of DVRLQ with a
classifier, referred to as DVRLQ-CF, for a fair comparison
using the interference labels.

8818



I=L2 AC-Rate CLEVER-Q I=L∞ AC-Rate CLEVER-Q
P%, I DQN CIQ DQN CIQ P%, I DQN CIQ DQN CIQ
10% 82.10% 99.61% 0.176 0.221 10% 62.23% 99.52% 0.169 0.248
20% 72.15% 98.52% 0.130 0.235 20% 9.68% 98.52% 0.171 0.236
30% 69.74% 98.12% 0.109 0.232 30% 1.22% 98.10% 0.052 0.230

Table 1: Performance resilience analysis of AC-Rate (↑) and CLEVER-Q robustness score (↑) under additive Gaussian (l2-norm)
and adversarial (l∞-norm) perturbations on state in the vector Cartpole environment.

(a) Cartpoleadversarialvector . (b) Bananaadversarial.

(c) Lunaradversarial. (d) Cartpoleadversarialpixel .

(e) Cartpoleblackoutvector . (f) Bananablackout.

(g) Lunarblackout (h) Cartpoleblackoutpixel .

Figure 6: Performance of DQNs under potential (20%) ad-
versarial and black-out interference.

Resilient RL on Average Returns
We run performance evaluation with six different
interference probabilities (pI in Sec. ), including
{0%, 10%, 20%, 30%, 40%, 50%}. We train each agent 50
times and highlight its standard deviation with lighter colors.
Each agent is trained until the target score (shown as the

dashed black line) is reached or until 400 episodes. We
show the average returns for pI = 20% under adversarial
perturbation and black-out in Figure 6 and report the rest of
the results in Appendix B.

CIQ (green) clearly outperforms all the baselines under all
types of interference, validating the effectiveness of our CIQ
in learning to infer and gaining resilience against a wide range
of observational interferences. Pure DQN (yellow) cannot
handle the interference with 20% noise level. DQN-CF (or-
ange) and DQN-SA (brown) have competitive performance in
some environments against certain interferences, but perform
poorly in others. DVRLQ (blue) and DVRLQ-CF (purple)
cannot achieve the target reward in most experiments and this
might suggest the inefficiency of applying a general POMDP
approach in a framework with a specific structure of observa-
tional interference.

Robustness Metrics Based on Recording States
We evaluate the robustness of DQN and CIQ by the proposed
CLEVER-Q metric. To make the test state environment con-
sistent among different types and levels of interference, we
record the interfered states, SN = I(SC), together with their
clean states, SC . We then calculate the average CLEVER-Q
for DQN and CIQ based on the clean states SC using Eq. 3
over 50 times experiments for each agent.

We also consider a retrospective robustness metric, the
action correction rate (AC-Rate). Motivated by previous off-
policy and error correction studies (Dulac-Arnold et al. 2012;
Harutyunyan et al. 2016; Lin et al. 2017), AC-Rate is de-
fined as the action matching rate RAct =

1
T

∑T−1
t=0 1{at=a∗

t }
between at and a∗t over an episode with length T . Here at
denotes the action taken by the agent with interfered observa-
tions SN , and a∗t is the action of the agent if clean states SC

were observed instead.
The roles of CLEVER-Q and AC-Rate are complementary

as robustness metrics. CLEVER-Q measures sensitivity in
terms of the margin (minimum perturbation) required for a
given state to change the original action. AC-rate measures
the utility in terms of action consistency. Altogether, they
provide a comprehensive resilience assessment.

Table 1 reports the two robustness metrics for DQN and
CIQ under two types of interference. CIQ attains higher
scores than DQN in both CLEVER-Q and AC-Rate, reflect-
ing better resilience in CIQ evaluations. We provide more
robustness measurements in Appendix A and D.

Average Treatment Effect under Intervention
In a causal learning setting, evaluating treatment effects and
conducting statistical refuting experiments are essential to
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support the underlying causal graphical model. Through re-
silient reinforcement learning framework, we could inter-
pret DQN by estimating the average treatment effect (ATE)
of each noisy and adversarial observation. We first define
how to calculate a treatment effect in the resilient RL set-
tings and conduct statistical refuting tests including random
common cause variable test (Tc), replacing treatment with a
random (placebo) variable (Tp), and removing a random sub-
set of data (Ts). The open-source causal inference package
Dowhy (Sharma, Kiciman et al. 2019) is used for analysis.

We refine a Q-network with discrete actions for estimating
treatment effects based on Theorem 1 in (Louizos et al. 2017).
In particular, individual treatment effect (ITE) can be defined
as the difference between the two potential outcomes of a
Q-network; and the average treatment effect (ATE) is the
expected value of the potential outcomes over the subjects. In
a binary treatment setting, for a Q-value function Qt(st) and
the interfered state I(st), the ITE and ATE are calculated by:

QITE
t = Qt(st) (1− pt) +Qt(I(st))pt (4)

ATE =
T∑
t=1

E
[
QITE

t (I(st))
]
− E

[
QITE

t (st)
]

T
(5)

where pt is the estimated inference label by the agent and T
is the total time steps of each episode. As expected, we find
that CIQ indeed attains a better ATE and its significance can
be informed by the refuting tests based on Tc, Tp and Ts. We
refer to Appendix C for more details.

Additional Analysis
We also conduct the following analysis to better understand
our CIQ model. Environments with a dynamic noise level
are evaluated. Due to the space limit, see their details in
appendix B to D. Furthermore, a discussion on the advantage
of sample complexity benefited from sequential learning
with interference labels is included in Appendix B.

Neural saliency map: We apply the perturbation-based
saliency map for DRL (Greydanus et al. 2018) as shown in
Figure 7 and appendix to visualize the saliency centers of
CIQ and others, which is based on the Q-value of each model
as interpretable studies.

Treatment effect analysis: We provide treatment effect
analysis on each kind of interference to statistically verify
the CGM with lowest errors on average treatment effect refu-
tation in appendix C.

Ablation studies: We conduct ablation studies by compar-
ing several CIQ variants, each without a certain CIQ compo-
nent, and verify the importance of the proposed CIQ archi-
tecture in Appendix D for future studies.

Test on different noise levels: We train CIQ under one
noise level and test on another level, which shows that the
difference in noise level does not affect much on the perfor-
mance of CIQ model reported in Appendix B.

Transferability in robustness: Based on CIQ, we study
how well can the robustness of different interference types
transfer between training and testing environments. We eval-
uate two general settings (i) an identical interference type but
different noise levels (Appendix D) and (ii) different interfer-
ence types (Appendix D). Tab 3 summarizes the results.

Multiple interference types: We also provide a gener-
alized version of CIQ that deals with multiple interference
types in training and testing environments. Tab summarizes
the results. The generalized CIQ is equipped with a com-
mon encoder and individual interference decoders to study
multi-module conditional inference, with some additional
discussion in Appendix E.

Figure 7: Perturbation-based saliency map on Pixel Cartpole
under adversarial perturbation: (a) DQN, (b) CIQ, (c) DQN-
CF; (d) DVRLQ-CF. The black arrows are correct actions and
blue arrows are agents’ actions. The neural saliency of CIQ
makes more correct actions responding to ground actions.

Metrics (0.1, 0.3) (0.3, 0.1) (0.3, 0.2) (0.3, 0.3)
Performance 182.8 195.0 195.0 195.0
CLEVER-Q 0.195 0.239 0.232 0.230
AC-Rate 0.914 0.985 0.986 0.995

Table 2: Stability test of proposed CIQ (Train Noise-Level,
Test Noise-Level). We consider settings with different train-
ing and testing noise levels for CIQ evaluation afterward.

Train / Test Gaussian Adv Gaussian + Adv
Gaussian 195.1 154.2 96.3
Adversarial (Adv) 153.9 195.0 105.1
Gaussian + Adv 195.0 195.0 195.0

Table 3: CIQ-MI: CIQ agent with an extended multi-
interference (MI) architecture testing in Env1 (noise level
P = 20%). As a proof of concept, we consider two interfer-
ence types together, Gaussian noise and adversarial pertur-
bation. In this setting every observation (state) can possibly
undergo an interference with either Gaussian noise or Ad-
versarial perturbation. CIQ-MI is capable of making correct
action to solve (over 195.0) the testing environment when
training with mixed interference types.

Conclusion
Our experiments suggest that, although some DQN-based
DRL algorithms can achieve high scores under the nor-
mal condition, their performance can be severely de-
graded in the presence of interference. In order to be
resilient against interference, we propose CIQ, a novel
causal-inference-driven DRL algorithm. Evaluated on a
wide range of environments and multiple types of in-
terferences, the CIQ results show consistently superior
performance over several RL baseline methods. We in-
vestigate the improved resilience of CIQ by CLEVER-
Q and AC-Rate metrics. Our demo code is available at
github.com/huckiyang/Obs-Causal-Q-Network.
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