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Abstract

Basketball is one of the most popular types of sports in the
world. Recent technological developments have made it pos-
sible to collect large amounts of data on the game, analyze it,
and discover new insights. We propose a novel approach for
modeling basketball games using deep reinforcement learn-
ing. By analyzing multiple aspects of both the players and
the game, we are able to model the latent connections among
players’ movements, actions, and performance, into a single
measure – the Q-Ball. Using Q-Ball, we are able to assign
scores to the performance of both players and whole teams.
Our approach has multiple practical applications, including
evaluating and improving players’ game decisions and pro-
ducing tactical recommendations. We train and evaluate our
approach on a large dataset of National Basketball Associa-
tion games, and show that the Q-Ball is capable of accurately
assessing the performance of players and teams. Furthermore,
we show that Q-Ball is highly effective in recommending al-
ternatives to players’ actions.

Introduction
Basketball is one of the most popular sports around the
world. Its wide popularity has contributed to the growth
of the US National Basketball Association (NBA) (Manner
2016). The NBA is the most important and influential pro-
fessional basketball league in the world (Manner 2016).The
rise of the game’s popularity sparked rapid growth both in
data collection and the development of advanced methods
for evaluating different aspects of the game (Torres 2013;
Macdonald 2020; Sampaio et al. 2015).

One of the most important and innovative developments
in sports-related data collection is the SportVU player track-
ing system1 2. SportVU records all player positions on the
court, as well as the ball’s, and it does so with a very high
resolution of 25 frames per second. At the beginning of the
2013-14 NBA season, every team in the league installed the
SportVU system on its court. Analyzing this type of data en-
ables us to evaluate players’ movements and game decisions
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2https://www.espn.com/blog/playbook/tech/post/ /id/492/492

(Sicilia, Pelechrinis, and Goldsberry 2019), and providing
different tools for improving their game.

While previous studies (Neiman and Loewenstein 2011;
Wang et al. 2018) did use deep reinforcement learning
(DRL) on basketball games, their goals were limited to mod-
eling a specific and relatively small set of player actions. In
this study we propose a DRL-based framework for model-
ing full basketball games. As a result, we were able to de-
velop the Q-Ball measure, which quantifies the impact of
actions by specific players on a given game. Using Q-Ball
could be beneficial for several common scenarios; during a
recess, the coach can “replay” recent states and present al-
ternatives should they happen again. In addition, when con-
sidering tactics for the remainder of the game (during time-
outs, quarters intermissions, and halftime break), the coach
can explore alternative moves. Q-Ball could also be bene-
ficial when changing players, the coach can better evaluate
which player will be most effective on average in the cur-
rent lineup. Moreover, using Q-Ball offline can allow scouts
and managers to identify potential recruits with promising
decision-making skills.

Our novel approach enables us to jointly model not only
the discrete actions players make during the game (e.g., pass,
shot), but also continuous aspects such as player velocity.
Moreover, our framework relies on the rich contextual infor-
mation such as players’ attributes (e.g., height and weight),
players and teams identifiers, the quarter and shot clocks,
etc. Thus, the Q-Ball measure is able to capture and model
latent connections among multiple contextual factors and
their discrete and continues actions. These capabilities en-
able us to accurately model the quality of various aspects
of the game, from a single action to the performance of an
entire team.

We evaluate our approach on a dataset comprised of
619 real NBA games in the 2015-16 season, derived from
the SportVU system and play-by-play, which describes the
events that occur during a game, e.g., shots, steals, and re-
bounds (Vračar, Štrumbelj, and Kononenko 2016). Merging
the data derived from the SportVU system and the play-by-
play results in a high-resolution information dataset that cap-
tures both players’ movements and events. This study’s main
contributions are as follows:
• We use a novel method that enables us to combines

the discrete actions and continuous actions of basketball
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players into a single measure (Q-Ball). This representa-
tion enables us to detect hidden patterns and dependen-
cies in the game.

• We propose a novel method for evaluating and improving
player’s decision-making. We achieve this by comparing
the Q-Ball values of a player’s actions to those of alter-
native simulated actions.

• We interpret the Q-Ball values using the game theory-
based framework of SHAP (SHapley Additive exPlana-
tions) (Lundberg and Lee 2017). Using SHAP allows
us not only to present and analyze the “what-if” scenar-
ios (i.e., assess the outcomes of different decisions than
the one taken), but also answer the “why” (i.e., why the
player should have done different action).

• We utilize the Q-Ball impact measure, which evaluates
the effect of a player on his team’s offensive capabili-
ties. This measure can detect players that have a positive
impact on the offense, which is often difficult to detect
using traditional statistics. We also show that the Q-Ball
correlates with NBA teams’ scoring capabilities and All-
Star players, who are considered the best players in the
NBA.

Related Work
Recent studies (Liu and Schulte 2018; Liu et al. 2020; Liu,
Zhu, and Schulte 2018; Wang et al. 2018; Decroos et al.
2019; Wang et al. 2020) applied DRL for the analysis of var-
ious fields of sport; in the work of (Liu and Schulte 2018),
the authors modeled ice hockey games in order to evaluate
player performance. The authors used a DRL-based solution
to learn the Q-values (i.e., the “quality” of different actions)
with respect to the game’s context, e.g., puck’s location co-
ordinates, game time remaining. To this end, the authors ap-
plied a LSTM-based architecture. Later in this study, the Q-
values framework was extended to the team level. The study
provides strong evidence that DRL-based algorithms can ac-
curately assess the quality of individual actions by players,
as well as player/team quality overall.

Several recent works used DRL for modeling basketball
games; Seid et al. (Seidl et al. 2018) proposed combining
the extracted context of basketball games together with a
deep imitation learning algorithm for the ghosting of basket-
ball players. The authors demonstrated their method’s abil-
ities by sketching players’ movements and actions. While
this work was proven effective in the task of ghosting bas-
ketball players, it did not created a new measure for as-
sessing players’ performance in real time. Moreover, deep
imitation learning based methods have several limitations
(Kostrikov et al. 2018); (1) they are not optimal due to the
implicit bias in the reward function; (2) they require expert
demonstrations, and; (3) they require great number of in-
teractions with the environment to successfully imitate the
experts from which they learn. For this reason, more effi-
cient DRL-based algorithms such as actor-critic (which is
also used in this study) are also explored in this context
(Kostrikov et al. 2018).

In recent work (Wang et al. 2018), the authors used a DRL
to model the decision of whether or not to use a double team

(i.e., assigning two players to guarding one player from the
opposing team) during a basketball game. Their DRL model
was based on the study of (Van Hasselt, Guez, and Silver
2016), which used two value functions that were learned
based on two sets of weights. Their results could then be
applied for recommending which players should be double-
teamed, and who could be left unguarded.

All of these methods use a relatively simplistic approach
that only model specific parts of the game (e.g., the posses-
sion end results). Thus, these methods are not comparable
with our suggested approach, in which we model the game
in its entirety. Furthermore, we manage to provide a unique,
realistic, and suitable measure, Q-Ball, for accurately mod-
eling basketball games. This is the case for the following rea-
sons: (1) we use an extension of the DDPG algorithm, which
enables us to captures the dependencies between discrete
and continuous actions; (2) we use rich contextual informa-
tion, such as players’ features and movements; (3) instead
of focusing on a specific and limited set of actions (Wang
et al. 2018; Sicilia, Pelechrinis, and Goldsberry 2019), we
are able to represent all possible states and actions in all of
the basketball games in our dataset, and; (4) we show that
Q-Ball has a high correlation with the performance of actual
players and teams and can be beneficial for improving the
decision-making of both players and coaches.

The Proposed Method
States, Actions & Rewards

Our DRL agent always takes the perspective of the team
which is on the offense, while modeling the defending
team’s actions as part of its state representation. We chose to
focus on one of the two perspectives of the game as it sim-
plifies the training process and makes our model more ex-
plainable. It should also be noted that our model can be just
as easily applied to defense. Moreover, since the two teams
repeatedly switch sides, training two models is the logical
course for a real-world team.
States. Our state space consists of all possible combinations
of the players/ball positions on the basketball court. We aug-
ment this representation with additional information regard-
ing the elapsed time and player statistics. More formally,
we define the state at time t as st = {Mt, Ft}, where Mt =
{(p1x, p1y), .., (ballx, bally, ballz), ballp, sclock, gclock}.
The variables (pix, piy) represent the coordinates of
players along the x and y axes of basketball court i, and
(ballx, bally, ballz) similarly represent the coordinates of
the ball. The variable ballp denotes the index of the player
in possession of the ball, and sclock and gclock represent
the remaining possession time and game time, respectively.
The vector Ft consists of the following static information:
participating teams’ IDs, participating players’ IDs, and
the height, weight, role, and shooting percentage of each
participating player.

Actions. Each of our actions consists both of a discrete and
a continuous component. We define action a = {AD,AC},
whereAD is a discrete variable denoting the action type and
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AC is a set of continuous variables describing the character-
istics of the action.
• AD – the possible discrete actions are as follows: jump

shot, dunk, layup, hook shot, and the five possible passes
(one cannot pass the ball to oneself, but this setting was
used for maintaining the indices of the players static
throughout the game).

• AC – the velocities of all the players of the agent’s group,
as well as that of the ball. Therefore, the vector for a
given time t is as follows:
ACt = {(vp1x , vp1y ), .., (vballx , vbally , vballz )}. Please
note that the velocities of the players are two-
dimensional while the ball’s is three-dimensional.

It is important to note that our continuous actions are gen-
erated for the entire team. Each player in the analyzed team
is assigned with their own individual set of continuous val-
ues, which determine the optimal action (according to our
model’s assessment) that the player should carry out.

In our experiments we distinguish between two set of
actions: actual actions a = {AD,AC} which took place
in reality, and suggested actions â = {ÂD, ÂC} which are
alternatives proposed by our model. We elaborate on this
further in the following section.

The Reward Function. We assign a reward for every time
step in the game. The reward for each time step t, denoted
by rt, reflects the actual scores assigned by the rules of the
game (i.e., as close a representation of reality as possible).
The reward at time step t receives one of four values: a) a
value of {+2,+3} if a successful shot has been made (the
value is based on the type of the shot); b) a value of −0.5
if the opposing team takes hold of the ball; c) in case of a
shooting foul we use multiplication of the shooting player’s
free-throw percentage with the number of free-throw shots;
d) 0 otherwise.

The negative reward of −0.5 was empirically set, and its
goal was to actively encourage our DRL agent to avoid sce-
narios where the ball is dropped. We use a value of −0.5 as
higher negative values could imply that losing the ball in-
evitably results in points for the opposing team, which is not
always the case.

Model Architecture
Our goal is to evaluate the performance, i.e., “quality of
play”, of individual players and whole teams. We therefore
use an actor-critic architecture (Konda and Tsitsiklis 2000),
which outputs a value for each possible state-action combi-
nation. Actor-critic architectures consist of two main com-
ponents: a) the actor, whose task is to improve the policy
(i.e., strategy) executed by the architecture, and; b) the critic,
whose task is to assess the current policy and provide feed-
back to the actor. We use the assessments made by the critic
for our final assessment of game quality.

An overview of our proposed architecture is presented
in Figure 1. We implement the DDPG algorithm (Lillicrap
et al. 2015), which is a popular version of the actor-critic
architecture. More specifically, we build upon the imple-
mentation presented in (Hausknecht and Stone 2015), which

Figure 1: Overview of our proposed DRL model for out-
putting the Q-Ball measure.

is an expansion of the original algorithm. This extension in-
cludes two important additions: first, we use a replay buffer
(Lillicrap et al. 2015; Zhang and Sutton 2017), which stores
previously-analyzed games. The buffer routinely submits
these games as input to the architecture in order to prevent
the architecture from “forgetting” previously-analyzed
cases. Secondly, we use ”soft” target updates (Lillicrap et al.
2015), which were shown to improve the architecture’s
performance. We now describe the various components of
our architecture in detail.

The input. Similarly to our state representation, our input
has both a static and a sequential (dynamic) component.
The static component is identical to the Ft vector, and is
used to describe the properties of the participating players
and their teams. The sequential component consists of the
Mt vector of the current time step t, concatenated to the
previous 15 Mt vectors – {Mt−15, ..,Mt−1}. These vectors
are ordered chronologically, and are provided as input (one
time step at a time) to the LSTM networks of both the actor
and the critic.

The Actor. The actor receives as input both the static and
the sequential inputs. For the static inputs, we create sep-
arate embedding representations for the players and teams
IDs. The players’ attributes (e.g., height) are fed directly to
the subsequent dense layer (since the latter is numeric, no
embedding was deemed necessary). The sequential input is
fed to an LSTM architecture (Hochreiter and Schmidhuber
1997), and the final output of the network is then concate-
nated to that of the dense layer representing the static input.

Our actions contain both a discrete component (the type
of the action) and a continuous one (e.g., the velocity
of each player and ball throw angle). To represent this
duality, our actor architecture has two outputs, one for each
component. The discrete actions output uses the softmax
function to select a discrete action, while the continuous
actions output uses the tanh function. The final output of

8808



the actor is therefore not only what to do, but how to do
it—not only where to run, but at what speed, for example.
In this regard our approach provides a level of detail not
possible in previous studies.

The Critic. The critic receives (and models) the same input
as the actor, but with the addition of the actual actions that
occurred during the game. These actual actions are added
during the concatenation phase that combines the discrete
and continuous information, exactly as in the actor module.
The critic then proceeds to assign a score to the actual ac-
tions, while taking into consideration the static and sequen-
tial information. We denote this score as Q-Ball. This mea-
sure is the main output of our approach, and later in this
study we demonstrate how it can be used to rank players
and teams. We also use Q-Ball to rank the alternative actions
to those actually taken by replacing the actual actions with
the suggested actions (i.e., the output of the actor). Note that
a higher Q-Ball for the actions of a player means that the
model considers the combined static/sequential characteris-
tics of the action effective. This means that the right type of
action (e.g., pass the ball), if executed poorly (e.g., moving
to left instead of the right), will result in a low Q-Ball score.

The critic network is updated using the temporal differ-
ence (TD) update, as shown in (Watkins and Dayan 1992):

Q(st, at) = Q(st, at)+α(rt+γmax
at+1

Q′(st+1, at+1)−Q(st, at))

(1)
where Q represents the critic network, γ is the discount fac-
tor for future rewards, and α is the learning rate.

By transforming the temporal difference update equation
to the critic’s loss function and adjusting it to the continuous
action space, we aim to minimize the following loss func-
tion:

LQ(st, at|θ) = (Q(st, at|θQ)
− (rt + γQ(st+1, µ(st+1|θµ)′|θQ)))2

(2)

Where µ is the actor network, θµ are the network’s parame-
ters, and θQ are the critic’s network parameters.

While our proposed architecture builds upon the one pre-
sented in (Hausknecht and Stone 2015), we wish to point out
an important difference. While the output of (Hausknecht
and Stone 2015) is a specific discrete action and its contin-
uous parameters, our proposed approach is used to simulta-
neously assign actions to multiple separate entities, i.e., an
entire basketball team.

Data Collection and Preprocessing
Data Collection. The technological innovations of recent
years now enable extremely accurate modeling of the game.
As a result, we are able to create a rich and accurate repre-
sentation and use it as input for our DRL agent. In this study,
we used (and combined information from) the following two
datasets:
• The moments dataset – This dataset was collected by

the SportVU tracking system3. The data is partitioned
3https://www.statsperform.com/team-

performance/football/optical-tracking/

to games, where each game is a sequence of events. An
event contains players’ IDs, teams’ IDs, and a sequence
of moments. A moment is composed of the players’ coor-
dinates (x, y), ball coordinates (x, y, and z), and the game
and shot clocks. The dataset contains data of 619 games
from the 2015-2016 NBA season.

• The play-by-play dataset4 – This dataset describes ev-
ery play results that occurred during the game, such as
shots, rebounds, fouls, and substitutions. We extracted
the play-by-play data for all games in the moments
dataset. For our purposes, we selected the following play
results types: shots, rebounds, fouls, and turnovers. We
also extracted the play result’s textual description, rele-
vant players, game clock, and ID.

Preprocessing. We preprocessed the dataset in order to cre-
ate episodes from the game possessions, with possession be-
ing the period of time (up to 24 seconds) in which one team
was in control of the ball. To create a possessions dataset
annotated with the outcome of each possession (e.g., score,
losing the ball), we merged the datasets mentioned above
using the game and shot clocks. Based on the ball locations,
i.e., coordinates, we extracted actions (passes, shots etc.) and
the identity of the current player handling the ball. Based on
the event description, we determined whether a shot is one
of the following types: jump shot, layup, dunk, or hook shot.
Additionally, we used the players’ locations to compute their
velocities in each axis for each moment; the velocity delta
between two moments is regarded as a player’s movement
actions.

Episodes that include shots end when the player releases
the ball, allowing us to assign the reward to the shooting
action. In contrast to most works in the DRL field, we do
not use an environment for recording episodes; our dataset
serves as a recorded replay of episodes. The episode is de-
fined as a sequence of states, actions, and rewards.

Evaluation
Experimental Setup
Data Sampling. We sample the episodes dataset every
0.24 seconds in order to: (1) reduce the amount of data and
avoid the exploding gradient problem (Bengio, Simard, and
Frasconi 1994), and; (2) improve the Q-Ball by adjusting
the actions’ change rate to the speeds of real players
(so each sample reflects some change in the state of the
game). The state’s sequential data contains the data from
16 such moments (i.e., consecutive samples), and each
state accumulates the data from the last four seconds. We
also filter episodes with lengths of less than four seconds;
as a result, a single state contains four seconds worth of data.

Model Parameters. We use the grid search strategy to op-
timize the model’s parameter. The final setting used in our
experiments is as follows:
• In order to evaluate aggregated measures, such as overall

offensive success rate of a given team, we use a discount
factor value of 0.8. To evaluate individual measures, such
4https://www.basketball-reference.com/
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as shooting players’ efficiency, we use a discount fac-
tor value of 0.95. The higher discount factor for individ-
ual players provides an incentive for our model to place
greater emphasis on the actions of individual players.

• We use stochastic gradient descent (SGD) as the opti-
mizer, and set the replay buffer size at 50,000. We also
set the batch size at 32, which determines the number of
transitions sampled from the replay buffer.

• We use two different learning rates: the actor’s learning
rate is 0.0001, and the critic’s learning rate is 0.0002.

• We set each of the embedding layers at 10 neurons in
size, and each of the internal dense layers at 64 neurons
in size. These neurons are with the hyperbolic tangent
(Tanh) activation function; the LSTM has 50 cells. The
final dense layer in the critic is initialized with the lin-
ear activation function with a single neuron, which out-
puts the Q-Ball values. In the actor, to assess the sug-
gested discrete actions in the final dense layer, we set the
number of neurons to 11. This value is equal to the num-
ber of possible discrete actions, and we initialize it with
the softmax activation function. To assess the continu-
ous actions we set the number of neurons to 13 which is
equivalent to the number of possible continuous actions,
all with the Tanh activation function.

Hardware We implement our DRL model on a machine
with the following settings: a GPU card of RTX 2080, CPU
of Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz and 72G
of RAM, Samsung DDR4 2666 MHz.

Evaluating a Player’s Impact on a Lineup
The goal of this analysis is to assess Q-Ball’s ability to pre-
dict the contribution of any given player to a group’s lineup.
In other words, our aim is to predict whether the addition
or replacement of a player will improve the team’s offensive
capabilities, measured by the overall number of points in a
game/season.

Before addressing the inherently difficult problem of pre-
dicting a player’s contribution to his team’s offensive ca-
pabilities, we perform a preliminary analysis. We calculate
the average Q-Ball for all the unique lineups that played to-
gether for at least 50 episodes throughout our data. The top
five lineups are presented in Table 1. Examining the results,
we observe that a third of the top 15 lineups belong to the
Golden State Warriors, which broke the NBA record for the
most wins in a regular season during the analyzed season.

Next, we turn our attention to predicting individual play-
ers’ contribution to the lineup. It should be noted that mea-
suring the overall impact of a player on the success of the
offense is inherently difficult, as a player can impact the of-
fense without performing any significant actions. For exam-
ple, when a good three-point shooter is standing behind the
arc, he forces his defender to stay within reach and therefore
prevents him from helping other defenders. Replacing this
player with a bad three-point shooter allows the defender to
be more aggressive in helping his teammates with their de-
fensive assignments, reducing the offense chances to score.

In this experiment, we define the player’s Q-Ball impact
on a specific lineup as the difference between the lineup’s

Figure 2: Top 10 players with the highest Q-Ball impact val-
ues.

average Q-Ball value when the player was part of the lineup
to the average Q-Ball when he was not. The Q-Ball impact
measure allows us to evaluate a player’s overall effect on the
success of his team’s offense. The Q-Ball impact creates a
more accurate evaluation of a player’s offensive effect, since
it considers all of the other players playing with him. Figure
2 presents the top 10 players with the best overall Q-Ball
impact values. We observe that some of the players are con-
sidered the dominant players on their teams, including Chris
Paul and Kentavious Caldwell-Pope, who played an average
of 34.5 minutes per game.

Using this measurement, a team can identify the players
with a major impact on the team’s offense, thus allowing
the team’s coaching staff to make better decisions when as-
sembling their lineups. For example, in Figure 2, Kentavi-
ous Caldwell-Pope has the highest Q-Ball impact; in fact,
he won the NBA championship with the LA Lakers during
the 2019-2020 season as a part of the team’s starting lineup.
His statistics in the 2015-2016 season, however, were bad-
to-mediocre compared to the league’s average statistics. For
example, his offensive rating was 107, which was close to
the league average, and his field goals added (FGA), i.e.,
the number of extra points added based on the field goals
made by the player compared to the average player, was -
44.8, which was one of the worst in the league. During the
2019-2020 season, however, he was among the top 100 FGA
players and the top 150 offensive rating players. In his sce-
nario, we can see that the Q-Ball impact measure detected a
strong indication of the this player’s offensive potential.

Team Evaluation
The goal of this analysis is to determine Q-Ball’s ability to
predict the teams’ likelihood of conducting a successful of-
fense (i.e., score points). In this experiment, we aim to eval-
uate each team’s chances of a successful offense by calculat-
ing the average Q-Ball of each state and action for the entire
team. We compare this measurement with the average num-
ber of points the team scored in all of the examined games
and present the results in Figure 3.

Using the Pearson correlation, we measure the correlation
between the team’s average Q-Ball and the average number
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Lineup Avg
Q-Ball

Possession
Count

Avg Points
Per Shot Team

G.Monroe, J.Parker, K.Middleton, M.Carter-Williams, O.Mayo 1.690000 55 0.807527 Milwaukee Bucks
A.Iguodala, D.Green, F.Ezeli, S.Curry, S.Livingston 1.513313 70 0.886600 Golden State Warriors
A.Bradley, A.Johnson, I.Thomas, J.Crowder, K.Olynyk 1.265447 52 0.836962 Boston Celtics
A.Johnson, E.Turner, I.Thomas, J.Crowder, K.Olynyk 1.237501 63 0.890698 Boston Celtics
A.Iguodala, D.Green, H.Barnes, K.Thompson, S.Curry 1.177276 77 1.157662 Golden State Warriors

Table 1: The top five lineups with the highest average Q-Ball.

Figure 3: Points scored and average team Q-Ball compari-
son.

of points per game, and receive a coefficient of 0.622. We
also measure the correlation between the team’s offensive
efficiency measurement (Oliver 2004), which is the average
points scored by a team during 100 possessions and the av-
erage points scored, which produces a coefficient of 0.85.
These results indicate the Q-Ball is able to accurately quan-
tify the performance of a team by analyzing all of its actions
(and not only those directly related to shooting). We con-
clude that Q-Ball is therefore capable of accurately model-
ing the quality of a team’s offensive performance.

Q-Ball for Frame-by-Frame Analysis and Decision
Support
The goal of this analysis is to determine Q-Ball’s ability
to evaluate players’ actions and decision-making, as well
as propose alternatives. Using our model, we are able to
provide the Q-Ball value in a real-time, thus providing im-
mediate feedback. We present an example for such a sce-
nario in Figure 4. In this example, the Golden State Warriors
(yellow) are playing against the Charlotte Hornets. The ball
color changes according to its state, with blue representing
a pass and red representing a shot.

The example above consists of multiple sequential deci-
sions, such as passing and shooting the ball. Most of the
time the Q-Ball value of shooting the ball is higher than the
Q-Ball of other actions. This could be explained by the fact
that NBA players are overall good shooters and that our re-
ward equation only grants a positive reward for the shooting
actions. In the example presented in Figure 4, we observe a
relative difference in the Q-Ball for different actions. For ex-
ample, we observe that in frames 2 and 4 the ball was passed

to open players; the Q-Ball values of those passes are rela-
tively higher than the action presented in frame 5, which is
when a player drives to the hoop with three defenders close
by. This indicates that the player’s decision to drive to the
hoop in frame 5 was incorrect.

Our model also allows us to compute the Q-Ball value
for every possible action to determine whether a player
made the right decision. Furthermore, by using the Q-Ball
measurement in real time, we could evaluate the players’
action in an actual game with high resolution. Thus, the
model can inform the coaching staff when the players
made good or poor decisions, and also assist in tactical
decision-making. Moreover, our model enables simulations
of alternative scenarios for every episode, thus enabling the
teams to improving their strategies.

Simulating Game Scenarios. Our model can be used to
synthesize data of alternative scenarios and grade it with Q-
Ball. By evaluating the alternative proposed scenarios, we
can determine whether a team or player made the best de-
cisions during a given play, and recommend alternatives. In
Figure 4, we present an example of the Q-Ball values of al-
ternative scenarios suggested by our framework for the ex-
amined episode. In the figure, frame 7 present the original
scenario as recorded during the game. Frame 7b presents the
alternative scenario using simulated data.

In the example presented in Figure 4, at frame 6, #4 (Bran-
don Rush) decided to pass the ball to #23 (Draymond Green)
who shot the ball; this action resulted in Q-Ball = 4.264. In-
stead of passing the ball, Brandon Rush could have shot the
ball, as he was relatively close to the hoop; we simulated
this action in frame 7b, the Q-Ball value of this action is
Q-Ball = 4.321. When observing frame 7, we see that al-
though Brandon Rush was surrounded by three defenders,
none of them blocked his way to the hoop; frame 7b shows
that those defenders obstructed the way to the hoop from
Draymond Green, which led to a tough shot. The alternative
scenario results in a Q-Ball that is in the 75th percentile of all
shot values in the dataset, whereas the original shot Q-Ball
was in the 50th percentile. This analysis emphasizes that the
simulated scenario has a much better chance of resulting in
scored points rather than missing the shot. Therefore, ac-
cording to our model, Brandon Rush should have taken a
shot instead of passing the ball.

The example described above demonstrates Q-Ball’s abil-
ity to produce specific recommendations for the complex
scenarios of professional basketball. Using our approach, a
team would not only be able to construct effective (or cost-
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Figure 4: The Q-Ball value in a real-time evaluation (frames 1-7), alternative scenario (frame 7b), and demonstration of our
ability to interpret the alternative scenario.

effective) lineups, but also train the players how to perform
when playing with (or against) specific players.

Interpreting the Q-Ball Values
The goal of this analysis is to interpret the Q-Ball values.
This could help coaching staffs to improve their player ac-
tions by understanding the reason behind each suggestion
our model provided. To interpret the Q-Ball values, we use
the framework of SHAP, which we applied to our model.
Using SHAP, we are able to calculate SHAP values, a metric
that measures the contribution of each feature regarding the
Q-Ball values. In Figure 4 we present the SHAP values of
the alternative scenario (presented in Frame 7b). The posi-
tive values, which appear in red, indicate the locations that
contributed to a higher positive Q-Ball value, and negative
values, marked in blue, indicate the opposite.

From the results we observe that the locations of the at-
tack players (marked with yellow) #23 and #12 have pos-
itive SHAP values, i.e., a positive impact on Q-Ball. This
indicates that their positions increase the probability that the
possession will result in a score. Using this evaluation we
can also assess the positions of the defenders (marked with
turquoise). We notice that player #15 has a negative SHAP
value, i.e., its position has a negative contribution on Q-Ball
value, which decreases the probability the attack will result
in a positive result. This Q-Ball value makes sense because
this player covers the pass range for two attack players, #11
and #30. In contrast to the position of the defenders #2 and
#19, which should have been changed since their positions
left player #4 uncovered in the paint area and player #23
completely unguarded. Using this analysis, we are able rec-
ommend better players placement.

We also explore the results of SHAP values for all features
without the players’ positions and noticed that the most con-
tribute feature, with SHAP value of 0.125, is possession of

the ball by player #4. Interestingly, this could indicate why
player #4 should have continued to hold the ball instead of
passing it to player #23 as observed in the original scenario
in frame 7. We can also observe that the most negative fea-
ture is the game clock that has a negative SHAP value of
-0.05, a value which indicates that this feature decreases the
probability to score points at that specific game time. Using
this evaluation we could present to the coaching staff which
information contributed to higher Q-Ball values, thus, im-
proving the players’ decision making.

Limitations and Conclusions
Limitations. The main limitation of our approach is its de-
pendence on data, which is a common drawback of data-
driven methods. We will likely have to re-train the model
to adjust it to new players and/or basketball leagues (e.g.,
the EuroLeague), which have not been observed before in
our dataset (i.e., the cold-start problem). Moreover, we have
currently not implemented a prospective evaluation, which
is likely to require the collection of more data.
Conclusions. We present Q-Ball, a DRL algorithm for the
analysis of basketball games. We use an extension of the
DDPG architecture and show that it can be applied in an en-
vironment with both discrete and continuous actions. We use
our proposed model to create a novel measurement, the Q-
Ball, and show that it is well-suited for modeling the teams’
shooting performance, players’ actions, and their decision-
making process. We demonstrate the average Q-Ball value
correlates with the teams’ scoring capabilities. Based on the
Q-Ball, we can determine the optimal lineups for each team
for each moment of the game. Our proposed approach has
multiple practical applications, both in terms of strategic and
tactical decision-making. As such, Q-Ball is an important
first step in the integration of learning-based algorithms in
all aspects of the game.
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