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Abstract
Federated learning (FL) is a popular technique to train ma-
chine learning (ML) models with decentralized data. Exten-
sive works have studied the performance of the global model;
however, it is still unclear how the training process affects the
final test accuracy. Exacerbating this problem is the fact that
FL executions differ significantly from traditional ML with
heterogeneous data characteristics across clients, involving
more hyperparameters. In this work, we show that the final
test accuracy of FL is dramatically affected by the early phase
of the training process, i.e., FL exhibits critical learning pe-
riods, in which small gradient errors irrecoverably impact the
final test accuracy. To further explain this phenomenon, we
generalize the trace of Fisher Information Matrix (FIM) to
FL and define a new notion called FedFIM, a quantity re-
flecting the local curvature of each client from the beginning
of training in FL. Our findings suggest that the initial learn-
ing phase plays a critical role in understanding the FL per-
formance. This is in contrast to many existing works which
generally do not connect the final accuracy of FL to the early
phase training. Finally, seizing critical learning periods in FL
is of independent interest and could be useful for other prob-
lems such as the choices of hyperparameters including but not
limited to the number of client selected per round, batch size,
so as to improve the performance of FL training and testing.

Introduction
The ever-growing attention to data privacy and the popular-
ity of mobile computing have impelled the rise of Federated
learning (FL) (McMahan et al. 2017; Imteaj et al. 2021),
a new distributed machine learning paradigm on decentral-
ized data. A typical FL system consists a central server and
multiple decentralized clients (e.g., smartphones and IoT
devices). The central server initiates federated learning by
sending a global model to clients. The clients then use their
local data samples to train the received model with common
deep learning algorithms and aggregate their local models
to the central server. The central server updates the global
model by aggregating the received local models and sends it
to clients for further training. By repeating the local training
and global aggregation, the central server obtains a global
model jointly trained by decentralized clients without leak-
ing any raw data. This unique distributed nature enables an
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extensive deployment of FL that trains deep learning mod-
els on sensitive private data, such as Google Keyboard (Yang
et al. 2018).

The distributed nature of FL raises a series of new chal-
lenges in terms of system performance and data statistics. In
FL systems, clients are typically loosely-connected mobile
devices with limited communication bandwidth, computa-
tion power, and battery life. Unlike traditional centralized
machine learning, data samples of each client in FL follow
a non-identical and independent distribution (non-IID), in-
troducing bias that slows down or even fails the training. A
few recent studies have been proposed to address these chal-
lenges by model compression (Konečnỳ et al. 2016; Suresh
et al. 2017), communication frequency optimization (Wang
and Joshi 2019; Wang et al. 2019; Karimireddy et al. 2020),
and client selections (Lai et al. 2021; Wang et al. 2020a;
Xiong, Yan, and Li 2021).

However, existing studies have not yet explored the sig-
nificance of critical learning periods. Recent works have
revealed that the first few training epochs—known as criti-
cal learning periods—determine the final quality of a deep
neural network (DNN) model in traditional centralized
ML (Achille, Rovere, and Soatto 2019; Jastrzebski et al.
2019; Golatkar, Achille, and Soatto 2019; Jastrzebski et al.
2021). During a critical period, deficits such as low qual-
ity or quantity of training data will cause irreversible model
degradation, no matter how much additional training is per-
formed after the period. The existence of critical periods in
FL remains an open question due to the unique distributed
nature of FL.

In this paper, we seek critical learning periods in FL with
systematic experiments and theoretical analysis, and we em-
phasize the necessity of seizing the critical learning peri-
ods to improve FL training efficiency. Specifically, through
a range of carefully designed experiments on different ML
models and datasets, we observe the consistent existence of
critical learning periods in the FL training process. We fur-
ther propose a new metric named Federated Fisher Infor-
mation Matrix (FedFIM) to describe and explain this phe-
nomenon. FedFIM is calculated based on a classical statis-
tics notion of Fisher Information Matrix (FIM) (Amari and
Nagaoka 2000) that approximates the local curvature of the
loss surface in FL efficiently. We show that the phenomenon
of critical learning periods in FL can be explained using the
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Figure 1: FL exhibits critical learning periods. (top) The final accuracy achieved by ResNet-18 on both IID and Non-IID
CIFAR-10 with FedAvg using partial local datasets (where R indicates the ratio of local datasets) for training as a function of
the communication round at which the partial training dataset is recovered to the entire training dataset. The test accuracy of FL
is permanently impaired if the training dataset is not recovered to the entire training dataset early enough, no matter how many
additional training rounds are performed. (bottom) Communication rounds vs. recover round (RC#). The total communication
rounds required to achieve the corresponding final accuracy are significantly increased as a function of the recover round.

trace of FedFIM, a quantity reflecting the local curvature
of each clients from the beginning of the training in FL.
Our findings suggest that the initial learning phase plays
a critical role in understanding the FL performance, com-
plementing many existing studies that generally ignore the
connection between the final model accuracy and the early
phase training. To the best of our knowledge, this is the first
work towards seizing critical learning periods in FL frame-
work for training efficiency. Our main contributions are as
follows:

1. We discover that critical learning periods consistently ex-
ist in FL with representative models and datasets through
our carefully-designed experiments.

2. We systematically explore the impacts of critical learning
periods for FL under a wide range of FL hyperparam-
eters, including client availability, learning rates, batch
size, and weight decay.

3. We propose a new notion dubbed Federated Fisher Infor-
mation Matrix (FedFIM) and analyze the phenomenon of
critical learning periods in FL through the trace of Fed-
FIM. We show that model quality during critical periods
correlates strongly with the trace of FedFIM.

Our experiment details, parameter settings and additional
experimental results can be found in (Yan, Wang, and Li
2021).

Background
Federated Learning
The goal of FL is to solve a joint optimization problem as

min
w∈Rd

L(w,D) :=
∑
j∈N

|Dj |
|D|
Lj(w,Dj), (1)

where w denotes the model parameters, N denotes the set
of clients, Dj is the local dataset of client j ∈ N , the entire
training dataset is D = ∪j∈NDj , and Lj(w,Dj) is the local
loss function of client j. A typical solution to this optimiza-
tion problem is federated averaging (FedAvg) algorithm
(McMahan et al. 2017). Specifically, FedAvg initializes with
a random global model w0 and iterates the following two
steps within each communication round t = 1, · · · , T :

• Local training. The central server sends the goal model
wt−1 to a randomly selected subset of clients Nt ⊂ N .
Each selected client j ∈ Nt performs local training using
its own dataset Dj :

wt,j(k)← wt,j(k − 1)− η∇Lj(wt,j(k − 1),Dj), (2)

where η is the learning rate and k = 1, · · · ,K is the
index of local iterations.

• Global aggregation. The central server obtains a new
global model wt by weighted-averaging the local models
collected from the selected clients in round t:

wt ←
∑
j∈Nt

|Dj |
| ∪j∈Nt Dj |

wt,j(K). (3)
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Figure 2: The existence of critical learning periods in FL: FedAvg trained on ResNet-18 using both IID and Non-IID CIFAR-10
with constant learning rates (lr).

There are a few variant federated learning algorithms,
such as SCAFFOLD (Karimireddy et al. 2020), FedProx (Li
et al. 2020a), and FetchSGD (Rothchild et al. 2020). We
choose to perform observations and analysis based on Fe-
dAvg because its simplicity and generality extensively re-
duce the uncertainty of critical periods.

Critical Learning Periods
Critical learning periods were originally observed in early
post-natal development of humans and animals that sensory
deficits will cause lifelong irreversible skill impairment. Re-
cently, researchers observed similar phenomenons in cen-
tralized deep learning that training a model with defective
data such as blurred images in early epochs will decrease
its final accuracy, no matter how many additional training
epochs are performed (Agarwal et al. 2021; Achille, Rovere,
and Soatto 2019; Jastrzebski et al. 2019; Golatkar, Achille,
and Soatto 2019; Jastrzebski et al. 2021).

However, observing and justifying critical learning peri-
ods in FL are hindered a few obstacles: (i) FL involves multi-
ple deep learning processes across randomly selected clients
with their own data; (ii) the global model aggregated by lo-
cal models at the central server has no direct information
about the training data decentralized across clients; and (iii)
FL has far more hyperparameters (e.g., the number of se-
lected clients and data distribution) than centralized training
that make it complicated to induce critical learning periods.

Critical Learning Periods in FL
We hypothesize that the final accuracy of FL is significantly
affected by the initial learning phase, which we term as the
critical learning periods in FL. Consider a model with loss
function `(x;w), where ` reaches a minimum loss `loss with
a test accuracy `acc when optimized with FedAvg across N
decentralized clients on the entire training dataset D. In ad-
dition, consider optimizing FedAvg across all clients only
with a subset of the local training dataset D′j ⊂ Dj , ∀j ∈ N
in the first M communication rounds and then using the en-
tire training dataset D afterwards. Then ` reaches a mini-

mum loss of `′loss(M) with a test accuracy of `′acc(M). The
critical learning periods articulate that there exist M1 and
M2 such that `′acc(M1) ≥ `′acc(M2) when M1 ≤ M2, i.e.,
the initial learning phase is critical in determining the fi-
nal performance of FL, and the effect of insufficient training
(i.e., only using part of the entire training dataset) during the
critical learning periods cannot be overcome, no matter how
much additional training is performed.

In this section, we address two key questions pertains to
the phenomenon of critical learning periods in FL. We first
show via an extensive set of experiments that the critical
learning periods can be observed across different popular
ML models and datasets. We then reveal that the critical
learning periods in FL stay robust under various training
schemes.

FL Exhibits Critical Learning Periods
We perform extensive simulations using two representative
ML models: ResNet-18 (He et al. 2016) and CNN, on pop-
ular datasets CIFAR-10 and CIFAR-100 (Krizhevsky and
Hinton 2009). To present the existence of critical learn-
ing periods in FL, we adopt the standard FedAvg (McMa-
han et al. 2017) which requires the entire training dataset
throughout the training process, as well as its performance
when only a subset of the training dataset on each client is
involved in the first M communication rounds at which the
training dataset is recovered to the entire training dataset. We
call M as the “Recover Round” and denote R as the ratio
of local datasets involved in training. We consider a system
with N = 64 clients and FedAvg randomly selects a subset
of 12 clients in each round. The batch size is of 16; the initial
learning rate is set to 0.01 with a decay of 0.97 per round;
and the SGD solver is adopted using an exponential anneal-
ing scheduling for the learning rate with a weight decay of
5× 10−4.

Figure 1 (top) reports the final performance of FL affected
by the partial training datasets with different ratios R as a
function of the recover round M . All results consistently
endorse that the critical learning periods exist across all set-
tings with different ratios of local datasets involved in the
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Figure 3: The existence of critical learning periods in FL: FedAvg trained on ResNet-18 using both IID and Non-IID CIFAR-10
with different batch sizes (BS).
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Figure 4: The existence of critical learning periods in FL:
FedAvg trained on ResNet-18 using both IID and Non-IID
CIFAR-10 with different weight decays (WD).

early learning phase: if the training dataset is not recovered
to the entire dataset, at as early as the 20-th communication
rounds, the final test accuracy of FL is severely degraded
compared to the standard FedAvg. Comparing among dif-
ferent ratios R of local datasets involved in early training
phase, it is not too surprising to see that lower R of local
datasets in the early training phase makes drawing critical
learning periods easier.

We further measure the total communication rounds re-
quired to achieve the corresponding final accuracy as a func-
tion of the recover round, as illustrated in Figure 1 (bottom).
It is obvious that the communication rounds are significantly
increased with a lower final test accuracy as a function of
the recover round M . This further indicates the importance
of the initial learning phase in determining the final perfor-
mance of FL.

Learning Rate Annealing and Batch Size
We conduct the same experiments as in Figure 1 but using
a constant learning rate rather than an annealing scheme. In
particular, we set the constant learning rates to be 0.001 and
0.003, respectively. From Figure 2, we still observe the ex-
istence of critical learning periods in FL even with constant
learning rates. Therefore the phenomenon of critical learn-

ing periods in FL are not resultant from an annealed learning
rate in later rounds, and cannot be solely explained in terms
of the loss landscape of the optimization in (1). Analogous
results illustrating the impact of batch size are presents in
Figure 3. Again the critical learning periods consistently ex-
ist regardless of the choice of batch size. This further sug-
gests that the phenomenon of critical learning periods in FL
cannot be simply explained by the differences in batch sizes.

Weight Decay
Similarly, the results for the same experiments as in Figure 1
but with different weight decays are presented in Figure 4.
We still observe the critical learning periods as in Figure 1,
but surprisingly the shapes of the critical learning periods
are robust to the values of weight decays, i.e., changing the
weight decays does not impact the shape of the critical learn-
ing periods.

Federated Fisher Information
Through extensive experiments, we have shown that the ini-
tial learning phase of the training process plays a critical
role in the final test accuracy of FL. Our main contribution
in this section is to show that this phenomenon can be ex-
plained by the trace of the Federated Fisher Information
Matrix (FedFIM), a quantity reflecting the local curvature
of each clients from the beginning of the training in FL. We
begin with the definition of the FIM for centralized training.

Fisher Information Matrix
Consider a probabilisitic classification model pw(y|x),
where w is the model parameter. Let `(x, y;w) be the cross-
entropy loss function calculated for input x and label y. De-
note the corresponding gradient of the loss computed for
an example (x, y) as g(x, y;w) = ∂

∂w`(x, y;w). Then the
Fisher Information Matrix (FIM) F for centralized training
is defined as

F (w) = Ex∼X ,ŷ∼pw(y|x)[g(x, ŷ)g(x, ŷ)
ᵀ], (4)

where the expectation is often approximated using the em-
pirical distribution X induced by the centralized training
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Figure 5: Connections between critical learning periods in FL and the Federated Fisher information achieved by ResNet-18 on
IID CIFAR-10 with FedAvg using 30% of local datasets for training initially and recover to the entire datasets upon the recover
round. (a) Test accuracy vs. recover rounds: the final test accuracy is permanently impaired if the training dataset is not fully
recovered at as early as the 20-th round. (b) Trace of FedFIM vs. recover round. There exists a sharp increase of the trace of
FedFIM in the early training phases. (c) Weighted cumulative sum of the trace of FedFIM vs. recover round.

dataset. Note that the FIM can be viewed as a local met-
ric on how much the perturbation of the weights affects the
network output (Amari and Nagaoka 2000). The FIM can
also be seen as an approximation to the Hessian of the loss
function (Martens 2014), and hence of the curvature of the
loss landscape at a particular point w during training. This
provides a natural connection between the FIM and the op-
timization procedure (Amari and Nagaoka 2000).

However, the computation of FIM in (4) requires the
availability of the entire training dataset for the global model
at the server. Unfortunately, this is infeasible for FL since
training data is decentralized across clients. Hence we can-
not compute FIM for FL as in (4). We now introduce a new
notion to overcome this challenge.

Federated Fisher Information Matrix
Given that training data resides in each client, and the train-
ing process of FL in (2) and (3), we first introduce the no-
tation of F j(w), which represents the local FIM on client
j ∈ N :

F j(w) = Exj∼Xj ,ŷj∼pw(yj |xj)[g(xj , ŷj)g(xj , ŷj)
ᵀ], (5)

where Xj is the empirical distribution induced by the local
dataset Dj of client j. Note that F j(w) is computed using
the global model w on the local dataset Dj , and can be con-
sidered as a local metric measuring how the perturbation of
the global model affects the FL training performance from
the perspective of client j. As a result, the overall impact
of the perturbation of the global model on the final output,
which we define as the Federated Fisher Information Ma-
trix (FedFIM) FedF for FL, can be computed using the
weighted average of local FIM across all clients:

FedF (w) =
∑
j

|Dj |
|D|

F j(w), (6)

where the weight of client j is the size of its dataset. The
rationale is that lower local FIM often has little effect on

the final performance. We denote the trace of FedF as
Tr(FedF ).

Experimental Results
We conduct similar experiments as in Figure 1 with partial
local datasets involved in the initial learning phases and the
training datasets recover to the entire datasets at the “recover
rounds” (RC#). The test accuracy and the trace of FedFIM
with different recover rounds and R = 0.3 on IID and Non-
IID CIFAR-10 are presented in Figures 5 and 6.

First of all, we again observe the existence of critical
learning periods since if the training dataset is not recov-
ered to the entire datasets, e.g., at as early as the 20-th com-
munication rounds, the final test accuracy of FL is perma-
nently impaired. Second, this information is fully reflected
via the trace of FedFIM as shown in Figure 5 (b) for IID
case and Figure 6 (b) for Non-IID case. We observe a sharp
increase in the trace of the FedFIM in the early phases of
the FL training process, which coincides with dramastic in-
crease of the test accuracy in the early training phase. The
information starts to decrease when the test accuracy starts
to plateau. Since the training datasets are recovered from
30% of local datasets to the entire datasets at the recover
rounds, additional data further boosts the test accuracy as
shown in Figure 5 (a). However, such a test accuracy boost
decreases significantly as the recover rounds increase. This
further suggests that the initial learning phases play a critical
role in the FL performance and the permanent model degra-
dation is irreversible no matter how much additional training
is performed after the critical learning periods. Correspond-
ingly, the accuracy boosting results in a slight increase in the
trace of FedFIM, and the information decreases again when
the test accuracy starts to plateau.

In general, the measures of test accuracy and trace of Fed-
FIM are noisy, especially with Non-IID dataset as shown
in Figure 6. This is because for instance the learning rate
has to be adjusted in order to compensate for possible gen-
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Figure 6: Connections between critical learning periods in FL and the Federated Fisher information achieved by ResNet-18 on
Non-IID CIFAR-10 with FedAvg using 30% of local datasets for training initially and recover to the entire datasets upon the
recover round.

eralization issues of the training process (Jastrzebski et al.
2017; Smith et al. 2018). To this end, we further consider a
weighted cumulative sum of the trace of FedFIM as follows

Cum-Tr(FedF )(k) =
k∑

i=0

ηiTr(FedF i), (7)

where ηi is the learning rate at the i-th round, and FedF i

is the Federated Fisher Information Matrix at the i-th round.
The trace of FedFIM represents the degree of whether the
local data is good enough to improve the model. A larger
values correspond to less model information. This is exactly
observed in Figure 5 (c) and Figure 6 (c), where a late re-
covery results in larger weight cumulative trace.

Seizing Critical Learning Periods
We use carefully-crafted experiments to evaluate the idea
that seizes critical learning periods to improve the FL train-
ing efficiency, though existing literature largely ignore the
critical learning periods in FL training process. The experi-
ments run on PyTorch on Python 3 with NVIDIA RTX 3060
GPU. The total number of clients is 25 and a subset of 25
clients are randomly selected in each round.

Specifically, we train ResNet-18 on IID and Non-IID
CIFAR-10 with FedAvg under different settings as shown
in Figures 7 and 8:

• All Clients: All clients participate in federated learning.
• Partial Clients: Only a subset of the clients (e.g., 60%)

participate in federated learning.
• All Clients in critical periods else Partial Clients: All

clients participate in training during the critical learning
periods. After that, only a subset of clients (e.g., 60%)
remain in training.

• All Data: Each client processes all data in local training.
• Partial Data: Each client processes only partial local

datasets (e.g., 25%) in local training.
• All Clients in critical periods else Partial Clients: Each

client uses its entire local dataset for training during the

critical learning periods, and only uses their partial local
dataset afterwards.

By seizing the critical periods in FL, we summarize the
counter-intuitive experimental results as follows:

No need to involve all clients in training all along. The
conventional FedAvg requires the entire training datasets
across all clients throughout the training process. However,
some clients may not be available for training, e.g., due to
unreliable network connection. To illustrate the impact of
critical learning periods, we further consider a heuristic in
which all clients are involved in the training during the crit-
ical learning periods and then only a subset of clients (e.g.,
60%) are involved afterwards.

Figure 7(a) and Figure 8(a) show the test accuracy v.s.
wall-clock time. There exists a requirement on the number
of clients involved in training which provides similar test
accuracy as using all clients (FedAvg) throughput. For ex-
ample, with all clients participate in the FL training during
the critical learning periods, and then only 60% of clients
afterwards, the final test accuracy is similar to that using
all clients throughout the training process. Hence there is
no need to involve all clients throughout the training pro-
cess. Figure 7(b) and Figure 8(b) show the train loss v.s.
wall-clock time. The participated client number requirement
reduces the training time than using all clients (FedAvg)
throughput. It is clear that leveraging critical learning pe-
riods for FL training, even in a heuristic manner, can signif-
icantly improve the training efficiency with a reduced train-
ing time while maintaining final test accuracy.

No need to train a model with all local data for each
client. We consider the challenge that FL clients have het-
erogeneous system capabilities, e.g., can only process part
of the local data for training. We use a heuristic with entire
local datasets used for training during the critical learning
periods and then only partial local datasets involved after-
wards.

Figure 7(c) and Figure 8(c) show the test Accuracy v.s.
wall-clock time. There exists a training dataset requirement
which provides similar test accuracy as using the entire
dataset (FedAvg) throughput. For example, with the entire
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Figure 7: Seizing the critical learning periods in FL training with ResNet-18 on IID CIFAR-10.
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Figure 8: Seizing the critical learning periods in FL training with ResNet-18 on Non-IID CIFAR-10.

training datasets used in the FL training during the critical
learning periods, and then only 25% of local datasets after-
wards, the final test accuracy is similar to that using the en-
tire datasets throughout the training process. Hence there is
no need to use the entire training datasets throughout the
training process. Figure 7(d) and Figure 8(d) present the
train loss v.s. wall-clock time, the training dataset require-
ment (the heuristic) reduces the training time than using the
entire dataset (FedAvg) throughput. Again, we observe that
the early learning phase plays a critical role in FL perfor-
mance and leveraging it can significantly improve the train-
ing efficiency of FL.

Overall, we can save 40%-50% of the training time and
50%-65% of the total clients but achieve a close final model
accuracy when training ResNet-18 on the IID and non-IID
CIFAR-10 dataset.

Related Work
Since the term of federated learning was introduced in the
seminal work (McMahan et al. 2017), there is an explo-
sive growth in federated learning research. For example, a
line of works focuses on designing algorithms to achieve
higher learning accuracy and analyze their convergence per-
formance, e.g., (Smith et al. 2017; Li et al. 2020b; Liu et al.
2020; Wang et al. 2020b; Xiong, Yan, and Li 2021). An-
other line of works aim to improve the communication effi-
ciency between the central server and clients through com-
pressions or sparsification, (Konečnỳ et al. 2016; Suresh
et al. 2017; Xu et al. 2019), communication frequency op-
timization (Wang and Joshi 2019; Wang et al. 2019; Karim-
ireddy et al. 2020), client selections (Lai et al. 2021; Wang
et al. 2020a), etc. Additionally, a lot of efforts have been put
on exploring the privacy and fairness of federated learning
(Bonawitz et al. 2017; Geyer, Klein, and Nabi 2017; Hitaj,

Ateniese, and Perez-Cruz 2017; Melis et al. 2019; Zhu, Liu,
and Han 2019; Mohri, Sivek, and Suresh 2019; Wang et al.
2020b). These studies are often under the implicit assump-
tion that all learning phases during the training process is
equally importantly. Our work focuses on showing that the
initial learning phase plays a critical role in the federated
learning performance, which is orthogonal to the aforemen-
tioned studies.

Conclusion
The recent record-breaking development of machine learn-
ing (ML) algorithms, particularly in the area of deep neu-
ral networks (DNNs) motivates a tremendously growing de-
mand of bringing DNN aided intelligence into modern ML
applications. Different from conventional ML that needs
to collect all training data in a centralized location, feder-
ated learning (FL) a promising paradigm that can obviate
the need for centralized data. However, federated learning
brings new challenges, for example, clients in FL are usually
much more resource-constrained in terms of communication
bandwidth, storage, computation power and more. Extensive
works have focused on improving the efficiency of FL using
compression, communication frequency optimization and so
on. However, existing studies have not yet explored the sig-
nificance of critical learning periods in FL.

In this paper, we seized the existence of critical learning
periods in federated learning so as to improve the FL train-
ing efficiency. Though a range of carefully designed experi-
ments on different ML models and datasets, we showed that
critical learning periods consistently exists in the training
process of FL. To explain such a phenomenon, we further
proposed a new metric called Federated Fisher Information
Matrix. Our findings suggest that the initial learning phase
plays a critical role in the final performance of FL.
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Konečnỳ, J.; McMahan, H. B.; Yu, F. X.; Richtárik, P.;
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