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Abstract

Obtaining a good similarity matrix is extremely important
in subspace clustering. Current state-of-the-art methods learn
the similarity matrix through self-expressive strategy. How-
ever, these methods directly adopt original samples as a set
of basis to represent itself linearly. It is difficult to accurately
describe the linear relation between samples in the real-world
applications, and thus is hard to find an ideal similarity ma-
trix. To better represent the linear relation of samples, we
present a subspace clustering model, Linearity-Aware Sub-
space Clustering (LASC), which can consciously learn the
similarity matrix by employing a linearity-aware metric. This
is a new subspace clustering method that combines metric
learning and subspace clustering into a joint learning frame-
work. In our model, we first utilize the self-expressive strat-
egy to obtain an initial subspace structure and discover a
low-dimensional representation of the original data. Subse-
quently, we use the proposed metric to learn an intrinsic sim-
ilarity matrix with linearity-aware on the obtained subspace.
Based on such a learned similarity matrix, the inter-cluster
distance becomes larger than the intra-cluster distances, and
thus successfully obtaining a good subspace cluster result.
In addition, to enrich the similarity matrix with more con-
sistent knowledge, we adopt a collaborative learning strategy
for self-expressive subspace learning and linearity-aware sub-
space learning. Moreover, we provide detailed mathematical
analysis to show that the metric can properly characterize the
linear correlation between samples.

Introduction

Subspace clustering has emerged as a powerful technique for
a variety of computer vision applications, including image
processing (Li et al. 2020a; Zhou et al. 2020; Lu 2021), mo-
tion segmentation (Liu et al. 2013), face clustering (Zhang
et al. 2020b,a; Peng et al. 2021), and gene expression anal-
ysis (McWilliams and Montana 2014), etc. Generally, sub-
space clustering models are based on the assumption that the
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whole samples are drawn from a union of multi-subspace,
and its purpose is to find these subspaces and arrange each
sample into its corresponding subspace.

In the past several years, several subspace clustering al-
gorithms have been developed (Nie et al. 2020; Kang et al.
2020b; Li et al. 2021). Among them, the spectral-based
method has achieved promising performance in the real-
world (Zhang et al. 2021; Lv et al. 2021). Especially, it is
well known that the Sparse Subspace Clustering (SSC) (El-
hamifar and Vidal 2013; Li, Kong, and Fu 2017) and Low-
Rank Representation (LRR) (Liu et al. 2013; Li et al. 2016)
are the state-of-the-art approaches and have the theoretical
guarantee, which belongs to the spectral-based method. In
addition, the spectral-based method is consists of two steps.
Firstly, learning a similarity matrix to represent the simi-
larity between samples by utilizing the original data. Then,
the spectral clustering algorithm is employed to segment the
learned similarity matrix and obtain the final clustering re-
sult. Moreover, it is worth noting that the success of sub-
space clustering generally relies on the learned similarity
matrix.

For the spectral-based method, SSC exploits the ¢;-norm
to find a sparse representation from the original samples.
LRR adopts the nuclear norm to regularize the similarity
matrix for capturing the correlation structure of the original
data. Least Squares Regression (LSR) employs the Frobe-
nius norm to learn the similarity matrix. Its purpose is to en-
courage the grouping effect, which can group highly corre-
lated samples together (Lu et al. 2012). Block Diagonal Rep-
resentation (BDR) utilizes the k-block diagonal regularizer
to directly pursue a similarity matrix with a block-diagonal
structure (Lu et al. 2018).

In summary, all the above mentioned methods utilize
the self-expressive property of linear subspaces to gener-
ate the similarity matrix, that is, let the original n samples
X = [x1,X2, " ,X,] as a set of basis, the similarity ma-
trix C = [c1, €2, , €] can be learned by exploiting the
basis {X1,X2,-*+ ,X,} to represent itself linearly. Mathe-
matically, the self-expressive is expressed as x; ~ Xc,; for
i-th sample (You et al. 2020; Kang et al. 2020a; Peng et al.
2021). Moreover, different methods use various regulariza-
tions on C, their purpose is to make each sample to be rep-
resented only by samples in its own subspace. In many prac-
tical application scenarios, considering that real-world sam-
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Figure 1: Example on a subset with 2 classes and 20 samples
of the Extended Yale B dataset. For a given sample x; and an
original data X, x; can be approximately expressed as a lin-
ear representation of all original data X by self-expressive-
based subspace clustering methods. The representation coef-
ficient c; is obtained by SSC in the existing situation. We can
observe that the obtained coefficient is difficult to achieve
the ideal situation in reality (see red dashed box). Moreover,
the obtained representation does not accurately describe the
similarity between samples (see black dashed box).

ples may contain noise corruption, it is difficult to satisfy
such a purpose in practice (Peng et al. 2018; Xu et al. 2020).
In addition, self-expressive-based subspace clustering meth-
ods have largely ignored the precise description of the simi-
larity between samples, which will directly affect the quality
of the learned similarity matrix (see Fig. 1).

Towards addressing the above-mentioned problem,
metric-based subspace clustering methods have been pro-
posed to obtain a “good” similarity matrix (Yang et al.
2020; Wang et al. 2019; Liang et al. 2019). However, the
self-expressive-based strategy explores the degree of linear
correlation between samples to acquire the similarity ma-
trix. The existing metric-based subspace clustering methods
have not established an essential connection between self-
expressive and metric for subspace clustering, which can-
not well uncover the subspace structure of data (Zhang et al.
2018).

To avoid the loss of the connection between self-
expressive and metric, and to prevent the establishment of
the similarity matrix directly on the original data, in this
paper, we propose a new subspace clustering method (i.e.,
LASC) composed of a novel distance definition and a simi-
larity matrix learning. In particular, the proposed metric can
effectively measure the degree of linear correlation between
samples, and we also provide theoretical guarantees of the
property. To sufficiently discover subspace structure for
complex real-world data, the self-expressive is adopted to
discover an initial subspace (i.e., representation coefficient).
Linear correlation distance metric is then integrated into the
framework to guide and enhance the learning of similarity
matrix with linearity-aware on the learned representation co-
efficient. Especially, to enhance the learned similarity ma-
trix, self-expressive subspace learning and linearity-aware
subspace learning are combined for collaborative learning.
The overall flowchart of our model is shown in Fig. 2. The
main contributions of this paper are summarized as follows.
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Figure 2: Overview of our LASC approach. Our model
first adopts the original data to learn an initial subspace,
which can find subspace structure for complex real-world
data. Second, we utilize the learned initial subspace to
guide the linearity-aware subspace learning. Third, we em-
ploy the learned linearity-aware subspace to guide the self-
expressive subspace learning, and it enhances the struc-
ture for learned subspace. Finally, self-expressive subspace
learning and linearity-aware subspace learning are used for
collaborative learning, and it captures an ideal similarity ma-
trix with more consistent information.

* A novel linearity-aware metric is proposed to measure
the degree of linear correlation between samples, and we
provide the theoretical analysis.

* We utilize a self-expressive strategy to learn an ini-
tial subspace structure, and further adopt the proposed
linearity-aware metric to guide and enhance the learned
subspace structure.

* We utilize a collaborative learning strategy to pursue the
similarity matrix, which can enrich the learned similarity
matrix with consistent information, and is conducive to
subsequent clustering tasks.

Linearity-Aware Subspace Clustering

We start this section by defining a linearity-aware metric,
and then giving the details of our objective function. More-
over, we present an optimization algorithm for the objective
function, and the complexity analysis is described.

Linearity-Aware Metric

As we all know, metrics have been widely used to accurately
obtain the similarity between samples for various data dis-
tribution, which can effectively adapt to complex real-world
data (Chen et al. 2018, 2021a). To accurately describe the
linear relationship between samples, we attempt to employ
metrics to guide the learning of the similarity matrix. Mo-
tivated by the fact that the Pearson correlation coefficient
can predict the linear correlation between variables (Benesty
et al. 2009). To effectively gain the degree of linear correla-
tion between samples, we first introduce the linearity-aware
metric by the following definition and then analyze its ad-
vantages.

Definition 1. (Linearity-Aware Metric) For a given data
matrix X € R™*" where m is the dimension of the data,
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Figure 3: The comparison of Euclidean distance and our
proposed linearity-aware metric. For two classes of samples
(i.e., a; and b;), the distance between as and the same class
samples (i.e., aj,as,a3 and ay) is d; + dy for Euclidean
distance. However, the distance between as and the differ-
ent class samples (i.e., b1, ba, bg and by) is d; for Euclidean
distance. Thus, Euclidean distance is fail to measure the dis-
tance between samples. In contrast, linearity-aware metric
is defined in Eq. (1), which is an effective kernel function.
It can effectively measure the linearity-aware distance be-
tween samples.

and n is the number of the data points. For two arbitrary
sample x;, x; € X, and x; — T;,X; — T; # 0, where T;

% }:z; x¥ is the average value of i-th sample. The linearity-
aware metric between them is defined as:

(xi — 7)) ' (x; — )
1% — Zill2llx; — Z5l2°

D(Xi,Xj) =1-

ey

In the following, we are ready to theoretically analyze the
properties of the defined metric in Eq. (1), which can charac-
terize the degree of linear correlation between two samples.
We first give the following Theorem 1 regarding the bound-
edness of Eq. (1).

Theorem 1. (Boundedness of the Metric) For a given data
matrix X, it holds for all x;,x; € X simultaneously that:

0 S D(XZ‘,XJ‘) S 2. (2)

The complete proof of the above theorem is presented in
the supplementary materials. To evaluate the degree of linear
correlation between samples, we state the linear relationship
for Definition 1 in the following theorem.

Theorem 2. (Linear Dependence of the Metric) For any
two samples x; and xj, when they satisfy:

D(x;,x%;4) € {0,2}, 3)
if and only if there is a linear relationship between x; and
X, that is, existing u(u # 0) and v such that x; = ux; +v
(or x; = ux; + v). Among them, when D(x;,%;) = 0, we
have u > 0. When D(x;,x;) = 2, we have u < 0.

The detailed proof is provided in the supplementary ma-
terials.

Remark 1: Theorem 2 shows that the metric we defined
can describe the strength of the linear relationship between
two samples. There are several explanations for this theo-
rem:
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* When D(x;,x;) = 0, it is said that z; and «; are com-
pletely positive correlated. When D(x;,x;) = 2, z; and
x; are completely negative correlated.

* When D(x;,x;) = 1, that is, z; and x; are not corre-
lated.

* When 0 < D(x;,x;) < 1, it is said that ; and z;
have a “certain degree” of positive linear relationship, if
D(x;,%;) tends to 0, the degree of positive linear cor-
relation is higher. If D(x;,x;) tends to 1, the degree of
positive linear correlation is lower.

* When 1 < D(x;,x;) < 2, it is said that z; and z;
have a “certain degree” of negative linear relationship,
if D(x;,x;) tends to 2, the degree of negative linear cor-
relation is higher. If D(x;, x;) tends to 1, the degree of
negative linear correlation is lower.

According to the above Theorem 2, the results illustrate
that the linearity-aware metric D(x;, X;) can precisely char-
acterize the linear relationship between x; and x;. Com-
pared to the other metrics (e.g., £1-norm, nuclear norm and
Frobenius norm), our proposed metric is essentially con-
nected to self-expressive, i.e., they are both to characterize
the linear correlation between samples. Therefore, we intro-
duce the linearity-aware metric into the subspace learning
framework to enhance and guide the subspace structure.

Remark 2: The similarity matrix is constructed by em-
ploying the self-expressive, which is a linear assumption
strategy, it makes the learned similarity matrix may not ac-
curately describe the degree of linear correlation between
samples. However, the linearity-aware metric can obtain the
degree of the linear correlation between samples well, it can
be illustrated in Fig. 3. Moreover, we naturally gain a “good”
subspace structure by using our proposed metric.

Problem Formulation

It is well known that the purpose of subspace clustering is
to discover underlying subspaces of the original data (You
et al. 2020; Kang et al. 2021; Fan 2021). Remarkably, the
self-expressive is generally conducted to represent itself to
gain representation coefficient (Kang et al. 2020b; Xiao et al.
2021; Wen et al. 2021). Its usual model can be formulated
as follows:

min ~ £;(X;C)  =min||X-XC|%+1\®(C), (4)

C —— C
Initial Subspace Learning

where )\, is the tunable parameter. (C) is a certain regular-
ization. For simplicity, we here choose the Frobenius norm
as a regularization (i.e., ®(C) = ||C||%), which can preserve
the grouping effect and avoid the trivial solution.

The self-expressive-based subspace clustering method
has shown its superior performance in machine learning and
computer vision (Lu et al. 2018; Li et al. 2020a; Chen et al.
2021c), but there are two non-negligible drawbacks. One is
that it may fail to discover subspace structure sufficiently
when the original data is directly utilized to acquire the simi-
larity matrix (Liu and Yan 2011; Xu et al. 2021). The other is
that the self-expressive strategy is hard to describe the linear
relationship between samples for real-world data accurately,
it makes the learned similarity matrix may be inaccurate.



To address the above-mentioned problems, we present a
novel LASC model in this paper. First, by exploiting the Eq.
(4) to learn a initial low-dimensional subspace C € R"™*™.
Specifically, original data usually contains noisy or redun-
dant features (Li et al. 2020b; Zhang et al. 2020a; Pan et al.
2021), we use the representation coefficient C to represent
the original data X, thus alleviating the influence of redun-
dancy or noise (Zhou et al. 2019; Peng et al. 2019, 2020).
Then, motivated by the advance of adaptive neighbors learn-
ing (Nie, Wang, and Huang 2014; Wu et al. 2020), the ¢-th
sample c; can be connected to other samples with probabil-
ity s;;, where s;; is an element of similarity matrix S. If the
samples are close to each other, they have a higher similarity
score, and if they are far apart, they have a smaller similar-
ity score. To further boost the linear correlation of the self-
expressive strategy, the linearity-aware metric is utilized to
measure the representation coefficient, which can enhance
the learned subspace structure and performs well in practice.
Therefore, we have the following model:

L2(C;S)

Linearity-Aware Subspace Learning

:msmz Z D2(CZ‘, Cj)sij + )\Q\I/(S)7
=1 j=1

st.os]1=1,0<s;<1,

where )5 is the parameter. For simplicity, the regularization
term ¥(S) = [|S||% is adopted to constrain the similarity
matrix S.

However, the nature data may contain different factors
(e.g.,occlusion, illumination and expression) (Yang et al.
2016). The single-step learning representation coefficient C
and similarity matrix S is not enough to eliminate the influ-
ence of those undesirable factors and obtain an ideal sim-
ilarity representation. Considering these reasons, we build
a collaborative learning framework to seek a ideal similar-
ity matrix with more consistent knowledge to promote the
subsequent clustering. Then, we utilize similarity matrix S
as the input of Eq. (4) to learn representation coefficient C.
Thus, we have:
ngn L1(S;C)

Self-Expressive Subspace Learning

min
S

&)

= mén||S—SC|\2F+A1<1>(C).

(6)
Finally, we present a greedy process to alternate multi-
ple times learn the similarity matrix, inspired by the recur-
sive thoughts, the single-layer mode can only discover the
“shallow” features, which cannot discover deep hidden fea-
tures and hierarchical information. We adopt a collaborative
learning strategy to obtain the final ideal similarity matrix by
Eq. (5) and Eq. (6), which can make a good input more con-
ductive to obtaining a good result, and a stable solution can
be acquired by alternating multiple times. Thus, we propose
Linearity-Aware Subspace Clustering (LASC) model:

mi L5(C;8) + L£4(S;C) ;
C.S —— ——
Linearity-Aware Subspace Learning  Self-Expressive Subspace Learning

st.s;1=1,0<s;<1, (7
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Algorithm 1: Subspace Segmentation via LASC

Input: The data matrix X, parameters A1, Az, the number of
subspaces k and maximal iteration number 7.
Initialize: Cop = Sy = 0 and 1 = 1074, e = 1072,
Obtain the initial subspace: Learning the initial subspace C
of X by adopting Eq. (9).
While not converge (t = 0,1,--- ,T) do
1). Obtain the linearity-aware subspace: Learning the
linearity-aware subspace S'*! of C’ by adopting Eq. (16).
2). Obtain the self-expressive subspace: Learning the
subspace C!*! of St*! by adopting Eq. (20).
3). Check convergence: If
max {327, Y20 D (e s /I X g,
S0~ SHICHL |2 /X 2} <)
and max{||St*! — St|| g, [|[C!T — C||r} < o,
then break.
End while
Obtain the affinity matrix by [S*| + [(S*) .
Apply the spectral clustering algorithm (Ng, Jordan, and
Weiss 2002) to segment the data into k& subspaces.
Output: The final clustering result.

Optimization
Once given the proper values of parameters \; and Ay, we
first compute the representation coefficient C by utilizing
Eq. (4). Then, we can adopt iteratively strategies to optimize
the problems (5) and (6).
Step 1: The variable C of problem (4) can be solved by
the following problem:
C’ = argmin[|X — XC|[7 + M[IC[IF. ®)
C
the above problem is the well-known ridge regression(Yang
et al. 2016; Chen et al. 2021b). We take the derivative of the
Eq. (8) w.rt. Z, and setting the derivative to zero. It has a
closed-form solution:
C'=X"X+MDIXTX. )
Step 2: The variable S of the problem (5) can be opti-
mized by solving the following optimization problem:

n n
S =argmin » Y D*(cl, cl)si; + Xol[SF,
S (10)
st.os]1=1,0<s;<1.

By defining df; = D*(c}, c}) for the convenience of nota-
tion, the above problem can be further rewritten as following
independent problem:

1
— a2
2)\2 L||27

st.os;1=1,0<s; <1.

sit! = argmin ||s; +
S

1D
To solve the Eq. (11), the Lagrangian function of Eq. (11)

is shown below:
1
Fsispsv) = Sllsi+ o= dill3 —p(s] 1-1) —vTs;, (12)
2 2o

where 1 and v are Lagrangian multipliers. When the La-
grange multipliers are p* and v*, suppose the optimal solu-

1



Datasets # of Classes ~ Samples per Class # of Features
MNIST 10 1000 784
USPS 10 500 256
COIL100 100 72 1024
CIFARI10 10 800 2048
ExYaleB 38 64 1024

Table 1: Description of datasets

tion of the Eq. (12) is s}. Based on the Karush-Kuhn-Tucker
(KKT) conditions, for Vj we can obtain:

sy +2/\ dij —p* —v; =0,

535 2 0, (13)
1/- >0,

syvy = 0.

DuetolT-_lands + 3 d — 1l —v* =0, we
B B s % . .
obtain p 2'n . Therefore, we gain the optimal

solution:
1 17d, 1Ty
Y= (——d; 1 Ly [ — . 14
si=(= 2)\2 T +2n/\2 n J+v. (4
For the convenience of notation, we denote d; =
T
—5hdi+ 21+ 341 and 7 = L 21, Then, the Eq. (14)

can be rewrlte as below:

st=d; — " + . (15)
Obviously, for V5, we get:
st =dij — 0" + v} = mazx(di; —9*,0).  (16)

_’V\k7

Then, we obtain s% ma:r(aj 0). Similarly, we

have v} = maz(v* — d;,0). To obtain the solution 7*, we
define a function as below:

~

d;,0) - (a7

1< ~
V)= — Z max(V —
n =
According to v* > 0,¢'(7) < 0 and ¢’'(¥) is a convex
function and piecewise linear function, the Newton method
is utilized to acquire the root 7* of g(7) = 0, which means:
g(@)'
g' @)
where t is the number of iteration.
Step 3: The variable C of problem (6) can be updated by:

Citl = argénin ST — STTLC|E + M ||ICI|1%,  (19)

pt+l — pt

(18)

Calculating the derivative of the above Eq. (19) w.r.t. C and
setting it to zero, we obtain:

citl = [(stH)TsH 4 )\11] _1(St+1)TSt+1_ (20)
Overall, we summarize the whole optimization procedure
in Algorithm 1.
Complexity Analysis

We assess the computational complexity of Algorithm 1.
The major computational burden depends on the optimiza-
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tion of C and S. Specifically, step 1 contains matrix multi-
plication and matrix inversion operations for obtaining ma-
trix C, and its complexity is O(mn? + n?), where m and
n are the dimension of the data and the number of the
data points, respectively. We need O(mn + n?) for updat-
ing matrix S of step 2. The step 3 can be solved by Eq.
(20), whose computational complexity is O(n?). To sum-
marize, the overall computational complexity of Algorithm
1is O(mn? + n3 + t(mn + n?)), here ¢ is the number of
collaborations.

Experimental Results
Experimental Settings

Datasets: In our experiments, five benchmark datasets are
selected, including two handwritten digits datasets MNIST!
and USPS?, two object recognition datasets COIL100°
and CIFAR10*, and an face image dataset Extended Yale
B(ExYaleB)’.

In addition, to achieve better performance on the CI-
FAR10 dataset, we extract features from the CIFARI10
dataset following the same setting in (Xu et al. 2020). In
this paper, we randomly selected 1000, 500, and 800 sam-
ples for each class from the MNIST, USPS and CIFAR10
datasets, respectively. Table 1 introduces the information
of these benchmark datasets, which are used in our exper-
iments.

Compared Methods: We compare our proposed LASC al-
gorithm against the following four spectral-based subspace
clustering methods, including SSC (Elhamifar and Vidal
2013), LSR (Luetal. 2012), LRR (Liu et al. 2013) and EnSC
(You et al. 2016). Three metric-based subspace clustering
strategies are also adopted, including FGNSC (Yang et al.
2020), OSC (Wang et al. 2019) and autoSC (Liang et al.
2019).

For all above mentioned algorithms, the parameters are
tuned by the cross validation technique to guarantee their
possibly optimal performance ©.

Evaluation Measures: To evaluate the performance of
different subspace clustering methods, we employ two popu-
lar metrics to evaluate clustering performance, each of which
favors different properties of clustering, including Accuracy
(ACC) and Normalized Mutual Information (NMI), the de-
tailed definitions of ACC and NMI can be seen in (Xu et al.
2021). The above two metrics both lie in the range of [0, 1],
and the higher value indicates better clustering performance.
Note that for fair comparisons, we report the mean values
and standard derivations of 10 independent trials.

"http://yann.lecun.com/exdb/mnist/

Zhttps://paperswithcode.com/dataset/usps

3https://www]1.cs.columbia.edu/CAVE/software/softlib/coil-
100.php

*https://www.cs.toronto.edu/ kriz/cifarhtml

>http://vision.ucsd.edu/leekc/ExtYaleDatabase/Ext YaleB.html

The following parameters should be tuned: SSC (v and §),
LSR (A), LRR (), EnSC (X and ), FGNSC (), v and p), OSC
(e, B and §), and autoSC (m and I?).



Classes Metrics & Para. SsC LSR LRR EnSC FGNSC OSC autoSC LASC
ACC 0.565+0.014  0.642+0.008 0.664+0.015 0.655+0.023 0.679+0.026 0.685+0.024 0.694+0.022  0.727+0.021
6 NMI 0.498-£0.035 0.532:£0.011  0.596£0.009 0.648-£0.017 0.653-£0.021 0.656+0.019 0.673£0.026  0.703-£0.015
Para. 0.001, 0.1 0.3 0.05 0.05, 0.1 20,8, 1 0.2, 0.01, 0.002 8,10 0.5, 1000
ACC 0.563£0.009 0.623:£0.011 0.637-£0.021 0.558£0.028 0.658-£0.027 0.652+40.027 0.679+£0.028  0.693-£0.025
8 NMI 0.594+0.007 0.568+0.015 0.588+0.017 0.616+0.022 0.622-+0.020 0.630+0.019 0.651+0.026  0.678-0.020
Para. 0.002, 0.05 0.6 0.02 0.1, 0.001 20, 8,1 0.5, 0.04, 0.002 8,15 1, 5000
ACC 0.465+0.012 0.486+0.016 0.524+0.009 0.563+0.025 0.554+0.015 0.548+0.012 0.560+0.016  0.581+0.011
10 NMI 0.527£0.021 0.445£0.014 0.509:£0.006 0.572:£0.009 0.547+0.018 0.53540.017 0.559£0.012  0.594-£0.016
Para. 0.8, 0.01 0.7 0.1 0.5, 0.02 20, 8, 1 0.2, 0.04, 0.002 8,20 0.1, 1000
6 ACC 0.804£0.003  0.722+£0.006 0.721£0.002  0.7424+0.008 0.82440.012 0.842-+0.005 0.872£0.008 0.861+0.009
NMI 0.791£0.002 0.763-£0.003 0.778+0.003 0.813£0.009 0.805+0.017 0.810+0.007 0.855+0.012  0.842-£0.006
Para. 1, 10 1 0.05 0.9, 0.001 25,10, 1 0.3, 0.03, 0.002 15, 10 0.5, 1000
ACC 0.783£0.006 0.759-£0.005 0.766£0.002 0.771=£0.009 0.802-£0.007 0.817+0.005 0.831£0.008  0.847-0.010
8 NMI 0.812£0.007 0.747+£0.003 0.758+0.008 0.815+0.003 0.827+0.010 0.806+0.004 0.814+0.004  0.836:0.005
Para. 5,0.1 0.1 0.0001 0.05, 0.001 25,10, 1 0.1, 0.05, 0.002 15,15 0.5, 500
ACC 0.776£0.006 0.721£0.002 0.727-£0.004 0.769+0.006 0.784-+0.021 0.785+0.013 0.796+0.012  0.821+0.012
10 NMI 0.796£0.003 0.699-£0.011 0.703-£0.007 0.791£0.008 0.812-+0.018 0.798+0.013 0.802-£0.008  0.822-:0.009
Para. 0.1, 0.002 0.5 0.01 0.2, 1 25,10, 1 0.2, 0.02, 0.002 15,20 0.1, 500
ACC 0.395£0.056  0.384:£0.036  0.397-£0.044 0.430£0.047 0.452-+0.042 0.445+40.047 0.438+0.051  0.505-:0.046
80 NMI 0.689+0.053 0.605+0.042 0.665+0.058 0.717+0.033 0.735+0.048 0.716+0.057 0.733+0.058  0.787+0.052
Para. 0.002, 0.5 1 0.2 0.2,2 20, 10, 1 0.4, 0.01, 0.002 20, 80 0.5, 10000
ACC 0.384+0.040 0.375+0.034 0.362+0.035 0.426+0.041 0.447+0.037 0.426+0.034 0.419+0.041  0.473+0.037
100 NMI 0.674£0.049  0.589:£0.046  0.602:£0.041 0.682£0.040 0.701£0.035 0.696+0.048 0.675£0.031  0.755-£0.031
Para. 0.0001, 0.05 0.7 0.05 0.05, 0.01 25,8, 1 0.5, 0.03, 0.002 20, 100 0.05, 50000
ACC 0.723+£0.024  0.779+£0.022 0.765+0.021 0.7614+0.019 0.8054+0.023 0.836+0.021 0.812+0.027 0.829-£0.019
8 NMI 0.618+0.012  0.634+0.016  0.625+0.023  0.630+0.017 0.651+0.031 0.678+0.025 0.656+0.022  0.682-+0.023
Para. 2,0.002 0.4 0.2 0.8, 0.001 20, 8,1 0.2, 0.04, 0.002 10, 15 1, 1000
ACC 0.745+0.014  0.783+0.017 0.779+£0.022 0.773+0.014  0.792+0.018 0.804+0.026 0.803+0.021  0.814-+0.018
10 NMI 0.663£0.024  0.659-£0.011 0.657£0.027 0.669-£0.025 0.673£0.031 0.685-£0.024 0.693+0.027  0.712+0.026
Para. 5,0.1 0.4 0.01 0.1,0.5 25,10, 1 0.2, 0.01, 0.002 10, 20 5, 500
ACC 0.658+0.014  0.642+0.027 0.639+0.029 0.662+0.018 0.676+0.018 0.685+0.028 0.703+0.024  0.735+0.032
30 NMI 0.652+0.031 0.663£0.026  0.649-£0.033 0.648+0.024 0.681-£0.035 0.702+0.037 0.721£0.029  0.758-£0.035
Para. 0.001, 0.02 0.8 0.05 0.6, 0.005 20,8, 1 0.4, 0.02, 0.002 8, 30 0.5, 1
ACC 0.627+0.021  0.665£0.004 0.624+0.028 0.672+0.028 0.686+0.025 0.699+0.027 0.715+£0.019  0.742-+0.024
38 NMI 0.632+0.016  0.625+0.007 0.636+0.021 0.653+0.011 0.684-+0.027 0.715+0.039 0.746+0.022  0.768-+0.019
Para. 0.01, 0.5 0.2 0.5 0.8, 0.1 20, 8, 1 0.3, 0.04, 0.002 8,40 0.5,0.5

Table 2: Performance comparison of all compared methods on the five benchmark datasets. From top to bottom, they are
MNIST, USPS, COIL100, CIFAR10 and ExYaleB, respectively.

Clustering Performance and Analysis

To sufficiently evaluate the performance of our proposed
method on the five benchmark datasets, for MNIST, USPS,
COIL100, CIFAR10 and ExYaleB datasets, £k = 6,8, 10,
k =6,8,10, k = 80,100, k = 8,10, and k = 30, 38 classes
are randomly selected as the data matrix X, respectively. Ta-
ble 2 presents the clustering results and the tuned parameters
of all tested approaches.

From Table 2, we can draw the following conclusions.
Our LASC performs much better than the compared meth-
ods of almost all metrics on the five benchmark datas:
validating the effectiveness and superiority of our p
posed LASC method. For example, on the COIL100 data
with 100 classes, LASC obtains about 0.47 ACC and 0
NMI, which are about 0.03 and 0.05 higher than those
the second-best algorithm, respectively. Metric-based s
space clustering algorithms (i.e., FGNSC, OSC, auto-
and LASC) yield better clustering results in comparison w
spectral-based subspace clustering algorithms (i.e., Sf
LSR, LRR and EnSC) in most cases, which shows the i
portance of integrating metric learning into the subsp:
clustering model. LASC achieves better than the advan
metric-based subspace clustering methods FGNSC, O
and auto-SC in most cases. This demonstrates that LAsc
is superior to existing metric-based methods for subspace
clustering.

In order to further provide an intuitive illustration of the
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effectiveness of our models, we utilize t-distributed Stochas-
tic Neighbor Embedding (t-SNE) to show the distribution
of the similarity matrices learned by different algorithms
on the handwritten digits dataset USPS. From the experi-
mental results shown in Figure 5, we can observe that our
LASC model gains a more compact and accurate class clus-
ter than the other methods (i.e., SSC, LSR, LRR and OSC).
It demonstrates that the similarity matrix learned by our
model is more suit: " ! S
the other methods.
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Figure 4: Visualization of the learned representation coeffi-
cients on the COIL100 dataset with 3 classes and 60 sam-
ples. From left to right, they are SSC and LASC methods,
respectively.
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Figure 5: Visualization of the learned similarity matrices of different methods on the USPS dataset via t-SNE. From left to right,

they are SSC, LSR, LRR, OSC and LASC, respectively.
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Figure 6: Visualization of the learned similarity matrices by using the proposed LASC method on ExYaleB dataset with 10

classes. From left to right, ¢ = 1, 5, 20 and 50, respectively.

The Analysis of Representation Coefficient

To further investigate the effectiveness of our LAS
proach, we conduct experiments by showing the learne
resentation coefficient on the COIL100 dataset. Here,
classes are utilized in this example. We randomly sel
samples from each class, and treat each sample as a c
to form original data X € R1924%60_ Then, the repre
tion coefficients for a sample x5 are obtained by SS
LASC methods, and are illustrated in Figure 4. The
represents index value, and y-axis represents represer
coefficient. From the results, the large coefficient vah
not ideally concentrate on the first subpart (i.e., the Swiupic
Xo is derived from class 1) as expected for SSC. However,
the coefficient values obtained by our method are very large
in class 1, which accurately reflects the similarity between
samples. It will contribute to the subsequent clustering tasks.

Influence of the Number of Collaboration

To analyze the benefit of collaborative learning the similar-
ity matrix S of our LASC, in this subsection, we visually
present some examples of the learned similarity matrix by
different numbers of collaborations t. Without loss of gen-
erality, we show the similarity matrix on ExYaleB dataset
with 10 classes, where we consider the cases of t = 1, 5,20
and 50, respectively. Figure 6 shows these learned similarity
matrices. Obviously, we can observe that the collaborative
learning strategy can improve the clustering performance
because the performance increases with ¢. Hence, it well
demonstrates the effectiveness of the collaborative strategy.

Comparison of Running Time

Figure 7 illustrates the running time of different algorithms
on five benchmark datasets. We can find that the running
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Figure 7: Running time of different approaches on the five
benchmark datasets.
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time of our LASC model is roughly at the same level as most
self-expressive-based algorithms (e.g., SSC and LRR) under
comparison. In addition, our LASC model is much faster
than metric-based methods on the five datasets. We can con-
clude that, compared with the state-of-the-art methods, our
model is able to greatly improve the clustering performance
without increasing the running time.

Conclusion

To enhance self-expressive to characterize the linear corre-
lation between samples in subspace clustering, this article
proposed a linearity-aware metric that overcomes the diffi-
culty mentioned above, and the proposed metric is integrated
into the subspace clustering model. In addition, we theo-
retically illustrated that the proposed linearity-aware metric
could measure the linear correlation between samples. Then,
we utilized collaboration strategy to learn the self-expressive
subspace and linearity-aware subspace, and discovered an
ideal similarity matrix, thereby leading to the superior per-
formance of the subsequent clustering results.
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