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Abstract

Despite the great potential of reinforcement learning (RL)
in solving complex decision-making problems, generaliza-
tion remains one of its key challenges, leading to difficulty
in deploying learned RL policies to new environments. In
this paper, we propose to improve the generalization of RL
algorithms through fusing Self-supervised learning into In-
trinsic Motivation (SIM). Specifically, SIM boosts represen-
tation learning through driving the cross-correlation matrix
between the embeddings of augmented and non-augmented
samples close to the identity matrix. This aims to increase the
similarity between the embedding vectors of a sample and
its augmented version while minimizing the redundancy be-
tween the components of these vectors. Meanwhile, the re-
dundancy reduction based self-supervised loss is converted
to an intrinsic reward to further improve generalization in RL
via an auxiliary objective. As a general paradigm, SIM can be
implemented on top of any RL algorithm. Extensive evalua-
tions have been performed on a diversity of tasks. Experimen-
tal results demonstrate that SIM consistently outperforms the
state-of-the-art methods and exhibits superior generalization
capability and sample efficiency.

Introduction
Reinforcement learning (RL) is capable of learning from
previous experiences automatically without any labeled
data, and has demonstrated great potential in solving vari-
ous complex decision-making problems. By combining with
convolutional neural networks (CNNs), vision-based RL has
achieved prominent success in a broad range of areas, such
as video games (Mnih et al. 2015), continuous control (Lill-
icrap et al. 2015), robot grasping (Kalashnikov et al. 2018),
robot navigation (Wu et al. 2021) and so on. Despite its re-
markable achievements, vision-based RL remains plagued
by poor generalization capabilities, which significantly lim-
its its deployment in real-world applications. Often, RL
agents trained in one environment can hardly generalize well
to unseen scenarios, even after they have been trained in a
large number of diverse yet semantically similar environ-
ments (Gamrian and Goldberg 2019). The adaptation prob-
lems of vision-based RL agents can be further exacerbated
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due to the high-dimensional and partially-observable nature
of pixel inputs.

As one of the well explored solutions, domain random-
ization typically creates a variety of environments with ran-
domly sampled properties and finds the best policy which
works across all of the environments (Tobin et al. 2017).
Nevertheless, domain randomization can lead to large model
complexity and is sensitive to sampling distribution and
choice of randomized parameters. Another typical class
of solutions is domain adaptation, which learns domain-
invariant representations and mitigates the distribution dis-
crepancy between the source and target domains (Bousmalis
et al. 2018; Gamrian and Goldberg 2019). However, the tar-
get domain data are assumed to be accessible in domain
adaptation settings while RL agents typically need to gen-
eralize to truly unknown environments.

Furthermore, the incorporation of data augmentations
on input observations can also result in significantly im-
proved generalization capability of RL agents (Laskin et al.
2020; Kostrikov, Yarats, and Fergus 2020; Raileanu et al.
2020). Recently, studies have also demonstrated that vari-
ous self-supervised learning methods can be applied to im-
prove both sample efficiency and generalization of RL poli-
cies substantially via better representation learning (Srini-
vas, Laskin, and Abbeel 2020; Hansen et al. 2020; Hansen
and Wang 2021). However, prior works only combine self-
supervised representation learning with reinforcement learn-
ing naively while it is promising to achieve greater improve-
ment through linking self-supervised learning to reinforce-
ment learning more ingeniously.

In this paper, we propose to improve the generalization
of RL algorithms through fusing Self-supervised learning
into Intrinsic Motivation (SIM). Similar to SODA (Hansen
and Wang 2021), SIM decouples augmentation from pol-
icy learning to simplify RL optimization. It only uses aug-
mented data to perform auxiliary representation learning
while strictly using non-augmented samples for policy learn-
ing. In contrast to SODA, SIM does not require any pre-
diction networks, momentum updates, or stop-gradients. It
feeds the augmented and non-augmented data to two identi-
cal networks respectively, and makes the cross-correlation
matrix between the two embeddings close to the identity
matrix. This is to increase the similarity between the em-
beddings of a sample and its augmented version while mini-
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mizing the redundancy between the components of the vec-
tors. In this way, the mutual information between the la-
tent representations of augmented and non-augmented data
is maximized so as to ignore features that are irrelevant to
the RL tasks. Meanwhile, distinguished from all the existing
methods, we also convert the redundancy reduction based
self-supervised loss to an intrinsic reward to further improve
RL generalization via an auxiliary objective. Since the self-
supervised loss can be used to measure the quality of the
embeddings, this intrinsic motivation is capable of guiding
RL agents to learn the latent representations more efficiently.
Since SIM is generic and does not require any change to the
underlying algorithms, it can be implemented on top of any
RL method. Empirical evaluations have been performed on a
diversity of tasks in the DeepMind Control suite benchmark
(Tassa et al. 2018), and experimental results demonstrate the
superiority of SIM which outperforms the baselines and im-
proves RL generalization significantly.

The main contributions of our work are summarized as
follows:

• We propose a novel method, SIM, to improve the gener-
alization of RL algorithms through fusing self-supervised
learning into intrinsic motivation.

• We introduce a redundancy reduction based self-
supervised learning method to enhance representation
learning. Moreover, we convert this self-supervised loss
to an intrinsic reward to further improve the generaliza-
tion of RL agents via an auxiliary objective.

• We show that SIM outperforms the state-of-the-art base-
lines by a large margin.

Related Works
Self-Supervised Learning
Self-supervised learning empowers the learning of effec-
tive feature representations from unlabeled data which can
benefit a wide variety of downstream tasks. So far, many
auxiliary data prediction tasks have been proposed for self-
supervised learning, such as relative position prediction (Do-
ersch, Gupta, and Efros 2015), jigsaw puzzle (Noroozi and
Favaro 2016), colorization (Zhang, Isola, and Efros 2016),
context encoder (Pathak et al. 2016), rotation prediction (Gi-
daris, Singh, and Komodakis 2018), and so on.

As an important subclass of self-supervised learning, con-
trastive learning has gained growing popularity due to its en-
couraging progress. The rationale of contrastive learning is
to minimize the distances between positive pairs while en-
larging distances between negative pairs. For example, the
CPC approach translates a generative modeling problem to a
classification problem which distinguishes feature represen-
tation from a set of unrelated samples (Oord, Li, and Vinyals
2018). SimCLR learns visual representations via maximiz-
ing agreement between different augmented views of the
same sample in the latent space (Chen et al. 2020). By intro-
ducing a queue-based dynamic dictionary, MoCo trains the
representation encoder through matching the encoded query
to a dictionary of encoded keys using a contrastive loss (He
et al. 2020).

Different from the above contrastive learning approaches,
BYOL (Grill et al. 2020) learns invariant feature represen-
tations without using negative samples, and instead adopts a
bootstrapping mechanism. It relies on two sets of networks,
where the target network has the same architecture as the
online one but is updated through polyak averaging. It then
trains the online network on one augmented view to pre-
dict the representations of a different augmented view gen-
erated by the target network. Through solving the problem
from a different perspective, Barlow Twins (Zbontar et al.
2021) feeds two augmented versions of the training samples
into the same network and tries to make the cross-correlation
matrix between these two group of embeddings close to the
identity. The objective is to keep the embeddings of different
augmented versions of the same samples similar while min-
imizing the redundancy between these representation vec-
tors. In this way, self-supervised representation learning can
be achieved without negative samples, prediction networks,
momentum updates, or stop-gradients.

Generalization in RL
Generalization remains one of the key challenges for RL. So
far, different strategies have been proposed to address this
issue. One of the leading solutions is domain randomiza-
tion, which creates a variety of environments with randomly
sampled properties and figures out the best policy that works
across all the environments. For example, the simulation
environment is rendered with random textures to train the
adaptive policies (Tobin et al. 2017). Despite its effective-
ness, domain randomization is sensitive and can lead to large
model complexity. Another widely explored solution is do-
main adaptation, which reduces the distribution divergence
between the source and target domains. By adopting domain
adaptation in RL, adaptive robot grasping policy is learned
through Sim2Real transfer (Bousmalis et al. 2018) and ob-
servation adaptation for video games is achieved through
image-to-image translation (Gamrian and Goldberg 2019).
Nevertheless, domain adaptation assumes the target domain
data are accessible while RL agents often need to general-
ize to unknown scenarios. Moreover, a variety of works on
data augmentation, such as RAD (Laskin et al. 2020), DrQ
(Kostrikov, Yarats, and Fergus 2020) and DrAC (Raileanu
et al. 2020), prove that data augmentation can be very effec-
tive as well as efficient to improve the generalization of RL
agents as well.

In recent years, studies have demonstrated that it is
promising to improve RL generalization more significantly
through leveraging the advances in self-supervised learning.
For instance, PAD explores the use of self-supervision tasks,
such as inverse dynamics prediction, to enable continued
training during deployment and thereby improve the gen-
eralization of vision-based RL (Hansen et al. 2020). CURL
adopts the MoCo mechanism in RL and enforces consisten-
cies in observations via matching embeddings of two aug-
mented versions of the raw observation (Srinivas, Laskin,
and Abbeel 2020). More recently, by using the concepts
of BYOL in RL, SODA learns invariant representations
through bootstrapping (Hansen and Wang 2021). Rather
than aligning two different augmented views, SODA aligns
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Figure 1: SIM architecture. SIM trains the RL network jointly with an auxiliary self-supervised network. The two networks
share a common encoder and the self-supervised loss is converted as an intrinsic reward for RL agent’s progress toward better
representation learning. Left: representation learning via redundancy reduction based self-supervised learning with augmented
observations. Right: policy learning with non-augmented observations.

augmented images to their non-augmented counterparts in
latent space to ensure that data augmentation is only used
for representation learning in order to reduce the difficulty
of RL optimization. In this paper, we employ the mechanism
of Barlow Twins to improve the representation learning in
RL without requiring any negative samples, prediction net-
works, momentum updates, or stop-gradients. Moreover, we
propose to fuse self-supervised learning into intrinsic moti-
vation through converting the self-supervised loss to an in-
trinsic reward to further improve the generalization of RL
via an auxiliary objective.

Method
We propose to improve the generalization of RL through fus-
ing Self-supervised learning into Intrinsic Motivation (SIM).
Since SIM does not require any modification to the under-
lying base RL method, it is a general paradigm that can be
implemented on top of any RL algorithm. In this work, we
train SIM alongside the Soft Actor-Critic (SAC) algorithm
(Haarnoja et al. 2018) to demonstrate its effectiveness. Gen-
erally, the objective of SIM is to achieve effective represen-
tation learning so that the important information shared be-
tween an observation and its augmented counterpart is well
encoded.

Architecture Overview
The network architecture of SIM is depicted in Figure 1.
Generally, SIM trains the reinforcement learning network
jointly with an auxiliary self-supervised learning network.
The RL policy network with parameters θ can be split into
two parts, i.e., an encoder fθ and a policy πθ, so that given
an input observation o, the action can be derived as a =
πθ(fθ(o)). The encoder fθ contains 11 convolutional layers
with 32 filters and the policy πθ contains 4 fully-connected
layers. Meanwhile, the proposed auxiliary self-supervised

learning task shares a common encoder fθ with the policy
network and is composed of the shared encoder fθ and a
projector hθ. The projector hθ has 3 fully-connected layers
where the first two layers are followed by a batch normaliza-
tion layer and rectified linear units. Particularly, the outputs
of the encoder and the projector are referred as representa-
tions and embeddings respectively. The representations are
used for the downstream RL tasks and mapped to actions
through the policy network, while the embeddings are nor-
malized along the batch dimension and fed to the loss func-
tion of the self-supervised learning task.

During training, observations are sampled from the replay
buffer. Similar to SODA, SIM decouples the training data
flow so that augmented data are only employed for repre-
sentation learning to reduce the difficulty of RL optimiza-
tion. In addition, instead of contrasting two augmented in-
stances of the same image to a batch of negative samples,
SIM learns invariance through maximizing similarity be-
tween the embeddings of the augmented observations and
their non-augmented counterparts without the demand for
negative samples. Therefore, both the non-augmented and
augmented observations are fed to the self-supervised learn-
ing network and mapped to two sets of embeddings via a pair
of identical networks. As shown in Figure 2, we augment the
observations using the random overlay method (Hansen and
Wang 2021) which produces an augmented view through
linearly interpolating between an observation and an im-
age. With this strong data augmentation, fθ is encouraged
to learn features that are shared across different views while
discarding factors of variation that are irrelevant to the RL
tasks. Since it is common in the RL setting to stack consec-
utive frames as observations to infer temporal information,
we apply augmentations randomly across the batch while the
same image is applied to all frames of a given observation to
retain the temporal information.
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(a) non-augmented samples (walker walk)

(b) random overlay samples (walker walk)

Figure 2: Data augmentation based on the random overlay
method.

Self-Supervised Representation Learning
Inspired by the self-supervised learning method proposed
in (Zbontar et al. 2021), we also apply the redundancy
reduction based method to learn invariant feature repre-
sentations. However, our goal is to align the embeddings
of augmented and non-augmented observations rather than
those of two different augmented views. Without negative
samples, we achieve self-supervised representation learning
through maximizing similarity between the embedding vec-
tors while reducing redundancy between their components.

First, given an original observation o, a data augmenta-
tion can be sampled so that t ∼ T . Then, by applying data
augmentation t, an augmented observation o′ = t(o) can be
generated so that o and o′ can be regarded as two different
views of the same underlying state. Considering a batch of
observations O, a batch of augmented observation O′ can be
produced by applying augmentations randomly across O. As
shown in Figure 1, these two batches of different views are
fed to the encoder fθ followed by the projector hθ to gener-
ate two batches of embedding vectors Z and Z ′ respectively.
It is worth mentioning that the two embeddings are normal-
ized along the batch direction so that each unit has zero mean
over the batch.

Let C be a cross-correlation matrix computed between the
two sets of embedding vectors, the loss function of the self-
supervised task can be expressed as:

LSSL =
∑
i

(1− Cii)2

︸ ︷︷ ︸
invariance term

+λ
∑
i

∑
i�=j

C2
ij

︸ ︷︷ ︸
redundancy reduction term

(1)

where

Cij =
∑

b zb,iz
′
b,j√∑

b(zb,i)
2
√∑

b(z
′
b,j)

2
(2)

In these equations, λ is a positive constant used to trade off
the two terms of the loss, b is the batch index, and i, j are
indexes of the network output vector dimension. Therefore,
C is a square matrix with the size same as the dimensionality
of the network’s output and each of its entry calculates the
cosine similarity between zb,i and z′b,j . In this way, the first

term can drive the embedding invariant to the applied data

Algorithm 1: SIM

θ: random initialized network parameters
NRL: RL batch size
NSSL: SSL batch size
B: RL replay buffer
n: SSL update frequency
μ: intrinsic reward weight

1: for each iteration do
2: Sample a batch of NRL transitions from B
3: Augment sampled observations
4: Calculate LSSL(o, o

′; θt−1) and LSSL(o, o
′; θt)

5: Calculate intrinsic reward and add it to each reward
in the batch

6: Optimize RL objective
7: if step mod n = 0 then
8: Sample a batch of NSSL observations from B
9: Augment sampled observations

10: Compute embeddings of augmented and non-
augmented observations

11: Optimize SSL objective
12: end if
13: end for

augmentation while the second term can decorrelate the dif-
ferent vector components to avoid the inclusion of redundant
information.

Without modifying either the architecture or inputs, the
RL objective is optimized directly on non-augmented orig-
inal observations o. Therefore, the policy network and self-
supervised network are continuously optimized in an alter-
native manner during training while only the encoder fθ and
the policy πθ are employed during evaluation.

Fusion of Self-Supervised Learning into Intrinsic
Motivation

In RL, intrinsic motivation is originally proposed to facili-
tate the exploration and its rationale is to predict the con-
sequences caused by taking an action (Pathak et al. 2017;
Burda et al. 2018). However, in this work, our goal is to
utilize intrinsic motivation to further facilitate the repre-
sentation learning via better leveraging the useful informa-
tion provided by the self-supervised network. Since the self-
supervised auxiliary task contains adequate information to
measure the quality of the embeddings, an intrinsic reward
converted from the self-supervised loss can be promising to
assist the RL agents to learn the feature representations more
efficiently as well as effectively. As a result, the supervision
signals during RL training are contributed from both the ex-
trinsic and intrinsic rewards so that the total reward function
R is defined as the sum of these two types of rewards ex-
pressed as:

Rt = Re
t + μRi

t (3)

where Re
t , Ri

t and μ represent the extrinsic reward, intrin-
sic reward, and weighting coefficient, respectively. To better
stimulate the representation learning, we define the intrinsic
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Hyperparameter Value
Observation rendering 100 × 100
Observation downsampling 84 × 84
Stacked frames 3
Action repeat 2 (finger)

8 (cartpole)
4 (otherwise)

Discount factor γ 0.99
Episode length 1,000
Base RL algorithm SAC
Replay buffer size 500,000
Initial steps 1000
Learning rate (actor, critic, SSL) 1e-3
Learning rate (α) 1e-4
Initial temperature 0.1
Trade-off constant λ 3.9e-3
Update frequency
(actor, critic target, SSL)

2

Table 1: Hyperparameters used for the DMControl experi-
ments.

reward as:

Ri
t =

LSSL(o, o
′; θt−1)− LSSL(o, o

′; θt)
LSSL(o, o′; θt−1)

(4)

where θt and θt−1 denote the current network parameters
and those at the previous step, respectively. Since LSSL is
computed based on the whole batch, the same intrinsic re-
ward is assigned to all the samples in the batch. By intro-
ducing this auxiliary objective, the RL agent is motivated to
optimize the encoder more efficiently to achieve improved
representation learning.

We summarize the training procedure of SIM in Algo-
rithm 1.

Experiments
Setup
DeepMind Control Suite (DMControl) (Tassa et al. 2018) is
a widely used benchmark dataset for vision-based RL algo-
rithm comparison. It contains a variety of challenging and
diverse continuous control tasks. We evaluate the RL agents
on 5 tasks from DMControl in which the agents observe only
raw pixels without access to state information.

For benchmarking, we compare the SIM with five dif-
ferent baselines, i.e., CURL (Srinivas, Laskin, and Abbeel
2020), RAD (Laskin et al. 2020), DrQ (Kostrikov, Yarats,
and Fergus 2020), PAD (Hansen et al. 2020) and SODA
(Hansen and Wang 2021). All the methods are implemented
on top of the SAC algorithm. In particular, RAD and DrQ
achieve policy adaptation through data augmentations while
CURL, PAD and SODA generalize the policy via adding
self-supervised objectives.

All the RL agents are trained in a fixed training envi-
ronment and evaluated in unseen environments as shown in
Figure 3. Particularly, the color hard environment ran-
domizes the colors of background, foreground and the agent

itself, while the video easy and video hard replace
the background with natural videos. We evaluate the perfor-
mance of different methods at 500k environment steps be-
cause all methods have achieved their optimal performance
on most environments at this point. For each test environ-
ment, the methods are evaluated across 100 randomly ini-
tialized episodes per seed.

During training, we use a batch size of 128 for both RL
and SSL tasks. The three linear layers of the projector hθ

contain 2048, 4096, 4096 output units, respectively. Both
LRL and LSSL are optimized using Adam (Kingma and Ba
2014). The SSL update frequency is set to 2 so that the SSL
objective is only optimized after every second RL update.
The other hyperparameters are listed in Table 1.

Generalization to Unseen Environments
After training, we evaluate the generalization capability
of SIM in the unseen color hard, video easy and
video hard environments and compare it to a number
of recently proposed state-of-the-art approaches. Generally,
SIM is much more superior compared to the baseline meth-
ods. The experimental results in the color hard envi-
ronment are shown in Table 2, where the best result for
each task is highlighted in bold. It is worth noting that
SIM outperforms the baseline methods in all tasks. Partic-
ularly, it improves the performance by as much as 16% on
the walker walk task and 21% on the finger spin
task. Similarly, SIM also significantly outperforms the base-
line methods in the video easy and video hard as
demonstrated in Table 3 and Table 4, respectively. In the
video easy environment, SIM outperforms the state-of-
the-art methods in all tasks except ball in cup catch.
And its maximum performance improvement is 17% on
the finger spin task. In the extremely challenging
video hard environment, an improvement of 20% is
achieved on both the walker walk and finger spin
tasks.

However, although SIM outperforms all previous meth-
ods except SODA dramatically in the video hard en-
vironment, there is still large room for improvement
on the majority of tasks and it performs worse on the
cartpole swingup and ball in cup catch tasks
compared to SODA. We conjecture that this performance
gap can be addressed by further improving the removal of
task-irrelevant features so as to reduce observational over-
fitting. This can be achieved through improving the encoder
architecture, introducing better self-supervised tasks, modi-
fying the RL update rules and enhancing the interaction be-
tween RL and SSL objectives.

Although sample efficiency is not the key consideration
of our method, the training and evaluation curves are de-
picted in Figure 4 for completeness. It is observed that while
SAC is able to converge in training, its generalization abil-
ity is poor during evaluation. Compared to SAC, both SIM
and SODA substantially improve RL generalization. With
the best performance, SIM exhibits a similar sample effi-
ciency compared to SODA. Therefore, although strong aug-
mentations can improve generalization at the cost of sample
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(a) training environment (walker walk) (b) training environment (finger spin)

(c) color hard environment (walker walk) (d) color hard environment (finger spin)

(e) video easy environment (walker walk) (f) video easy environment (finger spin)

(g) video hard environment (walker walk) (h) video hard environment (finger spin)

Figure 3: Sample training and test environments. The agents are trained in a fixed training environment and evaluated in different
unseen test environments.

DMControl
(color hard)

SAC CURL RAD DrQ PAD SODA
SIM

(w/o IM)
SIM

walker, walk 414±74 445±99 400±61 520±91 468±47 692±68 673±85 803±33
walker, stand 719±74 662±54 644±88 770±71 797±46 893±12 926±6 940±2

cartpole, swingup 592±50 454±110 590±53 586±52 630±63 805±28 835±8 841±13
ball in cup, catch 411±183 231±92 541±29 365±210 563±50 949±19 952±10 953±7

finger, spin 626±163 691±12 667±154 776±134 803±72 793±128 954±20 960±6

Table 2: Average episode reward obtained in the color hard environment.

DMControl
(video easy)

SAC CURL RAD DrQ PAD SODA
SIM

(w/o IM)
SIM

walker, walk 616±80 556±133 606±63 682±89 717±79 768±38 779±65 861±33
walker, stand 899±53 852±75 745±146 873±83 935±20 955±13 958±15 963±5

cartpole, swingup 375±90 404±67 373±72 485±105 521±76 758±62 749±55 770±18
ball in cup, catch 393±175 316±119 481±26 318±157 436±55 875±56 704±184 820±135

finger, spin 447±102 502±19 400±64 533±119 691±80 695±97 801±34 815±38

Table 3: Average episode reward obtained in the video easy environment.

DMControl
(video hard)

SAC CURL RAD DrQ PAD SODA
SIM

(w/o IM)
SIM

walker, walk 155±85 58±18 56±9 104±22 93±29 381±72 438±104 459±67
walker, stand 247±43 45±5 231±39 289±49 278±72 771±83 810±36 827±24

cartpole, swingup 152±14 114±15 110±16 138±9 123±24 429±64 390±50 367±47
ball in cup, catch 78±18 115±33 97±29 92±23 66±61 327±100 237±165 287±39

finger, spin 29±25 27±21 34±11 71±45 56±18 302±41 353±18 362±9

Table 4: Average episode reward obtained in the video hard environment.
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Figure 4: Training and evaluation performance. Top: average episode reward in the training environment. Bottom: generalization
capability measured by average episode reward in the color hard environment.

efficiency (Tian et al. 2020), SIM achieves better generaliza-
tion capability without compromising the sample efficiency.

Figure 5: Mean episode reward averaged across all the 5
tasks from DMControl.

Ablation Study
Furthermore, we conduct ablation study to verify the effec-
tiveness of fusing self-supervised learning into intrinsic mo-
tivation, and denote the SIM method without intrinsic re-
ward as SIM (w/o IM). As shown in Table 2, Table 3 and
Table 4, SIM outperforms SIM (w/o IM) consistently in
all tasks except on the cartpole swingup task in the

video hard environment. To illustrate the competency of
intrinsic motivation more intuitively, we calculate the mean
episode rewards averaged across all 5 tasks from DMCon-
trol during training and evaluation. As shown in Figure 5,
although SIM and SIM (w/o IM) converge to similar per-
formance during training, the superiority of SIM becomes
notable in unseen test environments. Moreover, SIM also
exhibits slightly better sample efficiency compared to SIM
(w/o IM). Therefore, it demonstrates the importance of fus-
ing self-supervised learning into intrinsic motivation in im-
proving the generalization capability of RL agents.

Our code and more experimental results are available at
https://github.com/KerryWu16/SIM.

Conclusion
In this paper, we propose to address the generalization chal-
lenge for RL agents via fusing Self-supervised learning into
Intrinsic Motivation (SIM). We employ a redundancy re-
duction based self-supervised learning method to learn in-
variant representations through increasing the similarity be-
tween the embeddings of a sample and its augmented coun-
terpart while minimizing the redundancy between the com-
ponents of the vectors. Meanwhile, we also convert the self-
supervised loss to an intrinsic reward to further improve RL
generalization via an auxiliary objective. SIM can be im-
plemented on top of any RL method without incurring any
change to the underlying algorithm and experimental results
have demonstrated its remarkable superiority.
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