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Abstract

Preserving the performance of a trained model while remov-
ing unique characteristics of marked training data points is
challenging. Recent research usually suggests retraining a
model from scratch with remaining training data or refining
the model by reverting the model optimization on the marked
data points. Unfortunately, aside from their computational inef-
ficiency, those approaches inevitably hurt the resulting model’s
generalization ability since they remove not only unique char-
acteristics but also discard shared (and possibly contributive)
information. To address the performance degradation problem,
this paper presents a novel approach called Performance Un-
changed Model Augmentation (PUMA). The proposed PUMA
framework explicitly models the influence of each training
data point on the model’s generalization ability with respect to
various performance criteria. It then complements the negative
impact of removing marked data by reweighting the remain-
ing data optimally. To demonstrate the effectiveness of the
PUMA framework, we compared it with multiple state-of-the-
art data removal techniques in the experiments, where we show
the PUMA can effectively and efficiently remove the unique
characteristics of marked training data without retraining the
model that can 1) fool a membership attack, and 2) resist per-
formance degradation. In addition, as PUMA estimates the
data importance during its operation, we show it could serve
to debug mislabelled data points more efficiently than existing
approaches.

Introduction
As many countries and territories become increasingly con-
cerned with personal data protection, the corresponding pro-
tection regulations1 entitle individuals to revoke their autho-
rization of using their data for data analysis and machine
learning (ML) model training. While retraining ML mod-
els by removing marked data points is a feasible solution,
frequent data removal requests inevitably put enormous com-
putational pressure on the infrastructures responsible for real-
time ML services. Furthermore, cumulative data loss results
in quick performance degradation. Hence, effectively elimi-
nating data’s unique characteristics while preserving model
performance is a critical and challenging research question.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1CCPA in California, GDPR in Europe, PIPEDA in Canada,
LGPD in Brazil, and NDBS in Australia.

In the literature, a few initial works attempted to address
the data removal challenge. For example, (Ginart et al. 2019)
devised a general notion of removal efficiency and proposed
two model-specific data removal algorithms (for k-means
clustering models). Similarly, (Guo et al. 2020) introduced
a notion of Certified Removal and verified the effectiveness
of their data removal approach on linear classifiers. However,
those methods usually focus on specific ML algorithms and
are hard to generalize to deep neural networks that domi-
nate the latest ML research and applications. (Bourtoule et al.
2019), alternatively, proposed a data removal-friendly model
by ensembling multiple ML models trained on disjoint data
partitions. As such, the data removal operation would only
involve a sub-model. (Graves, Nagisetty, and Ganesh 2020)
proposed a more generalized single-model solution by explic-
itly estimating the contribution (gradients) of each training
data point as an additive function. Unfortunately, such ap-
proaches require high costs; maintaining many sub-models
and tracking the model training process are barely feasible
for real-world applications. In addition, existing data removal
works merely pay attention to the performance degradation
problem when removing marked data points. While (Ginart
et al. 2019)’s criterion includes a constraint such as perfor-
mance of the resulting model should not be worse than that
of a model trained from scratch with remaining data, it does
not intend to preserve the performance of the original model.

In this paper, we propose a novel approach, Performance
Unchanged Model Augmentation (PUMA), to efficiently
erase the unique characteristics of marked data points from a
trained model without causing performance degradation. In
particular, the proposed PUMA framework explicitly models
the influence of each training data point on the model with
respect to various performance criteria (that are not neces-
sarily the model training objectives). It then complements
the negative impact of removing marked data by reweighting
the remaining data points sparsely and optimally through a
constrained optimization. Consequently, PUMA can preserve
model performance by linearly patching the original model
via reweighting operation while eliminating unique character-
istics of marked data points. In the experiments, we compare
PUMA with existing data removal approaches and show that
PUMA has two desired properties: 1) It can successfully fool
a membership attack (Shokri et al. 2017), 2) It can resist
performance degradation.
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Preliminary and Related Works
Before proceeding, we review existing related data removal
approaches which inspired this work. We also briefly describe
the influence function to facilitate our description in the main
content. Finally, we list several information leaking attack
approaches that can be used to test the effectiveness of data
removal in the existing literature.

Data Removal Approaches
Removing training data from models has a long research his-
tory that can be tracked back to the era of support vector ma-
chines. (Cauwenberghs and Poggio 2000) proposed a decre-
mented unlearning approach, called Leave-One-Out (LOO),
to gradually remove marked training data points from trained
SVM model. By examining the margin of the data points,
LOO could significantly reduce the computational effort of
data removal. Later, (Karasuyama and Takeuchi 2009) ex-
tended the decremental unlearning approach to support si-
multaneous addition and/or removal of multiple data points
through multi-parametric programming. Following the same
line of research, (Tsai, Lin, and Lin 2014) proposed a warm-
up based unlearning approach that is effective on multiple
linear machine learning models. Lastly, (Ginart et al. 2019)
payed attention to unsupervised learning tasks where it pre-
sented two model-specific data removal algorithms for k-
means clustering models.

Recent research (Graves, Nagisetty, and Ganesh 2020)
stated that the previously mentioned approaches are not suit-
able to work on deep network models where the contribution
of individual training data points are intractable to compute
exactly and analytically. To mitigate the computational cost
of retraining a new model from scratch, (Bourtoule et al.
2019) suggested training multiple models on disjoint data
partitions so that retraining is limited to small groups of sub-
models. Alternatively, (Graves, Nagisetty, and Ganesh 2020)
presented Amnesiac training which tracks contribution of
each training batch (a set of data points) during the model
training. When a batch is marked as to be removed, the oper-
ation is simply a subtraction between model parameters and
data contribution.

While the existing approaches show remarkable achieve-
ment on improving efficiency of removing data points from a
trained model, we note that they underestimated two critical
criteria of data removal tasks: 1) The data removal approach
should maintain model stability and protect against perfor-
mance degradation. 2) The data removal approach should
minimize the overall computational cost instead of only look-
ing at the cost of the data removal operation. More specifi-
cally, training multiple models or tracking gradients of every
training epoch is undesired in practice. All of the above ob-
servations motivated our work on proposing Performance
Unchanged Model Augmentation (PUMA) in this paper.

Influence Function for Prediction Explanation
An influence function is a limit equation which estimates the
prediction changes of a model when its inputs are perturbed.
In statistics, the influence function is similar to the Gâteaux
derivative, but it can exist even when the Gâteaux derivative
does not exist for a particular model.

Recently, the influence function was used to explain the
prediction of complex machine learning models as it can
reveal the impact of training data point (xk, yk) on the test
example (xj , yj)’s predictions (Koh and Liang 2017) such
that

Iup,loss ((xk, yk), (xj , yj))
def
=
dL(xj , yj , θ)

dε

∣∣∣
ε=0

=−∇θL(xj ,yj ,θ)

(
1

m

m∑
i=1

∇2
θL(xi,yi,θ)

)−1
∇θL(xk,yk,θ),

(1)
where L denotes the loss function for the individual data
point, and ε denotes the degree of perturbation on the data
k. By computing Equation 1 for all training data points k,
we can summarize a training data importance rank for a
particular test sample j.

Naturally, if we can explain the model prediction based
on its training data points, we can also refine the model
prediction by perturbing those data points. Based on this
idea, (Guo et al. 2020) proposed a data removal approach
that leverages the Newton method and influence function.
However, their solution is defined for a linear model, making
it hard to verify its performance on complex models.

In this work, we will also leverage the influence function.
The critical difference between our work and (Guo et al.
2020) is two-folds: First, our objective is to let the modified
model preserve the original model’s performance after data
removal rather than passively monitoring whether the mod-
ified model can produce near identical predictions against
a model trained on the remaining data from scratch. When
a huge number of data points are requested to remove, the
difference between these two objectives is significant; train-
ing new model from scratch with insufficient data points may
not reach a desirable performance. Second, the proposed ap-
proach modifies all trainable parameters of the model while
(Guo et al. 2020) only adjusts the linear decision making
layer which does not eliminate unique characteristics of the
removed data points (since the representations are learned
with the knowledge of the removed data points).

Data Privacy Protection and Membership Attacks
In terms of evaluating the effectiveness of data removal
approaches, previous research (Graves, Nagisetty, and
Ganesh 2020) suggested leveraging information leaking at-
tacks (Homer et al. 2008; Dwork et al. 2015; Fredrikson,
Jha, and Ristenpart 2015; Yeom et al. 2018) to check if
the data characteristics are indeed removed from a trained
model. Specifically, it is suggested that the membership at-
tack (Homer et al. 2008) could reveal whether a particular
data point is present in training a model, which is an ideal
reference to see the difference of attacks before and after
the data removal operation. In the literature, there are vari-
ous membership attack algorithms (Shokri et al. 2017; Nasr,
Shokri, and Houmansadr 2018; Yeom et al. 2018) since the
concept was introduced by (Homer et al. 2008).

In this paper, we will follow the track of previous works
and conduct membership attack experiments to show the
effectiveness of our model in the experiments.

8676



Performance Unchanged Model Augmentation
Given a machine learning model fθorg learned on training
data set Dtn, we aim to remove the unique characteristics of
marked data points Dmk ⊂ Dtn from the model by updating
model parameters θorg → θmod without seriously hurting its
prediction performance with respect to various performance
criteria C (or Lc for an individual sample) such that

∣∣∣ 1

|Dtn|

|Dtn|∑
i=1

Lc(xi, yi, θmod)︸ ︷︷ ︸
C(θmod)

− 1

|Dtn|

|Dtn|∑
i=1

Lc(xi, yi, θorg)︸ ︷︷ ︸
C(θorg)

∣∣∣≤δ,
(2)

where δ is a small change in performance. In particular, we
are interested in preserving overall performance rather than
being concerned with a shift in an individual prediction.

Influence of Training Data

To tackle the data removal task defined above, we first need
to reveal the underlining causal relation between training data
perturbation and model performance variation. Specifically,
in this section, we clarify two aspects of this connection: 1)
How the training data changes would impact model param-
eters, and 2) How the parameter changes would impact the
model performance with respect to specific criteria C.

Parameter as Linear Function of Data Contributions
We start by analyzing how perturbing the training dataset
would impact the model parameter changes via the influence
function.

Let us assume the model parameter θorg is the optimal
solution of the (original) training objective Jorg

θorg = argmin
θ
Jorg(θ) = argmin

θ

1

|Dtn|

|Dtn|∑
i=1

Lt(xi, yi, θ)

(3)
and θmod is the optimal solution of a modified objective Jmod

θmod = argmin
θ
Jmod(θ) =

argmin
θ

1

|Dtn|

|Dtn|∑
i=1

Lt(xi, yi, θ)︸ ︷︷ ︸
Jorg(θ)

+
1

|Dup|

|Dup|∑
j=1

λjLt(xj , yj , θ)︸ ︷︷ ︸
Jadd(θ)

(4)
that optimizes an additional weighted objective Jadd on a sub-
set of training data points Dup ⊆ Dtn, where Lt denotes in-
dividual prediction loss2 and λ ∈ IR|Dup| denotes the weight
vector of upweighted data points.

When the values of weights λ are negligibly small, the
derivative of the modified objective Jmod with respect to its
optimal parameters θmod could be Taylor expanded at the

2Training loss Lt is not necessarily identical to the performance
criterion loss Lc defined in Equation 2.

local anchor θorg such that

∇Jmod(θmod)︸ ︷︷ ︸
≈0

≈∇Jmod(θorg) +∇2Jmod(θorg)(θmod−θorg)

≈∇Jorg(θorg)︸ ︷︷ ︸
≈0

+∇Jadd(θorg) +∇2Jmod(θorg)(θmod−θorg).

(5)
Since the both θmod and θorg are optimal solutions with respect
to their corresponding objective functions ∇Jmod(θ) and
∇Jorg(θ) (whose derivatives are 0s), the Equation 5 yields
a difference between the two optimal solution θmod and θorg
such that

θmod − θorg
def
= −

(
∇2Jorg(θorg)

)−1∇Jadd(θorg), (6)

where we relaxed the Hessian matrix ∇2Jmod(θorg) to
∇2Jorg(θorg). There are multiple justifications for such re-
laxation. First, since the λs are set to be small values, such a
setting makes the difference of these second order derivatives
insignificant. Second, in practice, computing the Hessian ma-
trix (or Hessian Vector Product described later) is usually
an iterative and stochastic process which introduces larger
noise than the relaxation we introduced here. It is worth to
mention that the expression in Equation 6 aligns with pre-
vious influence function work (Koh and Liang 2017) when
λ is restricted as a one-hot vector (that only upweights a
single data point). In our implementation, we compute HVP
approximation in the same way as described in (Koh and
Liang 2017).

By expanding the derivative of the additive perturbation
term ∇Jadd(θorg), we can convert the Equation 6 to a linear
function of the perturbation weight λ as follows:

θmod−θorg = −
|Dup|∑
j=1

λj
(
∇2Jorg(θorg)

)−1∇Lt(xj ,yj ,θorg).

(7)
Indeed, with trained model whose parameter θorg is fixed,
both the Hessian matrix ∇2Jorg(θorg) and gradient vector
∇L(xj , yj , θorg) are constant for the fixed set of upweighted
data points Dup.

Performance Gap as Taylor Approximation of Parame-
ter Changes When the difference between two sets of
parameters is reasonably small, the performance gap be-
tween the two corresponding models could be approximated
through Taylor expansion such that

C(θmod)− C(θorg) = ∇C(θorg)(θmod − θorg) + ε

≈ −
|Dup|∑
j=1

λj∇C(θorg)
(
∇2Jorg(θorg)

)−1∇L(xj , yj , θorg),

(8)
which is a linear function of the additive data perturbation λ,
where ε represents the higher order Taylor expansion that is
exponentially smaller than the first term. Intuitively, term

ψ(xj , yj) = ∇C(θorg)
(
∇2Jorg(θorg)

)−1︸ ︷︷ ︸
Hessian Vector Product (HVP)

∇L(xj , yj , θorg)

(9)
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Figure 1: Projection Direction Comparison between Naive Influence Removal and PUMA. (a) The projection direction of each
data point (green arrow as shown Equation 12). Blue arrow shows the one marked to remove. (b) The overall projection direction
(red arrow) is toward high loss area after naive data contribution removal. (c) The overall projection direction (red arrow) is
toward low loss area after PUMA data removal. Orange contour plot shows the loss surface of training objective J . Purple
contour plot shows the loss surface of performance criterion C. For both contour plots, lighter color shows lower loss.

is a scalar that serves as the individual contribution score of
data (xj , yj) to the performance degradation. By adjusting
the weights λ, one can control the performance gap effort-
lessly. Hence, at this point, we established the causal relation
between data perturbation and model performance changes.

Performance Preserved Data Removal through
Gradient Re-weighting
By combining Equation 2 and Equation 8, we note they form
an implicit constraint on the data up-scaling factors λ such
that any changes on a subset factor λj would encourage the
changes of remaining λ/j as complement to maintain the
performance gap smaller than δ.

Based the above notion, we describe how we remove the
influence of some marked data points Dmk ⊆ Dup from a
target model fθorg without hurting the model performance.

According to the Equation 4, removing the contribution of
a marked data point (xk, yk) is equivalent to setting its per-
turbation factor λk to −1. Correspondingly, to maintain the
model performance while removing data points Dmk, we pro-
pose optimizing the assignment of the perturbation factor λ
for the remaining training data points (or randomly sampled
subset Dup\mk) to complement model criterion degradation.
Concretely, we propose solving the following linear optimiza-
tion task

argmin
λ

∥∥∥∥∥∥
|Dup|∑
j 6∈Dmk

λjψ(xj , yj)−
|Dmk|∑
k=1

ψ(xk, yk)

∥∥∥∥∥∥
2

+Ω(λ),

(10)
where Ω denotes the regularization term which encourages
both sparsity (l1 norm) and small changes of λ (l2 norm).
In terms of computational efficiency, since the ψ(x, y)s are
scalar values, the optimization is simple convex optimization.
While estimating individual contribution ψ(xj , yj) looks ex-
pensive, the estimation is no more than a dot product between
individual gradient and pre-cached Hessian Vector Product
(HVP) term.

With the optimized contribution factor λ∗, we can then

update the model parameters by a simple patching such that

θmod = θorg + η

|Dmk|∑
k=1

φ(xk, yk)−
|Dup|∑
j 6∈Dmk

λ∗jφ(xj , yj)

 ,
(11)

where the individual projection of each data point is

φ(x, y) =
(
∇2Jorg(θorg)

)−1∇L(x, y, θorg) (12)
and projection rate η � 1 is a hyper-parameter which keeps
patching effective while holding our previous assumptions
such that data upweighting is reasonably small.

Figure 1 shows a simple example of PUMA data removal.
When a data point is marked for removal (blue arrow), PUMA
optimizes Equation 10 and applies the optimal factor λ to
the projection formula (Equation 12) to adjust model param-
eters such that model performance with respect to the per-
formance criterion (purple contour) is preserved. In contrast,
if we naively remove the local influence of the marked data
point, the model would result in performance degradation. In
this particular example, performance criterion is measured
through Expected Calibration Error (ECE) (Guo et al. 2017).
The example model is a linear model with two parameters
trained on a binary classification task.

Experiments and Evaluations
In this section, we conduct various experiments to answer the
following research questions:
• RQ1: Is the proposed approach able to preserve model

performance while removing data points?
• RQ2: Is the removal successful in terms of causing mem-

bership attack failure?
• RQ3: How efficient is the proposed approach compared to

other state-of-the-art candidates?
• RQ4: How sensitive is PUMA with respect to its hyper-

parameters?
• RQ5: Can the proposed approach conduct mislabeling de-

bugging as it estimates the influence of training data point?
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Figure 2: Removing the training points marked by crosses
from the model. As demonstrated in the right plot, PUMA
successfully removed the information of all marked points.
‘x’ in the plot shows the data intended to remove. Colors show
the class labels.

Experimental Settings
Candidate Data Removal Algorithms In data removal ex-
periments, we compare PUMA against the following state-
of-the-art data removal approaches.
• Retrain Model: Retrain model from scratch with remain-

ing data points after picking out marked data points.
• Retrain Sub-model: Retrain sub-model that is trained on

marked data points. This is also called Sharded, Isolated,
Sliced, and Aggregated training (SISA).

• Amnesiac Machine Learning: Track gradient informa-
tion of each training batch during training phase. Subtract
the gradients when the batch is marked for removal.

Mislabelling Debugging Algorithms In mislabelled data
debugging experiments, we compare PUMA against the fol-
lowing well-known debugging approaches including Influ-
ence Function (Koh and Liang 2017), Representor Point Se-
lection (Yeh et al. 2018), and Data Sharply Value (Ghorbani
and Zou 2019).
Datasets We conducted our experiments on two synthetic
datasets, two tabular datasets from UCI data group 3, and the
MNIST dataset (LeCun et al. 1998).

Dessert: Preliminary Data Removal Check
Before starting quantitative evaluation, we first run a prelim-
inary check on a simple binary classification task to show
the effect of PUMA data removal. Specifically, we first train
a classifier on a synthetic dataset that contains three obser-
vation clusters for each class as shown in Figure 2 (a). The
trained classifier is a perfect estimator of data distribution
(with 100% prediction accuracy). We then mark all data in
one cluster for removal (denoted by ‘x’ in the plots). Intu-
itively, if the marked data points are never used for training
the classifier, we can imagine that their predictions should
align with the predictions of data points surrounding them.
Indeed, the model obtained after the PUMA data removal op-
eration reflects our intuition as shown in Figure 2 (b), where

3https://archive.ics.uci.edu/ml/index.php
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Figure 3: Execution time comparison among the data removal
approaches. Statistics come from 50 times run, and error bar
shows the standard deviation. Lower is better.

all removed data points are now predicted as members of the
orange class.

Effectiveness of Preserving Model Performance
In this section, we quantitatively evaluate how the data re-
moval approaches preserve model performance after data
removal. In particular, we gradually remove training data
points with percentages [20%, 40%, 60%, 80%] and aim to
show the performance degradation after data removal. To sim-
plify the experimental setting, here we assume the training
objective J and performance criterion C are identical (both
of them are cross entropy loss of prediction). Considering
that both Amnesiac ML and SISA models may show better
performance when the data marked to be removed belong to
same training batch, we conduct experiments in two scenar-
ios. In the first scenario (Ordered), we intentionally group all
data points marked to be removed into small set of training
batches such that the removal operation would not impact
other training batches (and sub-models for SISA). In the sec-
ond scenario (Random), we simulate a more realistic setting
where removal may apply to any data points irrespective of
training batches.

Table 1 shows performance preservation comparison be-
tween our proposed approach (PUMA) and various baselines.
In the table, we make the following observations:
• Among all candidate data removal approaches, PUMA

shows the best performance preservation ability. And, in
some cases, the model obtained after the PUMA operation
even shows better performance than the original model.

• Amnesiac ML often completely destroys the model with
its data removal operation when the removal is applied to
more than 20% of training data. This observation aligns
with the original results described in the Amnesiac ML
paper (Graves, Nagisetty, and Ganesh 2020) where refined
training is required after the removal operation.

• While Amnesiac ML and SISA show reasonably satisfac-
tory performance preservation ability in one of the two
scenarios, they tend to fail in another scenario. Amnesiac
ML fails in the setting where data may be required to be
removed from random batches. In contrast, SISA does not
perform well when the number of sub-models is reduced,
as a consequence of removing all training data points of
the sub-models.
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Data Group Dataset Ordered Random

Original Approach 20% 40% 60% 80% Original Approach 20% 40% 60% 80%

Synthetic
Radial

95.04 Retrain Model 93.64 91.60 84.15 66.24 95.89 Retrain Model 93.97 90.94 82.58 66.51
80.88 SISA 67.35 63.57 61.93 51.91 75.62 SISA 64.71 64.35 54.80 54.77
95.04 Amnesiac ML 56.38 54.75 53.53 50.54 95.88 Amnesiac ML 49.08 48.95 48.95 48.95
94.97 PUMA 68.97 69.60 67.99 70.77 95.82 PUMA 72.44 73.22 71.82 76.02

Rectangular

62.00 Retrain Model 61.20 60.35 55.80 54.25 65.00 Retrain Model 64.70 64.50 62.30 58.65
55.60 SISA 55.90 48.30 30.10 29.55 56.50 SISA 56.50 56.50 56.55 56.90
62.00 Amnesiac ML 46.60 43.85 43.45 39.15 65.00 Amnesiac ML 35.40 35.40 35.40 35.40
61.85 PUMA 55.25 56.30 53.85 61.70 64.95 PUMA 59.90 62.05 62.55 64.80

Tabular
(UCI)

German

71.52 Retrain Model 70.56 70.12 70.11 70.00 75.16 Retrain Model 74.88 73.24 72.47 70.00
70.00 SISA 70.00 70.00 68.96 66.16 70.00 SISA 70.00 70.00 70.00 70.00
71.52 Amnesiac ML 68.52 64.40 66.24 64.03 75.16 Amnesiac ML 36.24 36.28 35.72 35.72
71.47 PUMA 69.08 70.72 70.64 70.72 75.12 PUMA 70.96 73.24 74.44 74.28

Breast Cancer

96.45 Retrain Model 96.62 96.11 96.00 94.85 96.00 Retrain Model 95.82 95.54 95.65 95.20
91.31 SISA 89.20 88.91 80.68 52.62 92.28 SISA 91.60 88.05 88.22 87.88
96.45 Amnesiac ML 96.05 95.82 95.25 82.28 96.00 Amnesiac ML 35.20 30.51 30.51 30.51
96.39 PUMA 96.17 95.88 96.22 96.62 96.00 PUMA 95.08 94.91 95.25 95.54

Image MNIST

97.58 Retrain Model 97.28 96.72 95.76 93.48 97.99 Retrain Model 97.72 97.16 96.60 93.98
95.89 SISA 95.80 95.67 94.78 89.86 95.66 SISA 93.47 90.63 78.06 59.83
97.44 Amnesiac ML 9.44 9.84 9.56 9.36 98.06 Amnesiac ML 10.39 10.39 10.39 10.39
97.60 PUMA 96.70 96.66 97.17 97.16 97.97 PUMA 97.42 97.58 97.60 97.61

Table 1: Comparison of Model Performance Preservation among Candidate Removal Approaches. Value shows accuracy. Higher
is better after data removal. We omit to present statistics in the main paper for clearness.

Data
Group Dataset

Ordered Random

Retrain Model SISA Amnesiac ML PUMA Retrain Model SISA Amnesiac ML PUMA

Before After Before After Before After Before After Before After Before After Before After Before After

Synthetic Radial 100.0 100.0 100.0 100.0 100.0 0.00 100.0 5.31 100.0 52.36 100.0 37.00 100.0 50.00 100.0 1.18
Rect 100.0 91.65 83.18 83.18 100.0 33.33 100.0 36.66 100.0 67.07 98.50 94.00 100.0 86.20 100.0 20.00

Tabular German 100.0 77.12 100.0 100.0 100.0 0.00 100.0 3.42 94.44 84.44 100.0 98.81 94.44 93.33 85.18 2.22
Breast /
Cancer 100.0 100.0 87.50 87.50 100.0 100.0 100.0 56.25 100.0 100.0 90.00 73.75 100.0 87.50 100.0 71.25

Image MNIST 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 72.00

Table 2: Comparison of Membership Attack after Data Removal Operation. Value shows percentage of removed data that is
identified as training data. Lower values in the table show better performance of removal.

Effectiveness of Data Removal
Now, we show how well the proposed approach works in
removing the influence of data points from the model. To
quantitatively evaluate the performance, we conduct a mem-
bership attack on the model after data removal. Ideally, if the
influence of a data point is successfully removed, then the
membership attack would predict that the given data point
does not belong to the training data set. Hence, a lower value
for data removal shows better removal effectiveness.

Table 2 shows a comparison of the effectiveness of the
data removal approaches. In the table, we observe follows:
• In most cases, PUMA shows better data removal perfor-

mance compared to the other baseline models. While Am-
nesiac ML occasionally outperforms PUMA, we realize
that it could be due to a complete model degradation, as
previously observed in Table 1.

• In multiple experiments, we observed that the data removal
operations could not reduce the success rate of membership
attack to zero. This is due to the existence of similar training
examples to the marked data points that are not marked
for removal. Since well-train ML models can generalize

well on previously unseen data points, these remaining data
points can also fool the membership attack classifier when
the prediction confidence is high enough.

Efficiency of Data Removal
As efficiency is the one of most important reason of running
the data removal operation, we compare the execution time of
different data removal approaches in the previously described
experimental settings. Here, we only show the two most
representative plots as the general trendy is similar.

Figure 3 shows the execution time comparison on UCI
German Credit and MNIST datasets. Specifically:
• PUMA shows the best efficiency compared to the other

candidates when the data removal happens to be random
(i.e. the more practical scenario).

• SISA’s efficiency depends on how many sub-models are
involved in retraining. In the ordered data removal setting,
SISA shows competitive efficiency. However, when the
data removal happens to involve more sub-models, its effi-
ciency is dramatically reduced.

• In general, data removal approaches are more efficient
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Figure 4: Mislabelling debugging comparison between PUMA and state-of-the-art debugging algorithms. We corrupted datasets
by randomly flipping 10% of the data labels. The goal of the candidate approaches is to identify and correct the mislabelled data
as early as possible. PUMA shows significant advantage when only 20% of data are processed during debugging.
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Figure 5: Effects of hyper-parameter tuning. Large projection
rate η shows better resistant to the membership attack while
suffers from severe performance degradation.

than training a model from scratch. However, for the small
dataset (UCI-German Credit), there is no significant advan-
tage of using a data removal operation. In particular, the
Amnesiac ML approach does not show better efficiency
compared to retraining a model from scratch.

Insight of Hyper-parameter Tuning
As introduced in Equation 11, PUMA has one important
hyper-parameter η which controls the projection step of pa-
rameter augmentation. Indeed, a huge projection step η would
seriously violate the Taylor approximation assumption that
PUMA approach relies on. Hence, in this experiment, we aim
to demonstrate the importance of tuning this hyper-parameter.

Figure 5 shows the trend of tuning η on two representative
datasets (UCI German Credit and MNIST). Overall, there
is a trade-off between the effectiveness of removing data
and the ability of preserving model generalization. Keeping
the projection rate in the range of η ∈ [10−2, 10−1] often
show satisfactory removal performance while maintaining
the model’s generalization ability.

Corrupted Sample Discovery
As PUMA explicitly states the contribution of individual data
points to the performance criterion (see Equation 9), a side
functionality of PUMA is to debug mislabelled data in the
same fashion as Influence Function (Koh and Liang 2017),

Data Approach

GShapley NTK SelfInfluence RSP PUMA

Two Moons 90.37 22.65 1562.93 17.14 7.61
Spiral 78.47 19.91 1464.01 16.51 7.44
Radial 82.99 21.60 1563.53 17.76 7.76
Rectangulars 78.04 20.23 1480.12 16.81 7.29

Table 3: Comparison of Running Time (in Seconds). Lower
values in the table show better performance to the mislabelled
data debugging. We omit the statistic in this table for saving
space.

Representer Point Selection (Yeh et al. 2018), and Data Shap-
ley (Ghorbani and Zou 2019). We also have included a simpli-
fied version of the Influence function by removing the inverse
Hessian matrix from the influence function formulation to ac-
celerate the computation, denoted by Neural Tangent Kernel
(NTK), due to its similarity to the NTK formulation (Ja-
cot, Gabriel, and Hongler 2018). Figure 4 shows the overall
performance of mislabel debugging. In this experiment, we
randomly flip the label of 10% of the training data samples
and calculate the data values using the aforementioned algo-
rithms. PUMA outperforms other algorithms by discovering
more corrupted training data points while reviewing fewer
data fractions. Tabel 3 shows the corresponding execution
time for the debugging test, where we observe that PUMA is
significantly more efficient than the other approaches.

Conclusion
This paper presents a novel data removal approach, PUMA,
which removes unique characteristics of marked training data
points from a trained ML model while preserving the model’s
performance with respect to certain performance criterion.
Compared to existing approaches which require access to the
model training process, PUMA shows a significant advantage
as it does not restrict how the model is trained. From various
experiments, we note PUMA also demonstrates better per-
formance compared to the baseline approaches in multiple
aspects, including effectiveness, efficiency and performance
preservation ability.
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