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Abstract
Modern generative models achieve excellent quality in a vari-
ety of tasks including image or text generation and chemical
molecule modeling. However, existing methods often lack the
essential ability to generate examples with requested proper-
ties, such as the age of the person in the photo or the weight
of the generated molecule. Incorporating such additional con-
ditioning factors would require rebuilding the entire architec-
ture and optimizing the parameters from scratch. Moreover,
it is difficult to disentangle selected attributes so that to per-
form edits of only one attribute while leaving the others un-
changed. To overcome these limitations we propose PluGeN
(Plugin Generative Network), a simple yet effective genera-
tive technique that can be used as a plugin to pre-trained gen-
erative models. The idea behind our approach is to transform
the entangled latent representation using a flow-based mod-
ule into a multi-dimensional space where the values of each
attribute are modeled as an independent one-dimensional dis-
tribution. In consequence, PluGeN can generate new sam-
ples with desired attributes as well as manipulate labeled at-
tributes of existing examples. Due to the disentangling of the
latent representation, we are even able to generate samples
with rare or unseen combinations of attributes in the dataset,
such as a young person with gray hair, men with make-up,
or women with beards. We combined PluGeN with GAN
and VAE models and applied it to conditional generation and
manipulation of images and chemical molecule modeling.
Experiments demonstrate that PluGeN preserves the quality
of backbone models while adding the ability to control the
values of labeled attributes. Implementation is available at
https://github.com/gmum/plugen.

Introduction
Generative models such as GANs and variational autoen-
coders have achieved great results in recent years, especially
in the domains of images (Brock, Donahue, and Simonyan
2018; Brown et al. 2020) and cheminformatics (Gómez-
Bombarelli et al. 2018; Jin, Barzilay, and Jaakkola 2018).
However, in many practical applications, we need to con-
trol the process of creating samples by enforcing particular
features of generated objects. This would be required to reg-
ulate the biases present in the data, e.g. to assure that people
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input gender glasses smile

Figure 1: Attributes manipulation performed by PluGeN us-
ing the StyleGAN backbone.

of each ethnicity are properly represented in the generated
set of face images. In numerous realistic problems, such as
drug discovery, we want to find objects with desired prop-
erties, like molecules with a particular activity, non-toxicity,
and solubility.

Designing the conditional variants of generative models
that operate on multiple labels is a challenging problem
due to intricate relations among the attributes. Practically,
it means that some combinations of attributes (e.g. a woman
with a beard) might be unobserved or rarely observed in the
training data. In essence, the model should be able to go
beyond the distribution of seen data and generate examples
with combinations of attributes not encountered previously.
One might approach this problem by building a new condi-
tional generative model from the ground up or design a solu-
tion tailored for a specific existing unsupervised generative
model. However, this introduces an additional effort when
one wants to adapt it to a newly invented approach.

To tackle this problem while leveraging the power of ex-
isting techniques, we propose PluGeN (Plugin Generative
Network), a simple yet effective generative technique that
can be used as a plugin to various pre-trained generative
models such as VAEs or GANs, see Figure 1 for demon-
stration. Making use of PluGeN, we can manipulate the at-
tributes of input examples as well as generate new samples
with desired features. When training the proposed module,
we do not change the parameters of the base model and thus
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(a) Factorization of true data distribution (b) Probability distribution covered by PluGeN.

Figure 2: PluGeN factorizes true data distribution into components (marginal distributions) related to labeled attributes, see
(a), and allows for describing unexplored regions of data (uncommon combinations of labels) by sampling from independent
components, see (b). In the case illustrated here, PluGeN constructs pictures of men with make-up or women with beards,
although such examples rarely (or never) appear in the training set.

we retain its generative and reconstructive abilities, which
places our work in the emerging family of non-invasive net-
work adaptation methods (Wołczyk et al. 2021; Rebuffi,
Bilen, and Vedaldi 2017; Koperski et al. 2020; Kaya, Hong,
and Dumitras 2019; Zhou et al. 2020).

Our idea is to find a mapping between the entangled la-
tent representation of the backbone model and a disentan-
gled space, where each dimension corresponds to a single,
interpretable attribute of the image. By factorizing the true
data distribution into independent components, we can sam-
ple from each component independently, which results in
creating samples with arbitrary combinations of attributes,
see Figure 2. In contrast to many previous works, which
are constrained to the attributes combinations visible in the
training set, PluGeN gives us full control of the generation
process, being able to create uncommon combinations of at-
tributes, such as a woman with a beard or a man with heavy
make-up. Generating samples with unseen combinations of
attributes can be viewed as extending the distribution of gen-
erative models to unexplored although reasonable regions of
data space, which distinguishes our approach from existing
solutions.

Extensive experiments performed on the domain of im-
ages and a dataset of chemical compounds demonstrate that
PluGeN is a reusable plugin that can be applied to various
architectures including GANs and VAEs. In contrast to the
baselines, PluGeN can generate new samples as well as ma-
nipulate the properties of existing examples, being capable
of creating uncommon combinations of attributes.

Our contributions are as follow:
• We propose a universal and reusable plugin for multi-

label generation and manipulation that can be attached to
various generative models and applied it to diverse do-
mains, such as chemical molecule modeling.

• We introduce a novel way of modeling conditional distri-
butions using invertible normalizing flows based on the
latent space factorization.

• We experimentally demonstrate that PluGeN can pro-
duce samples with uncommon combinations of attributes
going beyond the distribution of training data.

Related work
Conditional VAE (cVAE) is one of the first methods which
includes additional information about the labeled attributes
in a generative model (Kingma et al. 2014). Although this
approach has been widely used in various areas ranging from
image generation (Sohn, Lee, and Yan 2015; Yan et al. 2016;
Klys, Snell, and Zemel 2018) to molecular design (Kang and
Cho 2018), the independence of the latent vector from the
attribute data is not assured, which negatively influences the
generation quality. Conditional GAN (cGAN) is an alterna-
tive approach that gives results of significantly better qual-
ity (Mirza and Osindero 2014; Perarnau et al. 2016; He et al.
2019), but the model is more difficult to train (Kodali et al.
2017). cGAN works very well for generating new images
and conditioning factors may take various forms (images,
sketches, labels) (Park et al. 2019; Jo and Park 2019; Choi
et al. 2020), but manipulating existing examples is more
problematic because GAN models lack the encoder network
(Tov et al. 2021). Fader Networks (Lample et al. 2017) com-
bine features of both cVAE and cGAN, as they use encoder-
decoder architecture, together with the discriminator, which
predicts the image attributes from its latent vector returned
from the encoder. As discussed in (Li et al. 2020), the train-
ing of Fader Networks is even more difficult than standard
GANs, and disentanglement of attributes is not preserved.
MSP (Li et al. 2020) is a recent auto-encoder based architec-
ture with an additional projection matrix, which is respon-
sible for disentangling the latent space and separating the
attribute information from other characteristic information.
In contrast to PluGeN, MSP cannot be used with pre-trained
GANs and performs poorly at generating new images (it was
designed for manipulating existing examples). CAGlow (Liu
et al. 2019) is an adaptation of Glow (Kingma and Dhariwal
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2018) to conditional image generation based on modeling
a joint probabilistic density of an image and its conditions.
Since CAGlow does not reduce data dimension, applying it
to more complex data might be problematic.

While the above approaches focus on building conditional
generative models from scratch, recent works often focus on
manipulating the latent codes of pre-trained models. Style-
Flow (Abdal et al. 2021) operates on the latent space of
StyleGAN (Karras, Laine, and Aila 2019) using a condi-
tional continuous flow module. Although the quality of gen-
erated images is impressive, the model has not been applied
to other generative models than StyleGAN and domains
other than images. Moreover, StyleFlow needs an additional
classifier to compute the conditioning factor (labels) for im-
ages at test time. Competitive approaches to StyleGAN ap-
pear in (Gao et al. 2021; Tewari et al. 2020; Härkönen et al.
2020; Nitzan et al. 2020). InterFaceGAN (Shen et al. 2020)
postulates that various properties of the facial semantics can
be manipulated via linear models applied to the latent space
of GANs. Hijack-GAN (Wang, Yu, and Fritz 2021) goes be-
yond linear models and designs a proxy model to traverse
the latent space of GANs.

In disentanglement learning, we assume that the data has
been generated from a fixed number of independent factors
of underlying variation. The goal is then to find a transfor-
mation that unravels these factors so that a change in one di-
mension of the latent space corresponds to a change in one
factor of variation while being relatively invariant to changes
in other factors (Bengio, Courville, and Vincent 2013; Kim
and Mnih 2018; Higgins et al. 2017; Brakel and Bengio
2017; Kumar, Sattigeri, and Balakrishnan 2017; Chen et al.
2019; Spurek et al. 2020; Dinh, Krueger, and Bengio 2014;
Sorrenson, Rother, and Köthe 2020; Chen et al. 2016). As
theoretically shown in (Locatello et al. 2019), the unsuper-
vised learning of disentangled representations is fundamen-
tally impossible without inductive biases on both the models
and the data. In this paper, we solve a slightly different prob-
lem than typical disentanglement, as we aim to deliver an
efficient plug-in model to a large variety of existing models
in order to manipulate attributes without training the entire
system. Creating compact add-ons for large models saves
training time and energy consumption.

Plugin Generative Network
We propose a plugin generative network (PluGeN), which
can be attached to pre-trained generative models and allows
for direct manipulation of labeled attributes, see Figure 3
for the basic scheme of PluGeN. Making use of PluGeN we
preserve all properties of the base model, such as genera-
tion quality and reconstruction in the case of auto-encoders,
while adding new functionalities. In particular, we can:
• modify selected attributes of existing examples,
• generate new samples with desired labels.

In contrast to typical conditional generative models, PluGeN
is capable of creating examples with rare or even unseen
combinations of attributes, e.g. man with makeup.

Probabilistic model. PluGeN works in a multi-label set-
ting, where every example x ∈ X is associated with a K-

Figure 3: PluGeN maps the entangled latent space Z of pre-
trained generative models using invertible normalizing flow
into a separate space, where labeled attributes are modeled
using independent 1-dimensional distributions. By manipu-
lating label variables in this space, we fully control the gen-
eration process.

dimensional vector of binary labels1 y = (y1, . . . , yK) ∈
{0, 1}K . We assume that there is a pre-trained generative
model G : Z → RD, where Z ⊂ RN is the latent space,
which is usually heavily entangled. That is, although each
latent code z ∈ Z contains the information about the labels
y, there is no direct way to extract or modify it.

We want to map this entangled latent space Z into a sepa-
rate latent space D ⊂ RN which encodes the values of each
label yk as a separate random variable Ck living in a single
dimension of this space. Thus, by changing the value of Ck,
going back to the entangled space Z and generating a sam-
ple, we can control the values of yk. Since labeled attributes
usually do not fully describe a given example, we consider
additional N −K random variables Sk, which are supposed
to encode the information not included in the labels. We call
C = (C1, . . . , CK) the label variables (or attributes) and
S = (S1, . . . , SN−K) the style variables.

Since we want to control the value of each attribute in-
dependently of any other factors, we assume the factorized
form of the probability distribution of the random vector
(C,S). More precisely, the conditional probability distribu-
tion of (C,S) given any condition Y = y imposed on la-
beled attributes is of the form:

pC,S|Y=y(c, s) =
K∏
i=1

pCi|Yi=yi
(ci) · pS(s), (1)

for all (c, s) = (c1, . . . , cK , s1, . . . , sN−K) ∈ RN . In other
words, modifying Yi = yi influences only the i-th factor Ci

leaving other features unchanged.
Parametrization. To instantiate the above probabilistic

model (1), we need to parametrize the conditional distribu-
1Our model can be extended to continuous values, which we

describe in the supplementary materials due to page limit.
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tion of Ci given Yi = yi and the distribution of S. Since
we do not impose any constraints on style variables, we use
standard Gaussian distribution for modeling density of S:

pS = N (0, IN−K).

To provide the consistency with pS and avoid potential
problems with training our deep learning model using dis-
crete distributions, we use the mixture of two Gaussians for
modeling the presence of labels – each component corre-
sponds to a potential value of the label (0 or 1). More pre-
cisely, the conditional distribution of Ci given Yi = yi is
parametrized by:

pCi|Yi=yi
= N (m0, σ0)

(1−yi) · N (m1, σ1)
yi , (2)

where m0,m1, σ0, σ1 are the user-defined parameters. If
yi = 0, then the latent factor Ci takes values close to m0;
otherwise we get values around m1 (depending on the value
of σ0 and σ1). To provide good separation between compo-
nents, we put m0 = −1,m1 = 1; the selection of σ0, σ1

will be discussed is the supplementary materials.
Thanks to this continuous parametrization, we can

smoothly interpolate between different labels, which would
not be so easy using e.g. Gumbel softmax parametrization
(Jang, Gu, and Poole 2016). In consequence, we can grad-
ually change the intensity of certain labels, like smile or
beard, even though such information was not available in
a training set (see Figure 4 in the experimental section).

Training the model To establish a two-way mapping be-
tween entangled space Z and the disentangled space D, we
use an invertible normalizing flow (INF), F : RN → Z .
Let us recall that INF is a neural network, where the inverse
mapping is given explicitly and the Jacobian determinant
can be easily calculated (Dinh, Krueger, and Bengio 2014).
Due to the invertibility of INF, we can transform latent codes
z ∈ Z to the prior distribution of INF, modify selected at-
tributes, and map the resulting vector back to Z . Moreover,
INFs can be trained using log-likelihood loss, which is very
appealing in generative modeling.

Summarizing, given a latent representation z ∈ Z of a
sample x with label y, the loss function of PluGeN equals:

− log pZ|Y=y(z) =

− log

(
pC,S|Y=y(c, s) ·

∣∣∣∣det ∂F−1(z)

∂z

∣∣∣∣) =

− log

(
K∏
i=1

pCi|Yi=yi
(ci) · pS(s)

)
− log

∣∣∣∣det ∂F−1(z)

∂z

∣∣∣∣ =
−

K∑
i=1

log pCi|Yi=yi
(ci)−log pS(s)−log

∣∣∣∣det ∂F−1(z)

∂z

∣∣∣∣ ,
(3)

where (c, s) = F−1(z). In the training phase, we collect
latent representations z of data points x. Making use of la-
beled attributes y associated with every x, we modify the
weights of F so that to minimize the negative log-likelihood
(3) using gradient descent. The weights of the base model G
are kept frozen.

In contrast to many previous works (Abdal et al. 2021),
PluGeN can be trained in a semi-supervised setting, where
only partial information about labeled attributes is available
(see supplementary materials for details).

Inference. We may use PluGeN to generate new samples
with desired attributes as well as to manipulate attributes of
input examples. In the first case, we generate a vector (c, s)
from the conditional distribution pC,S|Y=y with selected
condition y. To get the output sample, the vector (c, s) is
transformed by the INF and the base generative network G,
which gives us the final output x = G(F(c, s)).

In the second case, to manipulate the attributes of an ex-
isting example x, we need to find its latent representation
z. If G is a decoder network of an autoencoder model, then
x should be passed through the encoder network to obtain
z (Li et al. 2020). If G is a GAN, then z can be found by
minimizing the reconstruction error between x′ = G(z) and
x using gradient descent for a frozen G (Abdal et al. 2021).
In both cases, z is next processed by INF, which gives us its
factorized representation (c, s) = F−1(z). In this represen-
tation, we can modify any labeled variable ci and map the
resulting vector back through F and G as in the generative
case.

Observe that PluGeN does not need to know what are
the values of labeled attributes when it modifies attributes
of existing examples. Given a latent representation z, Plu-
GeN maps it through G−1, which gives us the factorization
into labeled and unlabeled attributes. In contrast, existing
solutions based on conditional INF, e.g StyleFlow (Abdal
et al. 2021), have to determine all labels before passing z
through INF as they represent the conditioning factors. In
consequence, these models involve additional classifiers for
labeled attributes.

Experiments
To empirically evaluate the properties of PluGeN, we com-
bine it with GAN and VAE architectures to manipulate at-
tributes of image data. Moreover, we present a practical use-
case of chemical molecule modeling using CharVAE. Due
to the page limit, we included architecture details and addi-
tional results in the supplementary materials.

GAN backbone First, we consider the state-of-the-art
StyleGAN architecture (Karras, Laine, and Aila 2019),
which was trained on Flickr-Faces-HQ (FFHQ) containing
70 000 high-quality images of resolution 1024× 1024. The
Microsoft Face API was used to label 8 attributes in each
image (gender, pitch, yaw, eyeglasses, age, facial hair, ex-
pression, and baldness).

PluGeN is instantiated using NICE flow model (Dinh,
Krueger, and Bengio 2014) that operates on the latent vec-
tors w ∈ R512 sampled from the W space of the StyleGAN.
As a baseline, we select StyleFlow (Abdal et al. 2021),
which is currently one of the state-of-the-art models for con-
trolling the generation process of StyleGAN. In contrast to
PluGeN, StyleFlow uses the conditional continuous INF to
operate on the latent codes of StyleGAN, where the condi-
tioning factor corresponds to the labeled attributes. For eval-
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uation, we modify one of 5 attributes2 and verify the success
of this operation using the prediction accuracy returned by
Microsoft Face API. The quality of images is additionally
assessed by calculating the standard Fréchet Inception Dis-
tance (FID) (Heusel et al. 2017).

Figure 1 (first page) and 4 present the effects of how Plu-
GeN and StyleFlow manipulate images sampled by Style-
GAN. It is evident that PluGeN can switch the labels to op-
posite values as well as gradually change their intensities. At
the same time, the requested modifications do not influence
the remaining attributes leaving them unchanged. One can
observe that the results produced by StyleFlow are also ac-
ceptable, but the modification of the requested attribute im-
plies the change of other attributes. For example, increasing
the intensity of ”baldness” changes the type of glasses, or
turning the head into right makes the woman look straight.

The above qualitative evaluation is supported by the quan-
titative assessment presented in Table 1. As can be seen,
StyleFlow obtains a better FID score, while PluGeN out-
performs StyleFlow in terms of accuracy. Since FID com-
pares the distribution of generated and real images, creating
images with uncommon combinations of attributes that do
not appear in a training set may be scored lower, which can
explain the relation between accuracy and FID obtained by
PluGeN and StyleFlow. In consequence, FID is not an ad-
equate metric for measuring the quality of arbitrary image
manipulations considered here, because it is too closely tied
to the distribution of input images.

It is worth mentioning that PluGeN obtains these very
good results using NICE model, which is the simplest type
of INFs. In contrast, StyleFlow uses continuous INF, which
is significantly more complex and requires using an ODE
solver leading to unstable training. Moreover, to modify
even a single attribute, StyleFlow needs to determine the val-
ues of all labels, since they represent the conditioning factors
of INF. In consequence, every modification requires apply-
ing an auxiliary classifier to predict all image labels. The
usage of PluGeN is significantly simpler, as subsequent co-
ordinates in the latent space of INF correspond to the labeled
attributes and they are automatically determined by PluGeN.
Finally, our approach is less computationally expensive as
we verified that, using the same hardware, PluGeN can be
trained 3 times faster than StyleFlow and is around 100 times
faster in inference.

Image manipulation on VAE backbone In the following
experiment, we show that PluGeN can be combined with au-
toencoder models to effectively manipulate image attributes.
We use CelebA database, where every image of the size
256× 256 is annotated with 40 binary labels.

We compare PluGeN to MSP (Li et al. 2020), a strong
baseline, which uses a specific loss for disentangling the la-
tent space of VAE. Following the idea of StyleFlow, we also
consider a conditional INF attached to the latent space of
pre-trained VAE (referred to as cFlow), where conditioning
factors correspond to the labeled attributes. The architecture
of the base VAE and the evaluation protocol were taken from

2The remaining 3 attributes (age, pitch, yaw) are continuous and
it is more difficult to assess their modifications.

Requested value PluGeN StyleFlow

female 0.95 0.95
male 0.92 0.87
no-glasses 1.00 0.99
glasses 0.90 0.70
not-bald 1.00 1.00
bald 0.53 0.54
no-facial-hair 1.00 1.00
facial-hair 0.72 0.65
no-smile 0.99 0.92
smile 0.96 0.99
Average Acc 0.90 0.86
Average FID 46.51 32.59

Table 1: Accuracy and FID scores of attributes modification
using StyleGAN backbone.

the original MSP paper. More precisely, for every input im-
age, we manipulate the values of two attributes (we inspect
20 combinations in total). The success of the requested ma-
nipulation is verified using a multi-label ResNet-56 classifier
trained on the original CelebA dataset.

The sample results presented in Figure 5 demonstrate that
PluGeN attached to VAE produces high-quality images sat-
isfying the constraints imposed on the labeled attributes. The
quantitative comparison shown in Table 2 confirms that Plu-
GeN is extremely efficient in creating uncommon combina-
tions of attributes, while cFlow performs well only for the
usual combinations. At the same time, the quality of im-
ages produced by PluGeN and MSP is better than in the case
of cFlow. Although both PluGeN and MSP focus on disen-
tangling the latent space of the base model, MSP has to be
trained jointly with the base VAE model and it was designed
only to autoencoder models. In contrast, PluGeN is a sepa-
rate module, which can be attached to arbitrary pre-trained
models. Due to the use of invertible neural networks, it pre-
serves the reconstruction quality of the base model, while
adding manipulation functionalities. In the following experi-
ment, we show that PluGeN also performs well at generating
entirely new images, which is not possible using MSP.

Image generation with VAE backbone In addition to
manipulating the labeled attributes of existing images, Plu-
GeN generates new examples with desired attributes. To ver-
ify this property, we use the same VAE architecture as be-
fore trained on CelebA dataset. The baselines include cFlow
and two previously introduced methods for multi-label con-
ditional generation3: cVAE (Yan et al. 2016) and ∆-GAN
(Gan et al. 2017). We exclude MSP from the comparison
because it cannot generate new images, but only manipulate
the attributes of existing ones (see supplementary materials
for a detailed explanation).

Figure 6 presents sample results of image generation with
the specific conditions. In each row, we fix the style variables
s and vary the label variables c in each column, generating

3For cVAE and ∆-GAN we use images of the size 64 × 64
following their implementations.
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(a) PluGeN (b) StyleFlow

Figure 4: Gradual modification of attributes (age, baldness, and yaw, respectively) performed on the StyleGAN latent codes.

Figure 5: Examples of image attribute manipulation using VAE backbone.

the same person but with different characteristics such as
hair color, eyeglasses, etc. Although cVAE manages to mod-
ify the attributes, the quality of obtained samples is poor,
while ∆-GAN falls completely out of distribution. PluGeN
and cFlow generate images of similar quality, but only Plu-
GeN is able to correctly manipulate the labeled attributes.
The lower quality of generated images is caused by the poor
generation abilities of VAE backbone, which does not work
well with high dimensional images (see supplementary ma-
terials for a discussion). For this reason, it is especially no-
table that PluGeN can improve the generation performance
of the backbone model in contrast to MSP.

Disentangling the attributes The attributes in the CelebA
dataset are strongly correlated and at times even contradic-
tory, e.g. attributes ’bald’ and ’blond hair’ cannot both be
present at the same time. In this challenging task, we aim to
disentangle the attribute space as much as it is possible to
allow for generating examples with arbitrary combinations
of attributes. For this purpose, we sample the conditional
variables ci independently, effectively ignoring the underly-
ing correlations of attributes, and use them to generate im-

ages. Since the attributes in the CelebA dataset are often im-
balanced (e.g. only in 6.5% of examples the person wears
glasses), we calculate F1 and AUC scores for each attribute.

The quantitative analysis of the generated images pre-
sented in Table 3 confirms that PluGeN outperforms the
rest of the methods with respect to classification scores. The
overall metrics are quite low for all approaches, which is
due to the difficulty of disentanglement mentioned above,
as well as the inaccuracy of the ResNet attribute classifier.
Deep learning models often fail when the correlations in
the training data are broken, e.g. the classifier might use the
presence of a beard to predict gender, thus introducing noise
in the evaluation (Beery, Horn, and Perona 2018).

Chemical molecules modeling Finally, we present a prac-
tical use-case, in which we apply PluGeN to generate chem-
ical molecules with the requested properties. As a back-
bone model, we use CharVAE (Gómez-Bombarelli et al.
2018), which is a type of recurrent network used for process-
ing SMILES (Weininger 1988), a textual representation of
molecules. It was trained on ZINC 250k database (Sterling
and Irwin 2015) of commercially available chemical com-
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Requested value PluGeN MSP cFlow

male x beard 0.80 0.79 0.85
female x beard 0.59 0.33 0.31

male x no-beard 0.88 0.92 0.91
female x no-beard 0.85 0.82 0.95

male x makeup 0.44 0.43 0.29
male x no-makeup 0.72 0.92 0.96
female x makeup 0.42 0.41 0.58

female x no-makeup 0.55 0.40 0.85
smile x open-mouth 0.97 0.99 0.79

no-smile x open-mouth 0.79 0.82 0.77
smile x calm-mouth 0.84 0.91 0.72

no-smile x calm-mouth 0.96 0.97 0.99
male x bald 0.26 0.41 0.34

male x bangs 0.58 0.74 0.45
female x bald 0.19 0.13 0.39

female x bangs 0.52 0.49 0.60
no-glasses x black-hair 0.92 0.93 0.74

no-glasses x golden-hair 0.92 0.91 0.81
glasses x black-hair 0.76 0.90 0.58

glasses x golden-hair 0.75 0.85 0.61

Average Acc 0.69 0.70 0.67
Average FID 28.07 30.67 39.68

Table 2: Accuracy and FID scores of image manipulation
performed on the VAE backbone.

Figure 6: Examples of conditional generation using VAE
backbone. Each row contains the same person (style vari-
ables) with modified attributes (label variables).

PluGeN cFlow ∆-GAN cVAE

F1 0.44 0.29 0.39 0.39
AUC 0.76 0.68 0.70 0.73

Table 3: Results of the independent conditional generation
using VAE backbone.

Figure 7: Distribution of attributes of generated molecules,
together with distribution for the training dataset. Each color
shows the value of a labeled attribute that was used for gen-
eration. PluGeN is capable of moving the density of gen-
erated molecules’ attributes towards the desired value. The
average of every distribution is marked with a vertical line.

pounds. For every molecule, we model 3 physio-chemical
continuous (not binary) labels: logP, SAS, TPSA, which val-
ues were calculated using RDKit package 4. Additional ex-
planations and more examples are given in the supplemen-
tary materials.

First, we imitate a practical task of de novo design (Olive-
crona et al. 2017; Popova, Isayev, and Tropsha 2018), where
we force the model to generate new compounds with de-
sirable properties. For every attribute, we generate 25k
molecules with 3 different values: for logP we set the la-
bel of generated molecules to: 1.5, 3.0, 4.5; for TPSA we
set generated labels to: 40, 60, 80; for SAS we set them to:
2.0, 3.0, 4.0, which gives 9 scenarios in total. From density
plots of labels of generated and original molecules presented
in Figure 7, we can see that PluGeN changes the distribu-
tion of values of the attributes and moves it towards the de-
sired value. A slight discrepancy between desired and gen-
erated values may follow from the fact that values of labeled
attributes were sampled independently, which could make
some combinations physically contradictory.

Next, we consider the setting of lead optimization (Jin
et al. 2019; Maziarka et al. 2020), where selected com-
pounds are improved to meet certain criteria. For this pur-
pose, we encode a molecule into the latent representation
of INF and force PluGeN to gradually increase the value of
logP by 3 and decode the resulting molecules. The obtained
molecules together with their logP are shown in Figure 8.
As can be seen, PluGeN generates molecules that are struc-
turally similar to the initial one, however with optimized de-
sired attributes.

Obtained results show that PluGeN is able to model the
physio-chemical molecular features, which is a non-trivial
task that could speed up a long and expensive process of

4https://www.rdkit.org/
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(a) Molecules decoded from
path

(b) LogP of presented
molecules

Figure 8: Molecules obtained by the model during an opti-
mization phase (left side), and their LogP (right side).

designing new drugs.

Conclusion
We proposed a novel approach for disentangling the latent
space of pre-trained generative models, which works per-
fectly for generating new samples with desired conditions as
well as for manipulating the attributes of existing examples.
In contrast to previous works, we demonstrated that PluGeN
performs well across diverse domains, including chemical
molecule modeling, and can be combined with various ar-
chitectures, such as GANs and VAEs backbones.
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P.; Zollhöfer, M.; and Theobalt, C. 2020. Pie: Portrait im-
age embedding for semantic control. ACM Transactions on
Graphics (TOG), 39(6): 1–14.
Tov, O.; Alaluf, Y.; Nitzan, Y.; Patashnik, O.; and Cohen-Or,
D. 2021. Designing an encoder for stylegan image manipu-
lation. ACM Transactions on Graphics (TOG), 40(4): 1–14.
Wang, H.-P.; Yu, N.; and Fritz, M. 2021. Hijack-gan:
Unintended-use of pretrained, black-box gans. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7872–7881.
Weininger, D. 1988. SMILES, a chemical language and in-
formation system. 1. Introduction to methodology and en-
coding rules. Journal of chemical information and computer
sciences, 28(1): 31–36.
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