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Abstract

How to get a good value estimation is one of the key problems
in reinforcement learning (RL). Current off-policy methods,
such as Maxmin Q-learning, TD3, and TADD, suffer from
the underestimation problem when solving the overestima-
tion problem. In this paper, we propose the Quasi-Median
Operation, a novel way to mitigate the underestimation bias
by selecting the quasi-median from multiple state-action val-
ues. Based on the quasi-median operation, we propose Quasi-
Median Q-learning (QMQ) for the discrete action tasks and
Quasi-Median Delayed Deep Deterministic Policy Gradi-
ent (QMD3) for the continuous action tasks. Theoretically,
the underestimation bias of our method is improved while
the estimation variance is significantly reduced compared to
Maxmin Q-learning, TD3, and TADD. We conduct extensive
experiments on the discrete and continuous action tasks, and
results show that our method outperforms the state-of-the-art
methods.

Introduction
As a widespread research problem in artificial intelligence,
deep reinforcement learning has received increasing atten-
tion since its inception. Currently, deep reinforcement learn-
ing can solve many previously intractable problems, such as
learning how to play video games directly from raw pixels
(Lample and Chaplot 2017; Mnih et al. 2015), autonomous
navigation (Liu et al. 2021), gaming (Tesauro 1994; Baxter,
Tridgell, and Weaver 2000; Silver et al. 2016, 2017; Vinyals
et al. 2019), recommendation (Xiao and Wang 2021; Xie
et al. 2021; Chen et al. 2018), and other fields.

The preliminary workload of deep reinforcement learning
is significantly reduced by using powerful function approx-
imators, such as multi-layer neural networks. However, the
use of function approximators brings about estimation bias,
which degrades the performance of reinforcement learning
algorithms and hinders further extension of reinforcement
learning to a broader range of domains. Overestimation is
a common function approximation problem in reinforce-
ment learning algorithms, such as Q-learning (Watkins and
Dayan 1992) on the discrete action tasks and Deep Deter-
ministic Policy Gradient (DDPG) (Lillicrap et al. 2016) on
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the continuous control tasks. The overestimation problem is
caused by inaccurate function estimation or maximization
operation executed by Q-learning or its variants. Due to the
positive bias resulting from overestimation, it is difficult for
an agent to learn high-quality policy in many tasks (Thrun
and Schwartz 1993; Szita and Lőrincz 2008; Strehl, Li, and
Littman 2009).

Recently, some improved Q-learning methods have been
proposed to alleviate the overestimation problem on discrete
tasks. G-learning (Fox, Pakman, and Tishby 2016) regular-
izes the estimated values by penalizing deterministic poli-
cies at the beginning of the learning process. Averaged-
DQN (Anschel, Baram, and Shimkin 2017) solves the over-
estimation problem by averaging the estimated values gen-
erated by multiple critics as the target state-action value
to reduce the estimation error. Softmax Q-learning (Song,
Parr, and Carin 2019) and Weighted Q-learning (D’Eramo,
Restelli, and Nuara 2016) obtain more accurate target state-
action value by weighting operation. The softmax operation
and Gaussian approximation are adopted to weight multi-
ple estimated values, respectively. However, for a limited
number of action-value functions, the operations in these
algorithms will never wholly eliminate the overestimation
problem since the combination of several overestimation bi-
ases is always positive. Therefore, some methods address
the overestimation problem by leveraging the decoupling or
minimization operation on the discrete and continuous con-
trol settings.

Double Q-learning (van Hasselt 2010) and DDQN (van
Hasselt, Guez, and Silver 2016) are two typical applications
of the decoupling operation. They eliminate the overesti-
mation problem by decoupling the two steps of selecting
the greedy action and calculating the state-action value, re-
spectively. Double Q-learning and DDQN solve the over-
estimation problem on the discrete action tasks, but they
cannot be directly applied to the continuous control tasks.
To solve this problem, Fujimoto et al. (Fujimoto, van Hoof,
and Meger 2018) introduce a model-free reinforcement al-
gorithm called Twin Delayed Deep Deterministic policy gra-
dient (TD3), which successfully solves the overestimation
problem in continuous control settings by taking the min-
imization operation on dual critics. Moreover, TD3 takes
delayed policy update and target policy smoothing to re-
duce the error of each update. Similar to TD3, Maxmin Q-
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learning (Lan et al. 2020) also uses the minimization op-
eration to address the overestimation problem. Although
Maxmin Q-learning and TD3 successfully solve the over-
estimation problem, they suffer from the underestimation
problem. The underestimation can also degrade the per-
formance of reinforcement learning algorithms (Wu et al.
2020). To address the underestimation problem, Wu et al.
propose the Triplet-Average Deep Deterministic Policy Gra-
dient (TADD) (Wu et al. 2020). In essence, TADD leverages
a weighted approach to combine TD3 and Averaged-DQN.
However, the weight of TADD is a fixed constant, which
affects the performance of TADD when the settings of the
experiment change. It is specifically noted that TADD still
suffers from the underestimation problem.

In order to address the underestimation problem, in this
paper, we propose the Quasi-Median Operation (QMO),
which directly mitigates the underestimation bias by select-
ing the quasi-median value from multiple state-action val-
ues. In particular, the state-action value obtained by tak-
ing the quasi-median operation is not affected by outlier
(e.g., extremely large or small) state-action values. Based
on the quasi-median operation, we propose Quasi-Median
Q-learning (QMQ) and Quasi-Median Delayed Deep De-
terministic Policy Gradient (QMD3) to handle discrete and
continuous action tasks, respectively. Theoretically, the ab-
solute underestimation bias and the estimation variance of
our method decrease monotonically with the number of crit-
ics increase. Moreover, the number of critics can balance
the overestimation bias and the underestimation bias. In ad-
dition, we propose a trick called Exploration Improvement
(EI) to improve the exploration ability of agent. We evaluate
our algorithms on 8 MuJoCo tasks and 6 toy tasks wrapped
via the OpenAI Gym API (Brockman et al. 2016) across a
large number of seeds, and we perform ablation studies for
each module. Extensive experiments demonstrate that our
algorithm outperforms the state-of-the-art methods.

Preliminaries
The usual Reinforcement Learning framework can be for-
mulated in terms of a Markov Decision Process (MDP), de-
fined as a 6-tuple (S ,A, ρ0, p, r , γ ). S andA denote the set
of state and action spaces. p denotes transition distribution
with conditional density function p(st+1|st, at), along with
ρ0, denoting the initial density of the transition distribution.
In addition, r : S × A → R represents the reward function
and outputs a scalar. γ∈(0,1] denotes the discount factor.

At time t, given a state st ∈ S of the agent, the agent
selects an action at ∈ A with respect to the conditional
probability density πφ(st|at) which modeled by a neural
network with parameter φ. Then the agent receives a re-
ward r and transfers to the next state st+1. The return is
defined as the total discounted reward from time step t:
Rt =

∑T
l=t γ

l−tr(sl, al).
We now refer to the other concepts and notations uti-

lized in the remainder of this paper. Finding the optimal
policy πφ that maximizes the expected return J(φ) =
Esl∼pπ,al∼π[R0] is the ultimate goal of reinforcement learn-
ing. The state-action value is the expected return when per-

forming action a in state s, and thereafter following πφ:
Qπ(s, a) = Eπ[Rt]. The Bellman equation provides a re-
cursive relationship between the previous state and the sub-
sequent state with a transition (s, a, s′, a′):

Qπ(s, a) = r + γEs′,a′ [Qπ(s′, a′)], a′ ∼ π(s′). (1)

For the discrete algorithms, i.e., Maxmin Q-learning, the
value function can be estimated with a differentiable func-
tion approximator such as a neural network (Mnih et al.
2015). The parameters of the critic approximator is θ, and
θ is updated by minimizing the loss function:

L(θ) = Es,a,r,s′∼B[(y −Qθ(s, a))2], (2)

where y = r+γmaxa′∈AQminθ (s′, a′). Qminθ represents the
critic obtained after taking the minimization operation on
Qθi(s, a) for i = 1, · · · , n.

For the continuous control settings, i.e., DDPG, DDPG
updates its actor parameter φ according to

OφJ(φ) = Es∼pπ [OaQπ1 (s, a)|a=πφ(s)Oφπφ(s)]. (3)

θ is updated in the same way as Equation (2), with the dif-
ferent target value that yDDPG = r + γQ′θ′(s

′, a′), a′ ∼
πφ′(s′).

TD3 is a variant of DDPG, similar to the loss function of
DDPG but with the target value that

yTD3 = r + γ min
i=1,2

Q′θ′i(s
′, a′), a′ ∼ πφ′(s′), (4)

where min
i=1,2

Q′θi represents the minimization operation.

TADD is an extension of TD3, combining TD3 and
Averaged-DQN. The target value yTADD is defined as be-
low:

yTADD = r + γ(β min
i=1,2

Q′θ′i(s
′, a′) + (1− β)Q′2), (5)

where Q′2 = 1
2 (Q

′
θ′3
(s′, a′) + Q′θ′4

(s′, a′)) denotes the av-
erage operation, and β is the weight of min

i=1,2
Q′θ′i

(s′, a′) and

Q′2. In particular, the parameters of Q′θ′3 at the previous mo-
ment are the same as Q′θ′4 .

The Proposed Method
In this section, we first develop the quasi-median operation,
a simple and effective method to address the underestima-
tion problem. Then, based on the quasi-median operation,
we propose a novel variant of DQN called Quasi-Median
Q-learning (QMQ) for the discrete action tasks and present
a modified version of TD3 called Quasi-Median Delayed
Deep Deterministic Policy Gradient (QMD3) for the contin-
uous action tasks. In addition, we theoretically demonstrate
the superiority of QMQ and QMD3 in improving underesti-
mation bias and variance reduction.

Quasi-Median Operation
To obtain a more accurate target state-action value, one usu-
ally uses the average operation and the median operation,
but these operations suffer from the overestimation problem
(Wu et al. 2020). To cope with the overestimation problem,
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Algorithm 1: QMQ algorithm

1: Initialize action-value functions Qθ1 , · · · , Qθn
2: Initialize replay buffer B
3: Observe initialize state s
4: while interacting with the Environment do
5: QQMO

θ (s, a)← QMO
i=1,··· ,n

Qθi(s, a)

6: Select action a by ε−greedy based on QQMO
θ (s, a)

7: Take action a, observe reward r and new state s′
8: Store transition tuple (s, a, r, s′) in B
9: for t = 1 to T do

10: Sample a mini-batch transitions (s, a, r, s′) from B
11: Update target: y ← r + γmaxa′∈AQ

QMO
θ (s′, a′)

12: Update Qi: Qi(s, a)← Qi(s, a)+α[y−Qi(s, a)]
13: end for
14: s← s′

15: end while

one introduces the minimization operation (Lan et al. 2020;
Fujimoto, van Hoof, and Meger 2018; Wu et al. 2020). How-
ever, this operation causes the underestimation problem. To
find a trade-off between the overestimation and the under-
estimation, we propose a novel method called the quasi-
median operation.

Let Q(i) denote the ith order statistic among n state-
action values, and the quasi-median operation is defined as
the selection of Q(bn2 c)(n > 3) from Q1, Q2, · · · , Qn. The
quasi-median critic QQMO

θ (s, a) is defined as below:

QQMO
θ (s, a) = QMO

i=1,··· ,n
Qθi(s, a),

where QMO
i=1,··· ,n

represents the quasi-median operation taken

on Qθi(s, a) for i = 1, 2, · · · , n.
The quasi-median operation can be used in any stan-

dard off-policy model-free reinforcement learning algo-
rithm to alleviate the underestimation problem. To con-
cretize the use of quasi-median operation, we design Quasi-
Median Q-learning (QMQ) to handle discrete action tasks
and Quasi-Median Delayed Deep Deterministic Policy Gra-
dient (QMD3) to tackle continuous control tasks. The details
about QMQ and QMD3 are shown in Algorithm 1 and Al-
gorithm 2.

In particular, the parameters of the actor in QMD3 are
updated as follows:

5φJ(φ) = Es∼pπ [5a
1

n

n∑
i=1

Qθi(s, a)|a=πφ(s) 5φ πφ(s)].

where n represents the number of critics.
We use the mean state-action value from all critics to up-

date the actor, while in TD3 and TADD, the actor updates
its parameters with a fixed critic, such as the first critic Q1.
The multiple critics used by QMD3 can cover a wide range
of state-action values in reasonable policy spaces. So we
update the actor using multiple critics can encourage more
effective exploration, and the actor with higher exploration

ability, in turn, makes the critics more diverse and robust.
We call this trick Exploration Improvement (EI).

In addition, we verify that our method can converge to
the optimal policy in the finite MDP setting. Please refer to
Appendix B for the proof. To better understand the differ-
ences among QMQ, QMD3, and other algorithms, we vi-
sualize several forward propagation processes of Maxmin
Q-learning, QMQ, TADD, and QMD3 in Figure 1. Addi-
tional propagation processes figures for Q-learning, DDPG,
and TD3 can be found in Appendix C.

Improving Underestimation Bias via Quasi-Median
Operation
In this section, we analyze the underestimation phenomenon
that occurs when taking the minimization operation. We il-
lustrate its negative impact on Maxmin Q-learning and re-
cent actor-critic algorithms, TD3, and TADD, which share
the common feature of the minimization operation. We then
demonstrate the advantage of QMQ and QMD3 in the esti-
mation bias of state-action values.

We theoretically analyze the distribution of the ranked es-
timation bias by giving Lemma 1, which will help derive
the estimation bias’s expectation and variance after using the
quasi-median operation.
Lemma 1. Let Qtrue(s, a) be the true state-action value,
and suppose that there are n independent Qapproxi (s, a)
from different approximators for i = 1, · · · , n. We define
the estimation bias Zi(s, a) as Zi(s, a) = Qapproxi (s, a) −
Qtrue(s, a). For ∀ Zi(s, a) with probability distribution
function (pdf ) p(z) and cumulative distribution function
(cdf ) F (z), the pdf of the kth order statistic Z(k)(s, a) is

p(k)(z) =
n!

(k − 1)!(n− k)!
(F (z))k−1(1− F (z))n−kp(z).

For the proof please refer to Appendix A.A. Based on
Lemma 1, we can deduce two important special cases:

p(1)(z) = n(1− F (z))n−1p(z), p(n)(z) = n(F (z))n−1p(z).

Considering p(1)(z) for n = 2, p(1)(z) represents the pdf
for selecting the minimum from two values, which is similar
to Maxmin Q-learning and TD3 for selecting target state-
action value.

Subsequently, we analyze the expectation of the ordered
bias Z(k)(s, a) by Theorem 1.
Theorem 1. For µ � λ > 0, we define the estima-
tion bias Zi(s, a) which identically uniformly distributed in
[λ− µ, λ+ µ]. The expectation of Z(k)(s, a) is

E[Z(k)(s, a)] =
2k − n− 1

n+ 1
µ+ λ, (6)

where λ denotes the mean of the estimation bias, and µ rep-
resents half of the range of the estimation bias.

For the proof please refer to Appendix A.B.
According to Theorem 1, we can draw the following con-

clusions:
(1) The expectation of the estimation bias taking the min-

imization operation on two critics is − 1
3µ + λ < 0 when
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Algorithm 2: QMD3 algorithm

1: Initialize critic networks Qθ1 , · · · , Qθn and initialize actor network πφ with random parameters θ1, · · · , θn, φ
2: Initialize target networks θ′1 ← θ1, · · · , θ′n ← θn, φ

′ ← φ
3: Initialzie replay buffer B
4: for t = 1 to T do
5: Select action a with exploration noise a ∼ πφ(s) + ε, ε ∼ N (0, σ), and observe reward r and new state
6: Store (s, a, r, s′) and sample B transitions
7: a′ ← πφ′(s′)+clip(ε,−c, c), ε ∼ N (0, σ)

8: y ← r + γ QQMO
θ′ (s′, πφ′(s′))

9: Update the critic θi by minimizing the Bellman loss
10: if t mod d then
11: Update the actor φ:5φJ(φ) = B−1

∑
5an−1

∑
Qθi(s, a)|a=πφ(s) 5φ πφ(s)

12: Update target networks: θ′i ← τθi + (1− τ)θ′i, φ′i ← τφi + (1− τ)φ′i
13: end if
14: end for

n and k are equal to 2 and 1, respectively. The estimation
bias is identical to the expectation of the estimation bias in
Maxmin Q-learning and TD3. Moreover, the expectation of
the estimation bias of TADD is − 19

60µ + 0.05λ < 0. Thus,
Maxmin Q-learning, TD3, and TADD suffer from the under-
estimation problem.

(2) The expectation of the estimation bias using the me-
dian operation on multiple critics is λ, which is the same as
using the average operation, implying that both the median
operation and the average operation cause the overestima-
tion problem.

(3) The expectation of the estimation bias of QMQ and
QMD3 is − 1

n+1µ + λ after taking the quasi-median opera-
tion when n is an even number, and the expectation of the
estimation bias of QMQ and QMD3 becomes − 2

n+1µ + λ
when n is an odd number.

Based on the above analysis, when n > 3, the expecta-
tion of the estimation bias of QMQ and QMD3 is greater
than or equal to Maxmin Q-learning, TD3, and TADD. The
quasi-median operation on the state-value functions degen-
erates to the minimization operation when n ≤ 3. And as the
number of critics increases, the expectation of the underes-
timation bias grows, which means our method can effective
mitigate the underestimation problem. Note that using the
quasi-median operation in QMQ and QMD3 can avoid the
effect of extremely large or small state-action values.

In the following section, we analyze the variance of the
estimation bias that can be effectively reduced by the quasi-
median operation.

Reducing Estimation Variance via Quasi-Median
Operation
To demonstrate the superiority of the quasi-median opera-
tion in variance reduction, we theoretically analyze the vari-
ance of estimation bias of Maxmin Q-learning, TD3, TADD,
QMQ, and QMD3 in this section.

We analyze the variance of the order statistic Z(k)(s, a)
by presenting Theorem 2, which can help us to derive the
variance of the estimation bias of QMQ and QMD3.

Theorem 2. The variance of Z(k)(s, a) is

V ar[Z(k)(s, a)] =
k(n− k + 1)

(n+ 1)2(n+ 2)
4µ2.

For the proof of Theorem 2, please refer to Appendix A.C.
According to Theorem 2, when n = 2 and k = 1, the vari-

ance of the estimation bias of TD3 and Maxmin Q-learning
is 2

9µ
2. And, we can get the variance of the estimation bias

V ar[Z(1)(s, a)] is 1
3µ

2 when n = 1. Thus, the variance of
the estimation bias of Averaged-DQN is 1

3nµ
2. Then the

variance of the estimation bias of TADD is 0.201µ2. In
Corollary 1, we demonstrate the relationship between n and
the variance of the estimation bias of QMQ and QMD3.
Corollary 1. The variance of the estimation bias decreases
as the number of critics, n, increases when k = bn2 c.

For the proof, please refer to Appendix A.D.
We will illustrate the contribution of the different number

of critics in the ablation experiment section. Considering the
scenario where QMQ or QMD3 has the largest variance, i.e.,
k = 2 and n = 4, we thus calculate the variance of the
estimation bias after taking the quasi-median operation on
four critics. Then

V ar[ZQMQ(s, a)]|k=2
n=4 = V ar[ZQMD3(s, a)]|k=2

n=4 =
4

25
µ2.

Thus, we can find that the variance of the estimation bias
of QMQ and QMD3 is smaller than other methods except for
Averaged-DQN. However, Averaged-DQN yields an over-
estimation bias, which can seriously affect the performance.
Furthermore, we give Corollary 2 to analyze the relationship
between the variance of the estimation bias and the variance
of the estimation, where the proof is in Appendix A.E.
Corollary 2. The variance of the estimation bias is equiva-
lent to the variance of the estimation, we have:

V ar[Z(k)(s, a)] = V ar[Qapprox(k) (s, a)].

Based on the conclusions of Theorem 2 and Corollary 2,
it is easy to know that the quasi-median operation can effec-
tively reduce the variance of the estimation.

8624



st+1

at+1st at

-

TD-Error

Q1 ··· Qn 
Q

Q1'  ···  Qn' 

n n

(d)st+1

at+1st at

-

TD-Error

Q1   Q2  Qn 

W

Q1' 
M
Q2' Q3' 

(c)

Critic ActorTarget CriticCalculation

(a)

TD-Error

Q' Q

-

st at

st at

M
Q1   ···  Qn 

st+1 at+1
max

(b)

TD-Error

Q' Q
-

st at

st at

Q
Q1  ···  Qn 

st+1 at+1
max

Figure 1: From left to right: (a) Maxmin Q-learning, (b) QMQ (ours), (c) TADD and (d) QMD3 (ours). TD-Error is obtained
by subtraction (yellow and circled) between the current and the target state-action value, where “-” is the subtraction operation,
“W” is the weighting operation, “M” denotes the minimization operation, and “Q” denotes the quasi-median operation.
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Figure 2: Measuring the estimation bias on Hopper-v3 (left)
and Space Invaders-v0 (right). The darker lines represent the
estimation bias of 10 random seeds. The shaded area repre-
sents one standard deviation.

In Figure 2, we measure the estimation bias of DQN
(Blue), Maxmin Q-learning (Green), Averaged-DQN (Yel-
low), and QMQ (Red) on the discrete action task Space
Invaders-v0, and we also measure the estimation bias of
Averaged-DQN (Green), TD3 (Yellow), TADD (Blue), and
QMD3 (Red) on the continuous action task Hopper-v3. It is
clear that our method can yield more accurate estimates and
has a smaller estimation variance than other methods.

Experiments
In this section, we empirically evaluate our method in the
discrete and continuous action environments.

Discrete Action Environments
For the discrete action environments, we choose 6 games
from Gym (Brockman et al. 2016), PLE (Tasfi 2016), and

MinAtar (Young and Tian 2019): Lunarlander-v2, Catcher-
v0, Pixelcopter-v0, Asterix-v0, Breakout-v0, and Space
Invaders-v0 to evaluate QMQ. We compare our QMQ (Red)
with Maxmin Q-learning (Purple) (Lan et al. 2020), DQN
(Blue) (Mnih et al. 2015), Double DQN (Yellow) (van Has-
selt, Guez, and Silver 2016), and Averaged-DQN (Green)
(Anschel, Baram, and Shimkin 2017), as show in Figure 3.

For Lunarlander-v2, Catcher-v0, and Pixelcopter-v0, we
reuse the hyper-parameters and settings of neural networks
in (Lan et al. 2020). For MinAtar games (Asterix-v0,
Breakout-v0, and Space Invaders-v0), the hyper-parameters
and settings of neural networks are the same as those in
(Young and Tian 2019). To ensure that our comparisons are
fair and meaningful, we run our experiments on a large num-
ber of seeds with fair evaluation metrics. Considering the
computational efficiency of training multiple critics, all dis-
crete tasks, we set n = 4 for QMQ and Averaged-DQN,
n = 1 for DQN, and n = 2 for Maxmin Q-learning. More
detailed information about the rendering of the environment,
hyper-parameters, and implementation details can be found
in Appendix D.A and Appendix E.

Evaluation Figure 3 shows the training curves about the
average return of each algorithm.We can see that QMQ per-
forms as well as or better than other algorithms on all tasks,
while the stability of QMQ is better than other algorithms.

Ablation Studies We additionally test the performance of
QMQ on Pixelcopter-v0 and Space Invaders-v0 with dif-
ferent n, as shown in Figure 3 (g) and (h). For larger n,
QMQ learns faster and achieves better final performance
with smaller estimation variance, which is consistent with
the previous analysis.
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Figure 3: Learning curves in the 6 benchmark environments. The curves are smoothed uniformly for better visualization.
The shaded region represents half a standard deviation of the average evaluation over 10 trials. Plots (h) and (i) show the
performance of QMQ on Pixelcopter and Space Invaders with different n, and larger n leads to a better final performance in
both environments.

Environment QMD3 DDPG TD3 TADD ADQN

IP 1000.0±0.0 780.2 1000.0 1000.0 985.9
IDP 9891.3±145.2 5538.0 9237.4 9255.5 8621.7
Reacher -3.5±0.4 -6.7 -4.0 -4.1 -5.7
Hopper 3829.3±143.2 1651.9 3464.7 3282.9 2562.3
HalfCheetah 12221.9±387.5 8070.4 9842.4 10605.7 9433.5
Walker2d 4765.3±310.2 1039.3 4449.3 4431.2 3625.5
Ant 5034.2±315.3 336.4 4229.0 4042.6 2751.9
Humanoid 5332.4±113.2 115.4 4719.8 4864.4 2440.5

Table 1: Max Average return over 10 trials of 1 million time
steps. The optimal value for each task, i.e., the maximum
return and minimum variance, is bolded. ± corresponds to a
single standard deviation.

Continuous Action Environments
For the continuous action environments, we compare the
proposed QMD3 (Red) with DDPG (Yellow) (Lillicrap et al.
2016), TD3 (Green) (Fujimoto, van Hoof, and Meger 2018),
Averaged-DQN (Blue) (Anschel, Baram, and Shimkin 2017)
and TADD (Purple) (Wu et al. 2020) on 8 MuJoCo tasks
(Todorov, Erez, and Tassa 2012): InvertedPendulum-v2 (IP),
InvertedDoublePendulum-v2 (IDP), Reacher-v2, Hopper-
v3, HalfCheetah-v3, Walker2d-v3, Ant-v3, and Humanoid-
v3, as show in Figure 4.

For all tasks, the hyper-parameters and settings of neu-
ral networks of QMD3 and Averaged-DQN are the same as
those in TD3 (Fujimoto, van Hoof, and Meger 2018) and
TADD (Wu et al. 2020). We set n = 4 for QMD3 and
Averaged-DQN, n = 1 for DDPG, and n = 2 for TD3 and
TADD. We run each algorithm 10 times to evaluate QMD3.

For more details about the rendering of the environment,
hyper-parameters, and implementation details, please refer
to Appendix D.B and Appendix E.

Evaluation Figure 4 shows that compared to DDPG, TD3,
Averaged-DQN (ADQN), and TADD, QMD3 can achieve
better or comparable performance while they have sim-
ilar convergence speeds on all continuous tasks. Espe-
cially for Walker2d-v3, Humanoid-v3, HalfCheetah-v3, and
InvertedDoublePendulum-v2, QMD3 can achieve notice-
ably higher averaged return compared to TD3 and obtain the
gains of 29%, 22.6%, 21.7% and 17.8%, respectively.

More detailed comparisons about max average return over
10 trials of 1 million time steps are shown in Table 1. From
Table 1, we can find that QMD3 exceeds all other algo-
rithms in terms of the final performance, while DDPG and
Averaged-DQN perform poorly on most tasks due to the
overestimation problem. Moreover, we find that TD3 and
TADD cannot work well for some tasks, such as Ant-v3. Es-
pecially, QMD3 owns superior stability to other comparative
methods on most tasks except for Humanoid-v3, because ev-
ery seed DDPG performs extremely worse on Humanoid-v3.
Such a significant improvement is mainly attributed to the
fact that QMD3 can effectively reduce the estimation error
and enhance the exploration ability.

Ablation Studies In Figure 5, we test the average return
of QMD3 with different numbers of critics. The plots show
that QMD3 is consistent with obtaining robust and superior
performance with different numbers of critics. For larger n,
QMD3 can achieve better final performance with smaller es-
timation variance, consistent with Corollary 1.

To understand the contribution of the quasi-median op-
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Figure 4: Learning curves on the 8 MuJoCo continuous control tasks. The curves are smoothed uniformly for better visualiza-
tion. The darker lines represent the average evaluation of 10 random seeds. The shaded area represents half a standard deviation
of average evaluation.
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Figure 5: Learning curves on the 2 continuous control tasks
with different n. The results are averaged over 10 runs, with
the shaded area representing half a standard deviation. Black
dotted line represents the optimal return of TD3.

eration and the exploration improvement, we compare the
performance of removing each individual component from
QMD3 and present the experimental results in Table 2. From
Table 2, we can see that the quasi-median operation has
a much more significant impact on the final performance
than exploration improvement. These results suggest that the
quasi-median operation plays a vital role in improving the
performance of RL algorithms, but it should also be consid-
ered that training multiple critics increases time consump-
tion. Moreover, exploration improvement also improves per-
formance to some extent, so increasing the exploration abil-
ity of agent can be useful for RL performance improvement.
In addition, only adding the quasi-median operation or ex-
ploration improvement leads to a clear improvement, but
adding the combinations leads to higher performance.

Method HalfCheetah Hopper Walker2d Ant

QMD3 11763.5 3663.4 4424.5 4786.4
TADD 10389.3 3145.7 3886.4 3933.4
TD3 9465.3 3351.7 4371.2 4155.6
Averaged-DQN 9213.6 2448.2 3265.9 2162.1

QMD3 - QMO 10576.3 3248.9 4103.6 4286.3
QMD3 - EI 11276.0 3472.8 4354.4 4534.2

Table 2: Average return over the last 10 evaluations over 10
trials of 1 million time steps, comparing ablation over the
quasi-median operation (QMO) and exploration improve-
ment (EI). The maximum value for each task is bolded.

Conclusion

Not only is overestimation considered a fundamental prob-
lem in reinforcement learning, but underestimation can also
affect the performance of reinforcement learning algorithms.
In this paper, we propose the quasi-median operation to
address the underestimation problem. Furthermore, we ap-
ply the quasi-median operation to form Quasi-Median Q-
learning for the discrete action tasks and Quasi-Median
Delayed Deep Deterministic Policy Gradient for the con-
tinuous control tasks. From the theoretical point of view,
our method’s underestimation bias and stability are signifi-
cantly improved compared to Maxmin Q-learning, TD3, and
TADD algorithms. Extensive experimental results show that
our proposed method significantly outperforms the state-of-
the-art methods. Since our modifications are simple to im-
plement, they can be easily used for any other value-based
as well as actor-critic algorithms.
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