
Context Uncertainty in Contextual Bandits
with Applications to Recommender Systems

Hao Wang1,2*, Yifei Ma1, Hao Ding1, Yuyang Wang1

1AWS AI Labs 2Department of Computer Science, Rutgers University
hw488@cs.rutgers.edu, {yifeim,haodin,yuyawang}@amazon.com

Abstract

Recurrent neural networks have proven effective in modeling
sequential user feedbacks for recommender systems. How-
ever, they usually focus solely on item relevance and fail to
effectively explore diverse items for users, therefore harm-
ing the system performance in the long run. To address this
problem, we propose a new type of recurrent neural networks,
dubbed recurrent exploration networks (REN), to jointly per-
form representation learning and effective exploration in the
latent space. REN tries to balance relevance and exploration
while taking into account the uncertainty in the representations.
Our theoretical analysis shows that REN can preserve the rate-
optimal sublinear regret even when there exists uncertainty
in the learned representations. Our empirical study demon-
strates that REN can achieve satisfactory long-term rewards
on both synthetic and real-world recommendation datasets,
outperforming state-of-the-art models.

Introduction
Modeling and predicting sequential user feedbacks is a core
problem in modern e-commerce recommender systems. In
this regard, recurrent neural networks (RNN) have shown
great promise since they can naturally handle sequential
data (Hidasi et al. 2016; Quadrana et al. 2017; Belletti, Chen,
and Chi 2019; Ma et al. 2020). While these RNN-based mod-
els can effectively learn representations in the latent space
to achieve satisfactory immediate recommendation accuracy,
they typically focus solely on relevance and fall short of ef-
fective exploration in the latent space, leading to poor perfor-
mance in the long run. For example, a recommender system
may keep recommending action movies to a user once it
learns that she likes such movies. This may increase immedi-
ate rewards, but the lack of exploration in other movie genres
can certainly be detrimental to long-term rewards.

So, how does one effectively explore diverse items for
users while retaining the representation power offered by
RNN-based recommenders. We note that the learned repre-
sentations in the latent space are crucial for these models’ suc-
cess. Therefore we propose recurrent exploration networks
(REN) to explore diverse items in the latent space learned
by RNN-based models. REN tries to balance relevance and

*Work done while at AWS AI Labs.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

exploration during recommendations using the learned repre-
sentations.

One roadblock is that effective exploration relies heavily
on well learned representations, which in turn require suf-
ficient exploration; this is a chicken-and-egg problem. In a
case where RNN learns unreasonable representations (e.g.,
all items have the same representations), exploration in the
latent space is meaningless. To address this problem, we en-
able REN to take into account the uncertainty of the learned
representations as well during recommendations. Essentially
items whose representations have higher uncertainty can be
explored more often. Such a model can be seen as a contex-
tual bandit algorithm that is aware of the uncertainty for each
context. Our contributions are as follows:

1. We propose REN as a new type of RNN to balance rele-
vance and exploration during recommendation, yielding
satisfactory long-term rewards.

2. Our theoretical analysis shows that there is an upper con-
fidence bound related to uncertainty in learned representa-
tions. With such a bound implemented in the algorithm,
REN can achieve the same rate-optimal sublinear regret.
To the best of our knowledge, we are the first to study the
regret bounds under “context uncertainty”.

3. Experiments of joint learning and exploration on both
synthetic and real-world temporal datasets show that REN
significantly improve long-term rewards over state-of-the-
art RNN-based recommenders.

Related Work
Deep Learning for Recommender Systems. Deep learning
(DL) has been playing a key role in modern recommender sys-
tems (Salakhutdinov, Mnih, and Hinton 2007; van den Oord,
Dieleman, and Schrauwen 2013; Wang, Wang, and Yeung
2015; Wang, Shi, and Yeung 2015, 2016; Li and She 2017;
Chen et al. 2019; Fang et al. 2019; Tang et al. 2019; Ding
et al. 2021; Gupta et al. 2021). (Salakhutdinov, Mnih, and
Hinton 2007) uses restricted Boltzmann machine to perform
collaborative filtering in recommender systems. Collabora-
tive deep learning (CDL) (Wang, Wang, and Yeung 2015;
Wang, Shi, and Yeung 2016; Li and She 2017) is devised
as Bayesian deep learning models (Wang and Yeung 2016,
2020; Wang 2017) to significantly improve recommendation
performance. In terms of sequential (or session-based) rec-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

8539

ommender systems (Hidasi et al. 2016; Quadrana et al. 2017;
Bai, Kolter, and Koltun 2018; Li et al. 2017; Liu et al. 2018;
Wu et al. 2019; Ma et al. 2020), GRU4Rec (Hidasi et al. 2016)
was first proposed to use gated recurrent units (GRU) (Cho
et al. 2014), an RNN variant with gating mechanism, for
recommendation. Since then, follow-up works such as hierar-
chical GRU (Quadrana et al. 2017), temporal convolutional
networks (TCN) (Bai, Kolter, and Koltun 2018), and hierar-
chical RNN (HRNN) (Ma et al. 2020) have tried to achieve
improvement in accuracy with the help of cross-session in-
formation (Quadrana et al. 2017), causal convolutions (Bai,
Kolter, and Koltun 2018), as well as control signals (Ma et al.
2020). We note that our REN does not assume specific RNN
architectures (e.g., GRU or TCN) and is therefore compati-
ble with different RNN-based (or more generally DL-based)
models, as shown in later sections.

Contextual Bandits. Contextual bandit algorithms such
as LinUCB (Li et al. 2010) and its variants (Yue and Guestrin
2011; Agarwal et al. 2014; Li, Karatzoglou, and Gentile
2016; Kveton et al. 2017; Foster et al. 2018; Korda, Szorenyi,
and Li 2016; Mahadik et al. 2020; Zhou, Li, and Gu 2019)
have been proposed to tackle the exploitation-exploration
trade-off in recommender systems and successfully improve
upon context-free bandit algorithms (Auer 2002). Similar
to (Auer 2002), theoretical analysis shows that LinUCB vari-
ants could achieve a rate-optimal regret bound (Chu et al.
2011). However, these methods either assume observed con-
text (Zhou, Li, and Gu 2019) or are incompatible with neu-
ral networks (Li, Karatzoglou, and Gentile 2016; Yue and
Guestrin 2011). In contrast, REN as a contextual bandit al-
gorithm runs in the latent space and assumes user models
based on RNN; therefore it is compatible with state-of-the-art
RNN-based recommender systems.

Diversity-Inducing Models. Various works have focused
on inducing diversity in recommender systems (Nguyen et al.
2014; Antikacioglu and Ravi 2017; Wilhelm et al. 2018;
Bello et al. 2018). Usually such a system consists of a sub-
modular function, which measures the diversity among items,
and a relevance prediction model, which predicts relevance
between users and items. Examples of submodular functions
include the probabilistic coverage function (Hiranandani et al.
2019) and facility location diversity (FILD) (Tschiatschek,
Djolonga, and Krause 2016), while relevance prediction mod-
els can be Gaussian processes (Vanchinathan et al. 2014),
linear regression (Yue and Guestrin 2011), etc. These models
typically focus on improving diversity among recommended
items in a slate at the cost of accuracy. In contrast, REN’s
goal is to optimize for long-term rewards through improving
diversity between previous and recommended items. We in-
clude some slate generation in our real-data experiments for
completeness.

Recurrent Exploration Networks
In this section we first describe the general notations and
how RNN can be used for recommendation, briefly review
determinantal point processes (DPP) as a diversity-inducing
model as well as their connection to exploration in contextual
bandits, and then introduce our proposed REN framework.

Notation and RNN-Based Recommender Systems
Notation. We consider the problem of sequential recommen-
dations where the goal is to predict the item a user interacts
with (e.g., click or purchase) at time t, denoted as ekt , given
her previous interaction history Et = [ekτ]t−1

τ=1. Here kt is the
index for the item at time t, ekt ∈ {0, 1}K is a one-hot vector
indicating an item, andK is the number of total items. We de-
note the item embedding (encoding) for ekt as xkt = fe(ekt),
where fe(·) is the encoder as a part of the RNN. Correspond-
ingly we have Xt = [xkτ]t−1

τ=1. Strictly speaking, in an online
setting where the model updates at every time step t, xk also
changes over time; in Sec. we use xk as a shorthand for xt,k
for simplicity. We use ‖z‖∞ = maxi |z(i)| to denote the L∞
norm, where the superscript (i) means the i-th entry of the
vector z.

RNN-Based Recommender Systems. Given the interac-
tion history Et, the RNN generates the user embedding at
time t as θt = R([xkτ]t−1

τ=1), where xkτ = fe(ekτ) ∈ Rd,
and R(·) is the recurrent part of the RNN. Assuming tied
weights, the score for each candidate item is then computed
as pk,t = x>k θt. As the last step, the recommender system
will recommend the items with the highest scores to the user.
Note that the subscript k indexes the items, and is equivalent
to an ‘action’, usually denoted as a, in the context of bandit
algorithms.

Determinantal Point Processes for Diversity and
Exploration
Determinantal point processes (DPP) consider an item se-
lection problem where each item is represented by a fea-
ture vector xt. Diversity is achieved by picking a subset of
items to cover the maximum volume spanned by the items,
measured by the log-determinant of the corresponding ker-
nel matrix, ker(Xt) = log det(IK + XtX

>
t), where IK is

included to prevent singularity. Intuitively, DPP penalizes
colinearity, which is an indicator that the topics of one item
are already covered by the other topics in the full set. The log-
determinant of a kernel matrix is also a submodular function
(Friedland and Gaubert 2013), which implies a (1 − 1/e)-
optimal guarantees from greedy solutions. The greedy algo-
rithm for DPP via the matrix determinant lemma is

argmaxk log det(Id + X>t Xt + xkx
>
k) (1)

− log det(Id + X>t Xt)

= argmaxk log(1 + x>k (Id + X>t Xt)
−1xk) (2)

= argmaxk

√
x>k (Id + X>t Xt)−1xk. (3)

Interestingly, note that
√

x>k (Id + X>t Xt)−1xk has the
same form as the confidence interval in LinUCB (Li et al.
2010), a commonly used contextual bandit algorithm to boost
exploration and achieve long-term rewards, suggesting a con-
nection between diversity and long-term rewards (Yue and
Guestrin 2011). Intuitively, this makes sense in recommender
systems since encouraging diversity relative to user history
(as well as diversity in a slate of recommendations in our

8540

Algorithm 1: Recurrent Exploration Networks
(REN)

1 Input: λd, λu, initialized REN model with the
encoder, i.e., R(·) and fe(·).

2 for t = 1, 2, . . . , T do
3 Obtain item embeddings from REN:
4 µkτ ← fe(ekτ) for all τ ∈ {1, 2, . . . , t− 1}.
5 Obtain the current user embedding from REN:
6 θt ← R(Dt).
7 Compute At ← Id +

∑
τ∈Ψt

µ>kτµkτ .
8 Obtain candidate items’ embeddings from REN:
9 µk ← fe(ek), where k ∈ [K].

10 Obtain candidate items’ uncertainty estimates σk,
where k ∈ [K].

11 for k ∈ [K] do
12 Obtain the score for item k at time t:
13 pk,t ←

µ>k θt + λd

√
µ>k A−1

t µk + λu‖σk‖∞.
14 end
15 Recommend item kt ← argmaxk pt,k and collect

user feedbacks.
16 Update the REN model R(·) and fe(·) using

collected user feedbacks.
17 end

experiments) naturally explores user interest previously un-
known to the model, leading to much higher long-term re-
wards, as shown in Sec. 12.

Recurrent Exploration Networks
Exploration Term. Based on the intuition above, we can
modify the user-item score pk,t = x>k θt to include a diversity
(exploration) term, leading to the new score

pk,t = x>k θt + λd

√
x>k (Id + X>t Xt)−1xk, (4)

where the first term is the relevance score and the second term
is the exploration score (measuring diversity between previ-
ous and recommended items). θt = R(Xt) = R([xkτ]t−1

τ=1)
is RNN’s hidden states at time t representing the user embed-
ding. The hyperparameter λd aims to balance two terms.

Uncertainty Term for Context Uncertainty. At first
blush, given the user history the system using Eqn. 4 will rec-
ommend items that are (1) relevant to the user’s interest and
(2) diverse from the user’s previous items. However, this only
works when item embeddings xk are correctly learned. Un-
fortunately, the quality of learned item embeddings, in turn,
relies heavily on the effectiveness of exploration, leading to
a chicken-and-egg problem. To address this problem, one
also needs to consider the uncertainty of the learned item em-
beddings. Assuming the item embedding xk ∼ N (µk,Σk),
where Σk = diag(σ2

k), we have the final score for REN:

pk,t = µ>k θt + λd

√
µ>k (Id + D>t Dt)−1µk + λu‖σk‖∞,

(5)

where θt = R(Dt) = R([µkτ]t−1
τ=1) and Dt = [µkτ]t−1

τ=1.
The term σk quantifies the uncertainty for each dimension of
xk, meaning that items whose embeddings REN is uncertain
about are more likely to be recommended. Therefore with
the third term, REN can naturally balance among relevance,
diversity (relative to user history), and uncertainty during
exploration.

Putting It All Together. Algorithm 1 shows the overview
of REN. Note that the difference between REN and tradi-
tional RNN-based recommenders is only in the inference
stage. During training (Line 16 of Algorithm 1), one can
train REN only with the relevance term using models such
as GRU4Rec and HRNN. In the experiments, we use un-
certainty estimates diag(σk) = 1/

√
nk Id, where nk is

item k’s total number of impressions (i.e., the number of
times item k has been recommended) for all users. The intu-
ition is that: the more frequently item k is recommended, the
more frequently its embedding xk gets updated, the faster σk
decreases.1 Our preliminary experiments show that 1/

√
nk

does decrease at the rate of O(1/
√
t), meaning that the as-

sumption in Lemma 4 is satisfied. From the Bayesian per-
spective, 1/

√
nk may not accurately reflect the uncertainty of

the learned xk, which is a limitation of our model. In princi-
ple, one can learn σk from data using the reparameterization
trick (Kingma and Welling 2014) with a Gaussian prior on
xk and examine whether σk the assumption in Lemma 4; this
would be interesting future work.

Linearity in REN. REN only needs a linear bandit model;
REN’s output x>k θt is linear w.r.t. θ and xk. Note that Neu-
ralUCB (Zhou, Li, and Gu 2019) is a powerful nonlinear
extension of LinUCB, i.e., its output is nonlinear w.r.t. θ
and xk. Extending REN’s output from x>k θt to a nonlinear
function f(xk,θt) as in NeuralUCB is also interesting future
work.2

Beyond RNN. Note that our methods and theory go be-
yond RNN-based models and can be naturally extended
to any latent factor models including transformers, MLPs,
and matrix factorization. The key is the user embedding
θt = R(Xt), which can be instantiated with an RNN, a
transformer, or a matrix-factorization model.

Theoretical Analysis
With REN’s connection to contextual bandits, we can prove
that with proper λd and λu, Eqn. 5 is actually the upper
confidence bound that leads to long-term rewards with a
rate-optimal regret bound.

Reward Uncertainty versus Context Uncertainty. Note

1There are some caveats in general. diag(σk) ∝ Id assumes
that all coordinates of x shrink at the same rate. However, REN
exploration mechanism associates nk with the total variance of the
features of an item. This may not ensure all feature dimensions to
be equally explored. See (Jun et al. 2019) for a different algorithm
that analyzes the exploration of the low-rank feature space.

2In other words, we did not fully explain why x could be shared
between non-linear RNN and the uncertainty bounds based on linear
models. On the other hand, we did observe promising empirical
results, which may encourage interested readers to dive deep into
different theoretical analyses.

8541

that unlike existing works which primarily consider the ran-
domness from the reward, we take into consideration the un-
certainty resulted from the context (content) (Mi et al. 2019;
Wang, Xingjian, and Yeung 2016), i.e., context uncertainty.
In CDL (Wang, Wang, and Yeung 2015; Wang, Shi, and Ye-
ung 2016), it is shown that such content information is crucial
in DL-based RecSys (Wang, Wang, and Yeung 2015; Wang,
Shi, and Yeung 2016), and so is the associated uncertainty.
More specifically, existing works assume deterministic x and
only assume randomness in the reward, i.e., they assume that
r = x>θ + ε, and therefore r’s randomness is independent
of x. The problem with this formulation is that they assume
x is deterministic and therefore the model only has a point
estimate of the item embedding x, but does not have uncer-
tainty estimation for such x. We find that such uncertainty
estimation is crucial for exploration; if the model is uncertain
about x, it can then explore more on the corresponding item.

To facilitate analysis, we follow common practice (Auer
2002; Chu et al. 2011) to divide the procedure of REN into
“BaseREN" (Algorithm 2) and “SupREN" stages correspond-
ingly. Essentially SupREN introduces S = lnT levels of
elimination (with s as an index) to filter out low-quality items
and ensures that the assumption holds (see the Supplement
for details of SupREN).

In this section, we first provide a high probability bound for
BaseREN with uncertain embeddings (context), and derive
an upper bound for the regret. As mentioned in Sec. , for the
online setting where the model updates at every time step t,
xk also changes over time. Therefore in this section we use
xt,k, µt,k, Σt,k, and σt,k in place of xk, µk, Σk, and σk
from Sec. to be rigorous.
Assumption 1. Assume there exists an optimal θ∗, with
‖θ∗‖ ≤ 1, and x∗t,k such that E[rt,k] = x∗t,k

>θ∗. Further
assume that there is an effective distribution N (µt,k,Σt,k)

such that x∗t,k ∼ N (µt,k,Σt,k) where Σt,k = diag(σ2
t,k).

Thus, the true underlying context is unavailable, but we are
aided with the knowledge that it is generated by a multivari-
ate normal with known parameters3.

Upper Confidence Bound for Uncertain
Embeddings
For simplicity denote the item embedding (context) as xt,k,
where t indexes the rounds (time steps) and k indexes the
items. We define:

st,k =
√

µ>t,kA
−1
t µt,k ∈ R+, Dt = [µτ,kτ]τ∈Ψt ∈ R|Ψt|×d,

yt = [rτ,kτ]τ∈Ψt ∈ R|Ψt|×1, At = Id + D>t Dt,

bt = D>t yt, r̂t,k = µ>t,kθ̂t = µ>t,kA
−1
t bt,

(6)

where yt is the collected user feedback. Lemma 1 below

shows that with λd = 1 + α = 1 +
√

1
2 ln 2TK

δ and λu =

4
√
d+ 2

√
ln TK

δ , Eqn. 5 is the upper confidence bound with

3Here we omit the identifiability issue of x∗t,k and assume that
there is a unique x∗t,k for clarity.

Algorithm 2: BaseREN: Basic REN Inference at
Step t

1 Input: α, Ψt ⊆ {1, 2, . . . , t− 1}.
2 Obtain item embeddings from REN:

µτ,kτ ← fe(eτ,kτ) for all τ ∈ Ψt.
3 Obtain user embedding: θt ← R(Dt).
4 At ← Id +

∑
τ∈Ψt

µ>τ,kτµτ,kτ .
5 Obtain candidate items’ embeddings:

µt,k ← fe(et,k), where k ∈ [K].
6 Obtain candidate items’ uncertainty estimates σt,k,

where k ∈ [K].
7 for a ∈ [K] do
8 st,k =

√
µ>t,kA

−1
t µt,k

9 wt,k ← (α+1)st,k+(4
√
d+2

√
ln TK

δ)‖σt,k‖∞.

10 r̂t,k ← θ>t µt,k.
11 end
12 Recommend item k ← argmaxk r̂t,k + wt,k.

high probability, meaning that Eqn. 5 upper bounds the true
reward with high probability, which makes it a reasonable
score for recommendations.

Lemma 1 (Confidence Bound). With probability at least
1− 2δ/T , we have for all k ∈ [K] that

|r̂t,k − x∗t,k
>θ∗| ≤(α+ 1)st,k

+ (4
√
d+ 2

√
ln
TK

δ
)‖σt,k‖∞,

where ‖σt,k‖∞ = maxi |σ(i)
t,k| is the L∞ norm.

The proof is in the Supplement. This upper confidence
bound above provides important insight on why Eqn. 5 is
reasonable as a final score to select items in Algorithm 1 as
well as the choice of hyperparameters λd and λu.

RNN to Estimate θt. REN uses RNN to approximate
A−1
t bt (useful in the proof of Lemma 1) in Eqn. 6. Note

that a linear RNN with tied weights and a single time step is
equivalent to linear regression (LR); therefore RNN is a more
general model to estimate θt. Compared to LR, RNN-based
recommenders can naturally incorporate new user history
by incrementally updating the hidden states (θt in REN),
without the need to solve a linear equation. Interestingly, one
can also see RNN’s recurrent computation as a simulation
(approximation) for solving equations via iterative updating.

Regret Bound
Lemma 1 above provides an estimate of the reward’s upper
bound at time t. Based on this estimate, one natural next step
is to analyze the regret after all T rounds. Formally, we define
the regret of the algorithm after T rounds as

B(T) =
T∑
t=1

rt,k∗t −
T∑
t=1

rt,kt , (7)

8542

where k∗t is the optimal item (action) k at round t that maxi-
mizes E[rt,k] = x∗t,k

>θ∗, and kt is the action chose by the
algorithm at round t. Similar to (Auer 2002), SupREN calls
BaseREN as a sub-routine. In this subsection, we derive the
regret bound for SupREN with uncertain item embeddings.
Lemma 2. With probability 1 − 2δS, for any t ∈ [T] and
any s ∈ [S], we have: (1) |r̂t,k − E[rt,k]| ≤ wt,k for any
k ∈ [K], (2) k∗t ∈ Âs, and (3) E[rt,k∗t] − E[rt,k] ≤ 2(3−s)

for any k ∈ Âs.
Lemma 3. In BaseREN, we have: (1 +α)

∑
t∈ΨT+1

st,kt ≤
5 · (1 + α2)

√
d|ΨT+1|.

Lemma 4. Assuming ‖σ1,k‖∞ = 1 and ‖σt,k‖∞ ≤ 1√
t

for any k and t, then for any k, we have the upper bound:∑
t∈ΨT+1

‖σt,k‖∞ ≤
√
|ΨT+1|.

Essentially Lemma 2 links the regret B(T) to the width of
the confidence bound wt,k (Line 9 of Algorithm 2 or the last
two terms of Eqn. 5). Lemma 3 and Lemma 4 then connect
wt,k to

√
|ΨT+1| ≤

√
T , which is sublinear in T ; this is

the key to achieve a sublinear regret bound. Note that Âs is
defined inside Algorithm 2 (SupREN) of the Supplement.

Interestingly, Lemma 4 states that the uncertainty only
needs to decrease at the rate 1√

t
, which is consistent with our

choice of diag(σk) = 1/
√
nk Id in Sec. , where nk is item

k’s total number of impressions for all users. As the last step,
Lemma 5 and Theorem 1 below build on all lemmas above
to derive the final sublinear regret bound.
Lemma 5. For all s ∈ [S],

|Ψ(s)
T+1| ≤ 2s · (5(1 + α2)

√
d|Ψ(s)

T+1|+ 4
√
dT + 2

√
T ln

TK

δ
).

Theorem 1. If SupREN is run with α =
√

1
2 ln 2TK

δ , with
probability at least 1− δ, the regret of the algorithm is

B(T) ≤ 2
√
T + 92 · (1 + ln

2TK(2 lnT + 2)

δ
)

3
2

√
Td

= O(

√
Td ln3(

KT ln(T)

δ
)),

All full proofs are in the Supplement. Theorem 1 shows
that even with the uncertainty in the item embeddings (i.e.,
context uncertainty), our proposed REN can achieve the same
rate-optimal sublinear regret bound.

Experiments
We evaluate REN on both synthetic and real-world datasets.

Experiment Setup and Compared Methods
Joint Learning and Exploration Procedure in Tempo-
ral Data. To effectively verify REN’s capability to boost
long-term rewards, we adopt an online experiment set-
ting where data is divided into different time intervals
[T0, T1), [T1, T2), . . . , [TM−1, TM]. RNN (including REN
and its baselines) is then trained and evaluated in a rolling
manner: (1) RNN is trained using data in [T0, T1); (2) RNN

is evaluated using data in [T1, T2) and collects feedbacks
(rewards) for its recommendations; (3) RNN uses newly col-
lected feedbacks from [T1, T2) to finetune the model; (4)
Repeat the previous two steps using data from the next time
interval. Note that different from traditional offline and one-
step evaluation, corresponding to only Step (1) and (2), our
setting performs joint learning and exploration in temporal
data, and therefore is more realistic and closer to production
systems.

Long-Term Rewards. Since the goal is to evaluate long-
term rewards, we are mostly interested in the rewards during
the last (few) time intervals. Conventional RNN-based rec-
ommenders do not perform exploration and are therefore
much easier to saturate at a relatively low reward. In contrast,
REN with its effective exploration can achieve nearly optimal
rewards in the end.

Compared Methods. We compare REN variants
with state-of-the-art RNN-based recommenders including
GRU4Rec (Hidasi et al. 2016), TCN (Bai, Kolter, and Koltun
2018), HRNN (Ma et al. 2020). Since REN can use any RNN-
based recommenders as a base model, we evaluate three REN
variants in the experiments: REN-G, REN-T, and REN-H,
which use GRU4Rec, TCN, and HRNN as base models, re-
spectively. Additionally we also evaluate REN-1,2, an REN
variant without the third term of Eqn. 5, and REN-1,3, one
without the second term of Eqn. 5, as an ablation study. Both
REN-1,2 and REN-1,3 use GRU4Rec as the base model. As
references we also include Oracle, which always achieves op-
timal rewards, and Random, which randomly recommends
one item from the full set. For REN variants we choose λd
from {0.001, 0.005, 0.01, 0.05, 0.1} and set λu =

√
10λd.

Other hyperparameters in the RNN base models are kept the
same for fair comparison (see the Supplement for more de-
tails on neural network architectures, hyperparameters, and
their sensitivity analysis).

Simulated Experiments
Datasets. Following the setting described in Sec. 12, we start
with three synthetic datasets, namely SYN-S, SYN-M, and
SYN-L, which allow complete control on the simulated en-
vironments. We assume 8-dimensional latent vectors, which
are unknown to the models, for each user and item, and use
the inner product between user and item latent vectors as
the reward. Specifically, for each latent user vector θ∗, we
randomly choose 3 entries to set to 1/

√
3 and set the rest to

0, keeping ‖θ∗‖2 = 1. We generate C8
2 = 28 unique item

latent vectors. Each item latent vector x∗k has 2 entries set to
1/
√

2 and the other 6 entries set to 0 so that ‖x∗k‖2 = 1.
We assume 15 users in our datasets. SYN-S contains exactly

28 items, while SYN-M repeats each unique item latent vector
for 10 times, yielding 280 items in total. Similarly, SYN-L
repeats for 50 times, therefore yielding 1400 items in total.
The purpose of allowing different items to have identical
latent vectors is to investigate REN’s capability to explore in
the compact latent space rather than the large item space. All
users have a history length of 60.

Simulated Environments. With the generated latent vec-
tors, the simulated environment runs as follows: At each time

8543

100 200 300 400 500 600 700 800 900
Time

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Re
w

ar
d

GRU4Rec
HRNN
REN-G
REN-H
REN-T
TCN
Oracle
Random

100 200 300 400 500 600 700 800 900
Time

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Re
w

ar
d

GRU4Rec
HRNN
REN-G
REN-H
REN-T
TCN
Oracle
Random

100 200 300 400 500 600 700 800 900
Time

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Re
w

ar
d

GRU4Rec
HRNN
REN-G
REN-H
REN-T
TCN
Oracle
Random

Figure 1: Results for different methods in SYN-S (left with 28 items), SYN-M (middle with 280 items), and SYN-L (right with
1400 items). One time step represents one interaction step, where in each interaction step the model recommends 3 items to the
user and the user interacts with one of them. In all cases, REN models with diversity-based exploration lead to final convergence,
whereas models without exploration get stuck at local optima.

100 200 300 400 500 600 700 800 900
Time

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Re
w

ar
d

SYN-L, REN-1,2
SYN-L, REN-1,2,3
SYN-L, REN-1,3
SYN-S, REN-1,2
SYN-S, REN-1,2,3
SYN-S, REN-1,3
Oracle

Figure 2: Ablation study on different terms of REN. ‘REN-
1,2,3’ refers to the full ‘REN-G’ model.

step t, the environment randomly chooses 1 user and feed her
interaction history Xt (or Dt) into the RNN recommender.
The recommender then recommends the top 4 items to the
user. The user selects the item with the highest ground-truth
reward θ∗

>
x∗k, after which the recommender collects the

selected item with the reward and finetune the model.
Results. Fig. 1 shows the rewards over time for different

methods. Results are averaged over 3 runs and we plot the
rolling average with a window size of 100 to prevent clutter.
As expected, conventional RNN-based recommenders satu-
rate at around the 500-th time step, while all REN variants
successfully achieve nearly optimal rewards in the end. One
interesting observation is that REN variants obtain rewards
lower than the “Random" baseline at the beginning, mean-
ing that they are sacrificing immediate rewards to perform
exploration in exchange for long-term rewards.

Ablation Study. Fig. 2 shows the rewards over time for
REN-G (i.e., REN-1,2,3), REN-1,2, and REN-1,3 in SYN-S
and SYN-L. We observe that REN-1,2, with only the rele-
vance (first) and diversity (second) terms of Eqn. 5, saturates
prematurely in SYN-S. On the other hand, the reward of REN-
1,3, with only the relevance (first) and uncertainty (third)
term, barely increases over time in SYN-L. In contrast, the
full REN-G works in both SYN-S and SYN-L. This is because
without the uncertainty term, REN-1,2 fails to effectively
choose items with uncertain embeddings to explore. REN-1,3
ignores the diversity in the latent space and tends to explore

items that have rarely been recommended; such exploration
directly in the item space only works when the item number
is small, e.g., in SYN-S.

Hyperparameters. For the base models GRU4Rec, TCN,
and HRNN, we use identical network architectures and hyper-
paremeters whenever possible. We set the number of hidden
neurons to 32 for all models including REN variants.

Real-World Experiments
MovieLens-1M. We use MovieLens-1M (Harper and Kon-
stan 2016) containing 3,900 movies and 6,040 users with
an experiment setting similar to Sec. 12. Each user has 120
interactions, and we follow the joint learning and exploration
procedure described in Sec. 12 to evaluate all methods (more
details in the Supplement). All models recommend 10 items
at each round for a chosen user, and the precision@10 is used
as the reward. Fig. 3(left) shows the rewards over time aver-
aged over all 6,040 users. As expected, REN variants with
different base models are able to achieve higher long-term
rewards compared to their non-REN counterparts.

Trivago. We also evaluate the proposed methods on
Trivago4, a hotel recommendation dataset with 730,803 users,
926,457 items, and 910,683 interactions. We use a subset
with 57,778 users, 387,348 items, and 108,713 interactions
and slice the data into M = 48 one-hour time intervals for
the online experiment (see the Supplement for details on data
pre-processing). Different from MovieLens-1M, Triavago has
impression data available: at each time step, besides which
item is clicked by the user, we also know which 25 items are
being shown to the user. Such information makes the online
evaluation more realistic, as we now know the ground-truth
feedback if an arbitrary subset of the 25 items are presented to
the user. At each time step of the online experiments, all meth-
ods will choose 10 items from the 25 items to recommend
the current user and collect the feedback for these 10 items as
data for finetuning. We pretrain the model using all 25 items
from the first 13 hours before starting the online evaluation.
Fig. 3(middle) shows the mean reciprocal rank (MRR), the
official metric used in the RecSys Challenge, for different

4More details are available at https://recsys.trivago.cloud/
challenge/dataset/.

8544

0 20 40 60 80 100 120
Time

0.00

0.05

0.10

0.15

0.20

0.25

Re
w

ar
d

GRU4Rec
HRNN
REN-G
REN-H
REN-T
TCN

0 5 10 15 20 25 30 35
Time

0.25

0.30

0.35

0.40

0.45

0.50

Re
w

ar
d

GRU4REC
HRNN
REN-G
REN-H
REN-T
TCN

0 2 4 6 8
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
w

ar
d

HRNN
Oracle
REN-H
Random

Figure 3: Rewards (precision@10, MRR, and recall@100, respectively) over time on MovieLens-1M (left), Trivago (middle),
and Netflix (right). One time step represents 10 recommendations to a user, one hour of data, and 100 recommendations to a user
for MovieLens-1M, Trivago, and Netflix, respectively.

0 2 4 6 8
Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
w

ar
d

HRNN
Oracle
REN-H
Random

0 2 4 6 8
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
w

ar
d

HRNN
Oracle
REN-H
Random

0 10 20 30 40 50
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
w

ar
d

HRNN
Oracle
REN-H
Random

Figure 4: Rewards over time on Netflix. One time step represents 100 recommendations to a user.

methods. As expected, the baseline RNN (e.g., GRU4Rec)
suffers from a drastic drop in rewards because agents are
allowed to recommend only 10 items, and they choose to
focus only on relevance. This will inevitably ignores valuable
items and harms the accuracy. In contrast, REN variants (e.g.,
REN-G) can effectively balance relevance and exploration
for these 10 recommended items at each time step, achieving
higher long-term rewards. Interestingly, we also observe that
REN variants have better stability in performance compared
to RNN baselines.

Netflix. Finally, we also use Netflix5 to evaluate how REN
performs in the slate recommendation setting and without
finetuning in each time step, i.e., skipping Step (3) in Sec. 12.
We pretrain REN on data from half the users and evaluate on
the other half. At each time step, REN generates 100 mutually
diversified items for one slate following Eqn. 5, with pk,t up-
dated after every item generation. Fig. 3(right) shows the re-
call@100 as the reward for different methods, demonstrating
REN’s promising exploration ability when no finetuning is
allowed (more results in the Supplement). Fig. 4(left) shows
similar trends with recall@100 as the reward on the same
holdout item set. This shows that the collected set contributes
to building better user embedding models. Fig. 4(middle)
shows that the additional exploration power comes with-
out significant harms to the user’s immediate rewards on
the exploration set, where the recommendations are served.
In fact, we used a relatively large exploration coefficient,
λd = λu = 0.005, which starts to affect recommendation
results on the sixth position. By additional hyperparameter

5https://www.kaggle.com/netflix-inc/netflix-prize-data

tuning, we realized that to achieve better rewards on the
exploration set, we may choose smaller λd = 0.0007 and
λu = 0.0008. Fig. 4(right) shows significantly higher recalls
close to the oracle performance, where all of the users’ his-
tories are known and used as inputs to predict the top-100
personalized recommendations.6 Note that, for fair presen-
tation of the tuned results, we switched the exploration set
and the holdout set and used a different test user group, con-
sisting of 1543 users. We believe that the tuned results are
generalizable with new users and items, but we also real-
ize that the Netflix dataset still has a significant popularity
bias and therefore we recommend using larger exploration
coefficients with real online systems. The inference cost is
175 milliseconds to pick top-100 items from 8000 evaluation
items. It includes 100 sequential linear function solutions
with 50 embedding dimensions, which is further improvable
by selecting multiple items at a time in slate generation.

Conclusion

We propose the REN framework to balance relevance and
exploration during recommendation. Our theoretical analysis
and empirical results demonstrate the importance of consid-
ering uncertainty in the learned representations for effective
exploration and improvement on long-term rewards.

6The gap between oracle and 100% recall lies in the model
approximation errors.

8545

Acknowledgements
The authors thank Tim Januschowski, Alex Smola, the AWS
AI’s Personalize Team and ML Forecast Team, as well as
the reviewers/SPC/AC for the constructive comments to im-
prove the paper. We are also grateful for the RecoBandits
package provided by Bharathan Blaji, Saurabh Gupta, and
Jing Wang to facilitate the simulated environments. HW is
partially supported by NSF Grant IIS-2127918.

References
Agarwal, A.; Hsu, D. J.; Kale, S.; Langford, J.; Li, L.; and
Schapire, R. E. 2014. Taming the Monster: A Fast and Simple
Algorithm for Contextual Bandits. In ICML, 1638–1646.
Antikacioglu, A.; and Ravi, R. 2017. Post processing recom-
mender systems for diversity. In KDD, 707–716.
Auer, P. 2002. Using Confidence Bounds for Exploitation-
Exploration Trade-offs. JMLR, 3: 397–422.
Bai, S.; Kolter, J. Z.; and Koltun, V. 2018. An Empirical
Evaluation of Generic Convolutional and Recurrent Networks
for Sequence Modeling. CoRR, abs/1803.01271.
Belletti, F.; Chen, M.; and Chi, E. H. 2019. Quantifying
Long Range Dependence in Language and User Behavior to
improve RNNs. In KDD, 1317–1327.
Bello, I.; Kulkarni, S.; Jain, S.; Boutilier, C.; Chi, E.; Eban,
E.; Luo, X.; Mackey, A.; and Meshi, O. 2018. Seq2slate:
Re-ranking and slate optimization with rnns. arXiv preprint
arXiv:1810.02019.
Chen, M.; Beutel, A.; Covington, P.; Jain, S.; Belletti, F.; and
Chi, E. H. 2019. Top-k off-policy correction for a REIN-
FORCE recommender system. In WSDM, 456–464.
Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation. In EMNLP, 1724–1734.
Chu, W.; Li, L.; Reyzin, L.; and Schapire, R. 2011. Con-
textual bandits with linear payoff functions. In AISTATS,
208–214.
Ding, H.; Ma, Y.; Deoras, A.; Wang, Y.; and Wang, H.
2021. Zero-Shot Recommender Systems. arXiv preprint
arXiv:2105.08318.
Fang, H.; Zhang, D.; Shu, Y.; and Guo, G. 2019. Deep Learn-
ing for Sequential Recommendation: Algorithms, Influential
Factors, and Evaluations. arXiv preprint arXiv:1905.01997.
Foster, D. J.; Agarwal, A.; Dudík, M.; Luo, H.; and Schapire,
R. E. 2018. Practical Contextual Bandits with Regression
Oracles. In ICML, 1534–1543.
Friedland, S.; and Gaubert, S. 2013. Submodular spectral
functions of principal submatrices of a hermitian matrix,
extensions and applications. Linear Algebra and its Applica-
tions, 438(10): 3872–3884.
Gupta, S.; Wang, H.; Lipton, Z.; and Wang, Y. 2021. Correct-
ing exposure bias for link recommendation. In ICML.
Harper, F. M.; and Konstan, J. A. 2016. The movielens
datasets: History and context. ACM Transactions on Interac-
tive Intelligent Systems (TiiS), 5(4): 19.

Hidasi, B.; Karatzoglou, A.; Baltrunas, L.; and Tikk, D. 2016.
Session-based Recommendations with Recurrent Neural Net-
works. In ICLR.
Hiranandani, G.; Singh, H.; Gupta, P.; Burhanuddin, I. A.;
Wen, Z.; and Kveton, B. 2019. Cascading Linear Submodular
Bandits: Accounting for Position Bias and Diversity in Online
Learning to Rank. In UAI, 248.
Jun, K.-S.; Willett, R.; Wright, S.; and Nowak, R. 2019. Bilin-
ear Bandits with Low-rank Structure. In Chaudhuri, K.; and
Salakhutdinov, R., eds., Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, 3163–3172. PMLR.
Kingma, D. P.; and Welling, M. 2014. Auto-Encoding Varia-
tional Bayes. In ICLR.
Korda, N.; Szorenyi, B.; and Li, S. 2016. Distributed clus-
tering of linear bandits in peer to peer networks. In ICML,
1301–1309.
Kveton, B.; Szepesvári, C.; Rao, A.; Wen, Z.; Abbasi-
Yadkori, Y.; and Muthukrishnan, S. 2017. Stochastic Low-
Rank Bandits. CoRR, abs/1712.04644.
Li, J.; Ren, P.; Chen, Z.; Ren, Z.; Lian, T.; and Ma, J. 2017.
Neural attentive session-based recommendation. In CIKM,
1419–1428.
Li, L.; Chu, W.; Langford, J.; and Schapire, R. E. 2010. A
contextual-bandit approach to personalized news article rec-
ommendation. In WWW, 661–670.
Li, S.; Karatzoglou, A.; and Gentile, C. 2016. Collaborative
Filtering Bandits. In SIGIR, 539–548.
Li, X.; and She, J. 2017. Collaborative Variational Autoen-
coder for Recommender Systems. In KDD, 305–314.
Liu, Q.; Zeng, Y.; Mokhosi, R.; and Zhang, H. 2018. STAMP:
short-term attention/memory priority model for session-based
recommendation. In KDD, 1831–1839.
Ma, Y.; Narayanaswamy, M. B.; Lin, H.; and Ding, H. 2020.
Temporal-Contextual Recommendation in Real-Time. In
KDD.
Mahadik, K.; Wu, Q.; Li, S.; and Sabne, A. 2020. Fast
distributed bandits for online recommendation systems. In
SC, 1–13.
Mi, L.; Wang, H.; Tian, Y.; and Shavit, N. 2019. Training-
Free Uncertainty Estimation for Neural Networks. arXiv
e-prints, arXiv–1910.
Nguyen, T. T.; Hui, P.-M.; Harper, F. M.; Terveen, L.; and
Konstan, J. A. 2014. Exploring the filter bubble: the effect of
using recommender systems on content diversity. In WWW,
677–686.
Quadrana, M.; Karatzoglou, A.; Hidasi, B.; and Cremonesi, P.
2017. Personalizing Session-based Recommendations with
Hierarchical Recurrent Neural Networks. In RecSys, 130–
137.
Salakhutdinov, R.; Mnih, A.; and Hinton, G. E. 2007. Re-
stricted Boltzmann machines for collaborative filtering. In
ICML, volume 227, 791–798.
Tang, J.; Belletti, F.; Jain, S.; Chen, M.; Beutel, A.; Xu, C.;
and H. Chi, E. 2019. Towards neural mixture recommender

8546

for long range dependent user sequences. In WWW, 1782–
1793.
Tschiatschek, S.; Djolonga, J.; and Krause, A. 2016. Learn-
ing Probabilistic Submodular Diversity Models Via Noise
Contrastive Estimation. In AISTATS, 770–779.
van den Oord, A.; Dieleman, S.; and Schrauwen, B. 2013.
Deep content-based music recommendation. In NIPS, 2643–
2651.
Vanchinathan, H. P.; Nikolic, I.; Bona, F. D.; and Krause, A.
2014. Explore-exploit in top-N recommender systems via
Gaussian processes. In RecSys, 225–232.
Wang, H. 2017. Bayesian Deep Learning for Integrated
Intelligence: Bridging the Gap between Perception and In-
ference. Ph.D. thesis, Hong Kong University of Science and
Technology.
Wang, H.; Shi, X.; and Yeung, D. 2015. Relational stacked
denoising autoencoder for tag recommendation. In AAAI,
3052–3058.
Wang, H.; Shi, X.; and Yeung, D.-Y. 2016. Collaborative
recurrent autoencoder: Recommend while learning to fill in
the blanks. In NIPS, 415–423.
Wang, H.; Wang, N.; and Yeung, D. 2015. Collaborative deep
learning for recommender systems. In KDD, 1235–1244.
Wang, H.; Xingjian, S.; and Yeung, D.-Y. 2016. Natural-
parameter networks: A class of probabilistic neural networks.
In NIPS, 118–126.
Wang, H.; and Yeung, D.-Y. 2016. Towards Bayesian deep
learning: A framework and some existing methods. TDKE,
28(12): 3395–3408.
Wang, H.; and Yeung, D.-Y. 2020. A Survey on Bayesian
Deep Learning. ACM Computing Surveys (CSUR), 53(5):
1–37.
Wilhelm, M.; Ramanathan, A.; Bonomo, A.; Jain, S.; Chi,
E. H.; and Gillenwater, J. 2018. Practical diversified recom-
mendations on youtube with determinantal point processes.
In CIKM, 2165–2173.
Wu, S.; Tang, Y.; Zhu, Y.; Wang, L.; Xie, X.; and Tan, T. 2019.
Session-based recommendation with graph neural networks.
In AAAI, volume 33, 346–353.
Yue, Y.; and Guestrin, C. 2011. Linear Submodular Bandits
and their Application to Diversified Retrieval. In NIPS, 2483–
2491.
Zhou, D.; Li, L.; and Gu, Q. 2019. Neural Contextual Bandits
with Upper Confidence Bound-Based Exploration. arXiv
preprint arXiv:1911.04462.

8547

