
Robust Optimal Classification Trees against Adversarial Examples

Daniël Vos, Sicco Verwer
Delft University of Technology

d.a.vos@tudelft.nl, s.e.verwer@tudelft.nl

Abstract

Decision trees are a popular choice of explainable model, but
just like neural networks, they suffer from adversarial exam-
ples. Existing algorithms for fitting decision trees robustly
against adversarial examples are greedy heuristics and lack
approximation guarantees. In this paper we propose ROCT, a
collection of methods to train decision trees that are optimally
robust against user-specified attack models. We show that
the min-max optimization problem that arises in adversarial
learning can be solved using a single minimization formula-
tion for decision trees with 0-1 loss. We propose such for-
mulations in Mixed-Integer Linear Programming and Max-
imum Satisfiability, which widely available solvers can op-
timize. We also present a method that determines the upper
bound on adversarial accuracy for any model using bipartite
matching. Our experimental results demonstrate that the ex-
isting heuristics achieve close to optimal scores while ROCT
achieves state-of-the-art scores.

Introduction
While breakthroughs in machine learning research have en-
abled training of powerful predictive models, most models
are still vulnerable to adversarial examples, samples with
tiny perturbations that cause them to be misclassified. Since
the discovery of adversarial examples in neural networks
(Szegedy et al. 2013) much work has gone into training
models that are robust to these attacks and recently, the first
efforts were made to train robust decision trees against ad-
versarial examples (Chen et al. 2019; Calzavara et al. 2020;
Vos and Verwer 2020). However, the current methods are
greedy and offer no performance guarantees. They can fail
on arbitrary datasets and give results no better than random
guessing (Figure 1).

In decision tree learning, there has been an increased in-
terest in optimal learning algorithms (Carrizosa, Molero-
Rı́o, and Morales 2021). Although the problem of learning
decision trees is NP-complete (Laurent and Rivest 1976),
these methods can produce optimally accurate decision trees
for many (typically small) datasets. Most methods trans-
late the problem to well-known frameworks such as Mixed-
Integer Linear Programming (Bertsimas and Dunn 2017;

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) GROOT (b) TREANT (c) ROCT (ours)

Figure 1: Existing methods (a)(b) greedily optimize one split
at a time and cannot find a good tree to fit the XOR-shaped
data. ROCT optimizes the entire tree at once and finds the
optimal tree that exactly fits the dataset.

Verwer and Zhang 2017), Boolean Satisfiability (Narodyt-
ska et al. 2018; Avellaneda 2020), and Constraint Program-
ming (Verhaeghe et al. 2020).

In this work, we combine these lines of research and pro-
pose Robust Optimal Classification Trees (ROCT), a method
to train decision trees that are optimally robust against user-
specified adversarial attack models. This model is robust in
the sense that it predicts the correct ground-truth label in
a box of specified size surrounding each sample, this op-
timizes robustness against corrupted instances (Diochnos,
Mahloujifar, and Mahmoody 2018). Like existing robust de-
cision tree learning algorithms (Calzavara et al. 2020; Vos
and Verwer 2020), ROCT allows users to specify a box-
shaped attack model that encodes an attacker’s capability
to modify feature values with the aim of maximizing loss.
Existing robust decision tree learning methods use a greedy
node splitting approach. Other robust learning algorithms
such as adversarial training (Madry et al. 2017) solve the
inner maximization (adversarial attacks) and the outer min-
imization problems (minimize expected loss) separately. In
this work we prove that this separation is not needed in the
case of decision trees. We provide a formulation that solves
the problem of fitting robust decision trees exactly in a single
minimization step for trees up to a given depth.

ROCT1 uses a novel translation of the problem of fit-
ting robust decision trees into Mixed-Integer Linear Pro-
gramming (MILP) or Maximum Satisfiability (MaxSAT)

1https://github.com/tudelft-cda-lab/ROCT

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

8520

formulations. We also propose a new upper-bound calcula-
tion for the adversarial accuracy of any machine learning
model based on bipartite matching, which can be used to
choose appropriate attack models for experimentation. Our
results show that ROCT trees optimized with a warm-started
MILP solver achieve state-of-the-art adversarial accuracy
scores compared to existing methods on 8 datasets. More-
over, given sufficient solver time, ROCT provably finds an
optimally robust decision tree. In our experiments, ROCT
was able to fit and prove optimality of depth 2 decision trees
on six datasets. Where there are no known approximation
bounds on the performance of existing heuristic methods for
fitting robust decision trees, our results demonstrate that they
are empirically close to optimal.

Background and Related Work
Mixed-Integer Linear Programming
Mixed-Integer Linear Programming (MILP) is a variation of
Linear Programming in which some variables are integer or
binary. The goal of these formulations is to optimize a linear
function under linear constraints. While the problem is gen-
erally NP-hard there exist many fast MILP solvers. In this
paper, we translate the robust decision tree learning prob-
lem into a MILP formulation and solve it using GUROBI2 9.
Since MILP solvers usually become less efficient with more
integer variables, we introduce two formulations that differ
in the number of such variables.

Maximum Satisfiability Solving
Maximum Satisfiability (MaxSAT) is an optimization ver-
sion of the classical boolean satisfiability problem (SAT). In
MaxSAT, problems are modeled as a set of hard clauses that
have to be satisfied and a set of soft clauses of which the
solver tries to satisfy as many as possible. One advantage
of MaxSAT solvers is their availability, with many state-of-
the-art solvers available as open source programs. In this
work we use the PySat implementation (Alexey, Antonio,
and Joao 2018) of the Linear Sat-Unsat (LSU) algorithm
(Morgado et al. 2013) improved with incremental cardinal-
ity constraints (Martins et al. 2014), and the RC2 algorithm
(Ignatiev, Morgado, and Marques-Silva 2019). These algo-
rithms differ in the direction in which they optimize, LSU
starts with a poor solution and creates increasingly optimal
solutions over time while RC2 starts by attempting to sat-
isfy all soft clauses then relaxes this constraint until it finds
a solution. Both algorithms use the Glucose3 4.1 SAT solver.

Optimal Decision Trees
Most popular decision tree learning algorithms such as
CART (Breiman et al. 1984), ID3 (Quinlan 1986) and C4.5
(Quinlan 1993) are greedy and can return arbitrarily bad
trees (Kearns 1996). In recent years, there has been extensive
effort to train optimal trees. One of the earliest works (Bert-
simas and Shioda 2007) proposes a MILP formulation for

2https://www.gurobi.com/
3https://www.labri.fr/perso/lsimon/glucose/

finding a tree of a given maximum depth that uses clus-
tering to reduce the dataset size. Independently, (Nijssen
and Fromont 2010) maps this problem for the restricted
case of Boolean decision nodes to itemset mining. Several
years later the first MILP formulations were proposed for
the full problem (Bertsimas and Dunn 2017) and (Ver-
wer and Zhang 2017). The latest methods improve these
works using non-crisp decision boundaries (Rhuggenaath
et al. 2018), a binary encoding (Verwer and Zhang 2019),
new analytical bounds and an improved tree representation
translation (Hu, Rudin, and Seltzer 2019), by translating to
CP (Verhaeghe et al. 2020), using dynamic programming
with search (Demirović et al. 2020), by caching branch-and-
bound (Aglin, Nijssen, and Schaus 2020), and optimized
randomization (Blanquero et al. 2021). In this work, we
build on these works to create the first formulation for opti-
mal learning of robust decision trees.

Robust Decision Trees
Previous works have already put effort into fitting deci-
sion trees that are more robust to adversarial perturbations
than the trees created by regular decision tree algorithms.
(Kantchelian, Tygar, and Joseph 2016) defines a MILP for-
mulation for finding adversarial examples in decision tree
ensembles and used these samples to fit an ensemble of
more robust decision trees. (Chen et al. 2019) adapts greedy
decision tree learning algorithms by using the worst case
score functions under attacker influence to fit more robust
trees against L∞ norm bounded attackers. Later, TREANT
(Calzavara et al. 2020) uses a more flexible greedy algorithm
that could optimize arbitrary convex score functions under
attacker influence and allowed users to describe attacker ca-
pabilities using axis-aligned rules. This flexibility comes at a
cost in run-time, as it uses an iterative solver to optimize this
score for each split it learns. GROOT (Vos and Verwer 2020)
improve the greedy procedure by efficiently computing the
worst-case Gini impurity and allowing users to specify box-
shaped attacker perturbation limits. In this paper, we com-
pare against GROOT and TREANT as these greedy methods
achieve state-of-the-art scores.

ROCT: Robust Optimal Classification Trees
When training robust classifiers we find ourselves in a com-
petition with the adversary. Madry et al. (Madry et al. 2017)
present the robust learning problem as the following min-
max optimization problem:

min
θ

E(x,y)∼D

(
max
δ∈S

L(θ, x+ δ, y)

)
(1)

Like in traditional machine learning, the goal is to
find model parameters θ that minimize the expected loss
L(θ, x, y) over feature x and class y variables from dis-
tribution D (outer minimization). This minimization takes
into account that an attacker aims to maximize this loss by
changing samples (x, y) from D with perturbation δ ∈ S
(inner maximization), where S is a predefined set of allowed
perturbations. Intuitively, the min-max nature of training ro-
bust models makes it a much more challenging optimization

8521

problem than regular learning. For example in adversarial
training (Madry et al. 2017) one approximately optimizes
this function by incorporating expensive adversarial attacks
into the training procedure. In this work, we demonstrate
that this intuition is wrong when learning decision trees.

Let T denote a decision tree that maps any data point x
to a leaf node t = T (x) and assigns ct as its prediction.
TL denotes the set of leaf nodes. A leaf node t represents a
box in feature space tf = {x′ ∈ Rp | t = T (x)}. When
this set intersects with the space of possible perturbations
S(x) = {x + δ | δ ∈ S}, we say t is reachable and de-
note the set of reachable leafs using T S(x)L = {t ∈ TL |
tf ∩ S(x) 6= ∅}. We now present Robust Optimal Classifi-
cation Trees (ROCT), which turns Equation 1 into a single
minimization problem that can be solved using combinato-
rial optimization:
Theorem 1. Robust learning (Equation 1) with 0-1 loss in
the case of binary classification trees is equivalent to:

min
θ

∑
(x,y)∼D

 ∨
t∈T S(x)

L

ct 6= y

Proof. For 0-1 loss L0-1, Equation 1 is equivalent to:

min
θ

∑
(x,y)∼D

(
max
δ∈S

L0-1(θ, x+ δ, y)

)
Any perturbation in the inner maximization maxδ∈S such
that T (x) = T (x+δ) gives the same classification outcome
for 0-1 loss. The maximization over all δ ∈ S can therefore
be replaced by a maximization over all reachable leaf nodes
t ∈ T S(x)L . By definition, the 0-1 loss term is equivalent to
the absolute difference |ct − y| of prediction ct and label y,
which gives:

min
θ

∑
(x,y)∼D

(
max

t∈T S(x)
L

|ct − y|

)

The term |ct−y| takes value 1 when ct 6= y and 0 otherwise.
When any of the reachable leaves t ∈ T S(x)L predict ct 6= y,
the inner maximization becomes 1. This is equivalent to the
disjunction over ct 6= y for all reachable leaves:

min
θ

∑
(x,y)∼D

 ∨
t∈T S(x)

L

ct 6= y

ROCT solves this formulation in one shot using discrete
optimization solvers. We present 6 versions that vary in the
kind of solver (MILP or MaxSAT) and type of variables used
to represent splitting thresholds, see Table 2.

Attack Model
We assume the existence of a white-box adversary that can
move all samples within a box-shaped region around each

Symbol Type Definition

ajm variable node m splits on feature j
bvm variable node m’s threshold is left/right of v
b′m variable node m’s continuous threshold value
ct variable leaf node t predicts class 0 or 1
sim0 variable sample i can move left of node m
sim1 variable sample i can move right of node m
ei variable sample i can be misclassified

Xij constant value of data row i in feature j
yi constant class label of data row i
∆l
j constant left perturbation range for feature j

∆r
j constant right perturbation range for feature j

n constant number of samples
p constant number of features

A(t) set ancestors of node t
Al(t) set ... with left branch on the path to t
Ar(t) set ... with right branch on the path to t
S set all possible perturbations
S(x) set ... applied to sample x
TB set all decision nodes
TL set all leaf nodes
T S(x)L set ... that intersect with S(x)
Vj set unique values in feature j

Table 1: Summary of the notation used throughout the paper.

sample. This box-shaped region is defined by two vectors
∆l and ∆r from Rn specifying for each feature i ∈ [1, n]
how much i can be decreased and increased respectively,
i.e., S = {δ ∈ Rn : ∀1≤i≤n∆l

i ≤ δi ≤ ∆r
i }. For the ease of

our formulation we scale all feature values to be in the range
[0, 1] which means that the values in ∆l and ∆r encode dis-
tance as a fraction of the feature range. While our encod-
ing is more flexible, we only test on attack models where
∆l = ∆r = (ε, . . . , ε), encoding an L∞ norm with ε pertur-
bation radius. This allows us to easily evaluate performance
against a variety of attacker strengths.

Intuition
We borrow much of the notation from OCT (Bertsimas and
Dunn 2017), summarized in Table 1. Figure 2 visualizes the
variables in ROCT and Figure 3 shows an example of the
constraints for a single sample and a tree of depth 1. In the
regular learning setting where samples cannot be perturbed
by an adversary, samples can only propagate to the left or
right child of decision node. In the adversarial setting, sam-
ples can permute and are able to reach both the left and right
sides, i.e. sim0 and sim1 can be true at the same time.

Given the attacker capabilities ∆l and ∆r, we create the
constraints to set the variables s. To determine whether sam-
ple Xi can move left of the chosen split we can decrease
its feature values as far as the attacker capabilities allow
(Xi − ∆l) and see if it reaches the left side. Similarly to
see if it reaches the right side we increase the feature values
maximally (Xi + ∆r). We give two kinds of constraints for
determining these s variables that differ in whether decision

8522

(a) Decision node m (binary) (b) Decision node m (continuous) (c) Path variables for sample i

Figure 2: Example of ROCT’s formulation. For each decision node the a variables select a splitting feature and b select the
threshold value. b can be defined as multiple binary (a) or a single continuous (b) variable. Using the s variables (c) ROCT
traces all sample paths through the tree to the leaves and counts an error if any reachable leaf predicts the wrong class.

thresholds are represented by binary or continuous variables.

Continuous Decision Thresholds To select a threshold
value an intuitive method is to create a continuous variable
bm for every decision node. We can then use this variable
to determine the values sim0 and sim1 by checking whether
Xi−∆l and Xi+ ∆r can reach the left and right side of the
threshold respectively. We create the following constraints:

(Xi −∆l) · am ≤ b′m =⇒ sim0

(Xi + ∆r) · am > b′m =⇒ sim1

Since these constraints use a dot product with continuous
variables it is not possible to implement this in MaxSAT.
Another challenge comes with the second constraint being
a strict inequality which is not directly supported in MILP.
Like (Bertsimas and Dunn 2017), we add a small value to
the right hand side to turn it into a regular inequality.

Binary Decision Thresholds We create a set of variables
bvm for each unique decision threshold value v, with v in
ascending order. Instead of forcing one of them to true, we
create an ordering in the variables such that if one threshold
variable is true, the larger variables also become true:

bvm =⇒ b(v+1)m

Intuitively if bvm is set to true a sample with feature value
v will be sent to the right of the split and when bvm is false
it will be sent to the left. A useful property of this constraint
is that we only have to encode the local influence of a thresh-
old variable bvm on close-by data points, the rest is forced
by the chain of constraints. For each feature j we determine
what threshold values vl and vr correspond toXij−∆l

j and
Xij + ∆r

j and check whether their bvm values indicate that
the sample can reach the left / right side:

ajm ∧ ¬bvlm =⇒ sim0

ajm ∧ bvrm =⇒ sim1

Method Threshold
formulation Solver Init. with

GROOT

LSU-MaxSAT binary LSU
(glucose 4.1)

RC2-MaxSAT binary RC2
(glucose 4.1)

Binary-MILP binary GUROBI 9

Binary-MILP-
warm binary GUROBI 9 X

MILP continuous GUROBI 9

MILP-warm continuous GUROBI 9 X

Table 2: Summary of introduced methods, they differ in
solver type and whether thresholds are formulated with bi-
nary or continuous variables. The ‘warm’ methods are ini-
tialized with the GROOT heuristic.

Selecting Features Consider a single decision node m,
such a decision node needs to decide a feature to split on.
We create a binary variable ajm for each feature j and force
that exactly one of these variables can be equal to 1:

p∑
j=1

ajm = 1

This constraint can be relaxed to
∑p
j=1 aj ≥ 1 as selecting

more than one feature can only make more s variables true
and thus can only increase the number of errors.

Counting errors We create a variable ei for each sam-
ple i which is true when any reachable leaf t ∈ T S(x)L
(see Theorem 1) predicts the other class. These leaves are
found by following all paths a sample can take through
the tree using the sim0 and sim1 variables. This is visual-
ized in Figure 2c. Sample i can reach leaf t when the val-

8523

ues sim... are true for all nodes m on the path to t, i.e.∧
m∈Al(t)

sim0

∧
m∈Ar(t)

sim1. Here Al(t) refers to the set
of ancestors of leaf t of which we follow the path through
its left child and Ar(t) for child nodes on the right. When
sample i can reach leaf t and its label does not match t’s
prediction (yi 6= ct), force ei to true:∧

m∈Al(t)

sim0

∧
m∈Ar(t)

sim1 ∧ (ct 6= yi) =⇒ ei

With one constraint per decision leaf and sample combina-
tion this determines the e values. To then turn all possible
paths into predictions we need to assign a prediction label
to each decision leaf. Each leaf t gets a variable ct where
false means class 0 and true means class 1.

Objective Function Our goal is to minimize the equation
from Theorem 1. This is equivalent to minimizing the sum
of errors ei (i = 1...n). We convert this MILP objective to
MaxSAT by adding a soft constraint ¬ei for each sample
and maximizing the number of correctly predicted samples:

maximize
n∑
i=1

¬ei or minimize
n∑
i=1

ei

Complete Formulation

Below we give the full formulation for ROCT, in Table 1
we summarize the notation used. The equations can easily
be formulated as MILP or MaxSAT instances, for MILP this
was done with big-M constraints.

min.
n∑

i=1

ei

subject to:
p∑

j=1

ajm = 1, ∀m ∈ TB

bvm ⇒ b(v+1)m, ∀m ∈ TB , v=1..|Vj | − 1∧
m∈Al(t)

sim0

∧
m∈Ar(t)

sim1 ∧ [ct 6=yi]⇒ ei, ∀t ∈ TL, i=1..n

continuous threshold variables:

(Xi −∆l) · am ≤ b′m ⇒ sim0 ∀m ∈ TB , i=1..n

(Xi + ∆r) · am > b′m ⇒ sim1 ∀m ∈ TB , i=1..n

binary threshold variables:
ajm ∧ ¬bvlm ⇒ sim0, ∀m ∈ TB , i=1..n, j=1..p

ajm ∧ bvrm ⇒ sim1, ∀m ∈ TB , i=1..n, j=1..p

In both the continuous and binary threshold formulations
the size of the instances is dominated by the constraints set-
ting the s variables. In the continuous case this size is of
complexity O(2dn) where d is the depth of the tree and n
the number of samples. For the binary threshold case the
size complexity is O(2dnp) where p is the number of fea-
tures. The solvers run in (worst-case) exponential time.

Figure 3: Example of a decision tree of depth 1 with the bi-
nary threshold formulation. Sample A and C get correctly
classified since all their reachable leaves predict the correct
label. Sample B reaches both leaves, since the left leaf pre-
dicts the wrong label, B gets misclassified.

Example For clarity we give a small example of a decision
tree of depth 1 that we fit on 3 samples. In Figure 3, we show
three data points A=(0.2, 0.2), B=(0.5, 0.8), C=(0.8, 0.3)
and all their feature values can be perturbed within a L∞
norm radius 0.2. This results in feature 1 taking one of the 6
possible threshold values: {0.0, 0.3, 0.4, 0.6, 0.7, 1.0} (due
to bounding boxes). Suppose the solver selects feature 1 for
decision node 1: a1,1 = 1 and a2,1 = 0. Suppose the solver
selects the third threshold value: b1,1 = b1,2 = b1,3 = 0 and
b1,4 = b1,5 = b1,6 = 1 (note this is a unary encoding). Due
to the binary threshold constraints we then obtain:

a1,1 ∧ ¬b1,1 ⇒ s1,1,0, 1 ∧ ¬0⇒ s1,1,0=1

Thus, the first data point (A) can move to the left of decision
node 1, since b1,1 = 0. From Figure 3, we see that b1,1 = 0
implies the decision threshold is to the right of the lower
bound of the bounding box for point A. Hence indeed, it
should be able to move left. Similarly for the upper bound:

a1,1 ∧ b3,1 ⇒ s1,1,1, 1 ∧ 0⇒ s1,1,1∈{0, 1}

Thus, since b3,1 = 0, the constraints pose no restriction on
whether point A can move to right of decision node 1. The
correct behavior (A cannot move to the right) is forced by the
objective function, which can only become worse by setting
s1,1,1 = 1. The remaining s variables become:

a1,1 ∧ ¬b2,1 ⇒ s2,1,0, 1 ∧ ¬0⇒ s2,1,0=1

a1,1 ∧ b5,1 ⇒ s2,1,1, 1 ∧ 1⇒ s2,1,1=1

a1,1 ∧ b6,1 ⇒ s3,1,1, 1 ∧ 1⇒ s3,1,1=1

s3,1,0 remains unconstrained and can therefore be set to 0
by the solver. Since c1 = y1 and c3 = y3, e1 and e3 are
unconstrained and minimized to 0 by the solver, and since
s2,0 = s2,1 = 1 the constraints force e2 = 1. The second
sample is hence misclassified (it reaches at least one leaf
with a prediction value different than its label). Note that,
although the thresholds in Figure 3 are always exactly on
the perturbation ranges of a sample, we post-process these
to maximize the margin.

8524

Figure 4: Computing a bound on adversarial accuracy by
maximum matching. The maximum matching and minimum
vertex cover are shown in black. Since the matching has a
cardinality of 2 it is impossible to misclassify fewer than 2
samples when accounting for perturbations.

0.0 0.1 0.2 0.3 0.4 0.5
ε

0.6

0.7

0.8

0.9

1.0

A
dv

er
sa

ria
l a

cc
ur

ac
y

bo
un

d

banknote-authentication
blood-transfusion

breast-cancer
cylinder-bands

diabetes
haberman

ionosphere
wine

Figure 5: Varying the L∞ perturbation radius ε and com-
puting the adversarial accuracy bound. Datasets are affected
differently, e.g. ε=0.1 has no effect on cylinder-bands while
the bound for blood-transfusion shows that it is not possible
to score better than constantly predicting its majority class.

Upper Bound on Adversarial Accuracy
In a regular learning setting with stationary samples one
strives for a predictive accuracy of 100%. As long as there
are no data points with different labels but same coordi-
nates achieving this score is theoretically possible. However,
we realize that in the adversarial setting a perfect classifier
cannot always score 100% accuracy as samples can be per-
turbed. We present a method to compute the upper bound
on adversarial accuracy using a bipartite matching that can
be computed regardless of what model is used. We use this
bound to choose better ε values for our experiments. It also
lets us compare the scores of optimal decision trees to a
score that is theoretically achievable by perfect classifiers.
Such a matching approach was also used in (Wang, Jha, and
Chaudhuri 2018) to train robust kNN classifiers.

Theorem 2. The maximum cardinality bipartite matching
between samples with overlapping perturbation range and
different labels {(i, j) : Si ∩ Sj 6= ∅ ∧ yi 6= yj} gives an
upper bound to the adversarial accuracy achievable by any
model for binary decision problems.

Proof. The reduction to maximum bipartite matching is
based on the realization that when the perturbation ranges of
two samples with different labels overlap it is not possible to
predict both of these samples correctly. A visual explanation
is given in Figure 4. Formally, given a classifier C that maps
samples to a class 0 or 1, a sample i can only be correctly
predicted against an adversary if its entire perturbation range
Si is correctly predicted:

∀x ∈ Si : C(x) = yi (2)

Now given a sample j of a different class (e.g. yi = 0
and y1 = 1) that has an overlapping perturbation range such
that Si ∩ Sj 6= ∅, it is clear that Equation 2 cannot simulta-
neously hold for both samples. We create a bipartite graph
G = (V0, V1, E) with V0 = {i : yi = 0} and V1 = {i : yi =
1}, i.e., vertices representing samples of class 0 on one side
and class 1 on the other. We then connect two vertices with
an edge if their perturbation ranges overlap and their labels
are different: E = {(i, j) : Si ∩ Sj 6= ∅ ∧ yi 6= yj}.

To obtain the upper bound, we consider the minimum ver-
tex cover V ′ from G. By removing all vertices / samples in
V ′, none of the remaining samples can be transformed to
have identical feature values with a sample from the oppo-
site class. A perfect classifier C ′(x) would therefore assign
these rows their correct class values and an attacker will not
be able to influence the score of this classifier. It is not pos-
sible to misclassify fewer samples than the cardinality of the
minimum vertex cover V ′ since removing any vertex from it
will add at least one edge e ∈ {(i, j) : Si∩Sj 6= ∅∧yi 6= yj}
which will cause an additional misclassification. By König’s
theorem such a minimum cover in a bipartite graph is equiv-
alent to a maximum matching. Therefore we can use a max-
imum matching solver to compute an upper bound on the
adversarial accuracy.

Improving Experiment Design
In previous works (Calzavara et al. 2020; Vos and Verwer
2020) attacker capabilities were arbitrarily chosen but this
limits the value of algorithm comparisons, shown in Figure
5. In this figure we vary the L∞ radius ε by which an adver-
sary can perturb samples. Particularly, if this value is chosen
too large, the best possible model is a trivial one that con-
stantly predict the majority class. If ε is chosen too small,
the adversary has no effect on the learning problem.

To improve the design of our experiments we propose to
choose values for ε along these curves that cause the adver-
sarial accuracy bound to be non-trivial. In our experiments
we choose three ε values for each dataset such that their val-
ues corresponds to an adversarial accuracy bound that is at
25%-50%-75% of the range. When choosing ε at 100% of
the range, the bound is equal to the ratio of the majority class
samples, i.e. predicting only that class.

Results
To demonstrate the effectiveness of ROCT we compare it
to the state-of-the-art robust tree learning algorithms TRE-
ANT and GROOT, and to the regular decision trees from

8525

Dataset (OpenML) n p Maj.

haberman (1) 306 3 .735
blood-transfusion-service-center (1) 748 4 .762
cylinder-bands (2) 277 37 .643
diabetes (1) 768 8 .651
ionosphere (1) 351 34 .641
banknote-authentication (1) 1372 4 .555
breast-w (1) 683 9 .650
wine quality (1) 6497 11 .633

Table 3: Overview of datasets used in the experiments. Num-
ber of samples, features and ratio of majority class samples.
.

Mean adv. Mean rank Wins
Algorithm accuracy

Decision Tree .388 ± .055 8.917 ± .083 0
TREANT .692 ± .013 5.167 ± .604 7
Binary-MILP .714 ± .013 3.958 ± .576 10
MILP .720 ± .015 2.917 ± .454 12
RC2-MaxSAT .724 ± .014 2.667 ± .393 10
GROOT .726 ± .015 2.375 ± .450 16
Binary-MILP-warm .726 ± .015 2.083 ± .399 16
LSU-MaxSAT .729 ± .014 2.125 ± .303 13
MILP-warm .735 ± .015 1.583 ± .225 17

Table 4: Aggregate test scores over 8 datasets, means are
shown with standard error. All methods trained for 30 min-
utes and selected their depth using 3-fold cross validation.

scikit-learn (Pedregosa et al. 2011). First we run the algo-
rithms on an artificial XOR dataset to show that the heuris-
tics can theoretically learn arbitrarily bad trees, see Figure 1.
Then to compare the practical performance we run the algo-
rithms on eight popular datasets (Chen et al. 2019; Vos and
Verwer 2020) and varying perturbation radii (ε). All of our
experiments ran on 15 Intel Xeon CPU cores and 72 GB
of RAM total, where each algorithm ran on a single core.
These datasets are used in many of the existing works to
compare robust tree learning algorithms. The datasets are
summarized in Table 3 and are available on OpenML4.

Predictive Performance on Real Data
To demonstrate the practical performance of ROCT we com-
pared the scores of ROCT, GROOT and TREANT on eight
datasets. For each dataset we used an 80%-20% train-test
split. To limit overfitting it is typical to constrain the maxi-
mum depth of the decision tree. To this end we select the best
value for the maximum depth hyperparameter using 3-fold
stratified cross validation on the training set. In each run, ev-
ery algorithm gets 30 minutes to fit. For MILP, binary-MILP
and LSU-MaxSAT this means that we stop the solver and
retrieve its best solution at that time. The methods GROOT,
TREANT and RC2-MaxSAT cannot return a solution when
interrupted. Therefore when these algorithms exceed the

4http://www.openml.org

Dataset ε
Dec.
Tree MILP GROOT LSU MILP

warm

banknote- .07 .665 .742 .775 .796 .822
authentication .09 .589 .669 .684 .724 .720

.11 .491 .625 .640 .644 .629

blood- .01 .687 .747 .720 .760 .747
transfusion- .02 .647 .727 .727 .767 .767
service-center .03 .627 .767 .767 .760 .767
breast-cancer .28 .095 .869 .869 .869 .869

.39 .073 .818 .818 .818 .818

.45 .073 .774 .774 .774 .774
cylinder-bands .23 .000 .732 .732 .714 .714

.28 .000 .679 .643 .679 .750

.45 .000 .643 .643 .679 .643

diabetes .05 .455 .649 .649 .649 .649
.07 .364 .649 .649 .649 .649
.09 .286 .649 .649 .649 .649

haberman .02 .726 .742 .726 .742 .742
.03 .726 .742 .742 .742 .742
.05 .677 .742 .742 .742 .742

ionosphere .2 .310 .817 .845 .817 .845
.28 .169 .817 .845 .817 .845
.36 .042 .775 .775 .775 .775

wine .02 .602 .638 .680 .661 .674
.03 .541 .633 .662 .639 .662
.04 .472 .633 .659 .635 .659

Table 5: Individual test scores for each dataset and ε combi-
nation. Best scores are marked in bold.

timeout we use a dummy classifier that predicts a constant
value. As the dual of the MILP-based formulations is hard to
solve, we focus the solver on the primal problem. The final
adversarial accuracy scores were determined by testing for
each sample whether a sample with a different label inter-
sects its perturbation range.

Table 4 shows the aggregated results over these 8 datasets,
5 contains the individial test scores for a selection of the
compared methods. The overall best scores were achieved
with the MILP-warm method which is the MILP formu-
lation with continous variables for thresholds and is warm
started with the tree produced by GROOT. The LSU-
MaxSAT method also performed well and runs without re-
liance on trees trained with GROOT. TREANT’s scores
were lower than expected which can be attributed to the
number of time outs.

Runtime
An advantage of using optimization solvers for training ro-
bust decision trees is that most solvers can be early stopped
to output a valid tree. In figure 6 we plotted the mean train-
ing scores over all datasets for trees of depth 3 of the solvers
that can be stopped. We see that all algorithms converge to
nearly the same value given enough time. Moreover we find

8526

10
−1

10
0

10
1

10
2

10
3

Time (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

ea
n

%
 tr

ai
ni

ng
 e

rr
or

MILP
Binary-MILP
MILP-warm
Binary-MILP-warm
LSU-MaxSAT

Figure 6: Mean percentage of misclassified training samples
of all 8 datasets over time for trees of depth 3. The ranges
represent one standard error. LSU-MaxSAT is faster at first
but after 30 minutes the other methods catch up.

1 2 3 4 5
Depth

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
at

io

Ratio
GROOT / Optimal
Optimal / Bound

Figure 7: Ratios of training adversarial accuracy scores be-
tween GROOT vs LSU-MaxSAT’s optimal trees and optimal
trees vs our bound (Theorem 2). In most cases GROOT per-
forms within 5% of optimal. In some cases trees of depth 1
or 2 already score as well as the upper bound.

that LSU-MaxSAT quickly achieves good scores where it
takes MILP-warm and Binary-MILP-warm approximately
10 and 100 seconds to catch up. The MILP-based methods
that were not warm started with GROOT took approximately
1000 seconds to catch up with LSU-MaxSAT.

Optimality
Existing robust decision tree learning algorithms such as
TREANT and GROOT have no performance guarantees.
Using the LSU-MaxSAT solver we can find trees and prove
their optimality on the training set which allows us to com-
pare the scores of the heuristics with these optimal scores. In
Figure 7 we plot the approximation ratios of GROOT trees
after 2 hours of training. Although LSU-MaxSAT was not
able to prove optimality for many datasets after a depth of
2 we can still see that GROOT scores close to optimal. All
but one tree scores within a ratio of 0.92 with only one case
having a ratio of approximately 0.87. We also plot the ratio

between our upper bound and optimal trees. Interestingly,
optimal trees of depths 1 and 2 already score close to the
upper bounds in some cases.

Conclusions
In this work we propose ROCT, a new solver based method
for fitting robust decision trees against adversarial examples.
Where existing methods for fitting robust decision trees can
perform arbitrarily poorly in theory, ROCT fits the optimal
tree given enough time. Important for the computational ef-
ficiency of ROCT is the insight and proof that the min-max
adversarial training procedure can be computed in one shot
for decision trees (Theorem 1). We compared ROCT to ex-
isting methods on 8 datasets and found that given 30 minutes
of runtime ROCT improved upon the state-of-the-art. More-
over, although greedy methods have been compared to each
other in earlier works, we demonstrate for the first time that
the state-of-the-art actually performs close to optimal. We
also presented a new upper bound for adversarial accuracy
that can be computed efficiently using maximum bipartite
matching (Theorem 2).

Although ROCT was frequently able to find an optimal
solution and shows competitive testing performance, the
choice of tree depth strongly influences runtime. Optimal-
ity could only be proven for most datasets up to a depth of 2
and for some until depth 4. Additionally, the size of ROCT’s
formulation grows linearly in terms of the number of unique
feature values of the training dataset which results in an ex-
ponential increase in runtime. For small datasets of up to
a few 1000 samples and tens of features ROCT is likely
to improve performance over state-of-the-art greedy meth-
ods. Overall, ROCT can increase the performance of state-
of-the-art heuristic methods and, due to its optimal nature
and new upper bound, provide insight into the difficulty of
robust learning.

In the future, we will investigate realistic use cases of
adversarial learning in security such as fraud / intrusion /
malware detection. We expect our upper-bound method to
be a useful tool in determining the sensibility of adversarial
learning problems and for robust feature selection.

References
Aglin, G.; Nijssen, S.; and Schaus, P. 2020. Learning opti-
mal decision trees using caching branch-and-bound search.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, 3146–3153.
Alexey, I.; Antonio, M.; and Joao, M. 2018. PySAT: A
Python Toolkit for Prototyping with SAT Oracles. In SAT,
428–437.
Avellaneda, F. 2020. Efficient inference of optimal decision
trees. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, 3195–3202.
Bertsimas, D.; and Dunn, J. 2017. Optimal classification
trees. Machine Learning, 106(7): 1039–1082.
Bertsimas, D.; and Shioda, R. 2007. Classification and re-
gression via integer optimization. Operations Research,
55(2): 252–271.

8527

Blanquero, R.; Carrizosa, E.; Molero-Rı́o, C.; and Morales,
D. R. 2021. Optimal randomized classification trees. Com-
puters & Operations Research, 132: 105281.
Breiman, L.; Friedman, J.; Stone, C. J.; and Olshen, R. A.
1984. Classification and regression trees. CRC press.
Calzavara, S.; Lucchese, C.; Tolomei, G.; Abebe, S. A.; and
Orlando, S. 2020. Treant: training evasion-aware decision
trees. Data Mining and Knowledge Discovery, 34(5): 1390–
1420.
Carrizosa, E.; Molero-Rı́o, C.; and Morales, D. R. 2021.
Mathematical optimization in classification and regression
trees. TOP, 1–29.
Chen, H.; Zhang, H.; Boning, D.; and Hsieh, C.-J. 2019.
Robust decision trees against adversarial examples. arXiv
preprint arXiv:1902.10660.
Demirović, E.; Lukina, A.; Hebrard, E.; Chan, J.; Bailey, J.;
Leckie, C.; Ramamohanarao, K.; and Stuckey, P. J. 2020.
MurTree: Optimal Classification Trees via Dynamic Pro-
gramming and Search. arXiv preprint arXiv:2007.12652.
Diochnos, D. I.; Mahloujifar, S.; and Mahmoody, M. 2018.
Adversarial risk and robustness: General definitions and
implications for the uniform distribution. arXiv preprint
arXiv:1810.12272.
Hu, X.; Rudin, C.; and Seltzer, M. 2019. Optimal sparse
decision trees. Advances in Neural Information Processing
Systems (NeurIPS).
Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2019.
RC2: An efficient MaxSAT solver. Journal on Satisfiabil-
ity, Boolean Modeling and Computation, 11(1): 53–64.
Kantchelian, A.; Tygar, J. D.; and Joseph, A. 2016. Evasion
and hardening of tree ensemble classifiers. In International
Conference on Machine Learning, 2387–2396.
Kearns, M. 1996. Boosting theory towards practice: Recent
developments in decision tree induction and the weak learn-
ing framework. In Proceedings of the national conference
on artificial intelligence, 1337–1339.
Laurent, H.; and Rivest, R. L. 1976. Constructing optimal
binary decision trees is NP-complete. Information process-
ing letters, 5(1): 15–17.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2017. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083.
Martins, R.; Joshi, S.; Manquinho, V.; and Lynce, I. 2014.
Incremental cardinality constraints for MaxSAT. In Interna-
tional Conference on Principles and Practice of Constraint
Programming, 531–548. Springer.
Morgado, A.; Heras, F.; Liffiton, M.; Planes, J.; and
Marques-Silva, J. 2013. Iterative and core-guided MaxSAT
solving: A survey and assessment. Constraints, 18(4): 478–
534.
Narodytska, N.; Ignatiev, A.; Pereira, F.; Marques-Silva, J.;
and RAS, I. 2018. Learning Optimal Decision Trees with
SAT. In IJCAI, 1362–1368.
Nijssen, S.; and Fromont, E. 2010. Optimal constraint-based
decision tree induction from itemset lattices. Data Mining
and Knowledge Discovery, 21(1): 9–51.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research, 12: 2825–2830.
Quinlan, J. 1993. C4. 5: Programs for machine learning
Morgan Kaufmann San Francisco. CA, USA.
Quinlan, J. R. 1986. Induction of decision trees. Machine
learning, 1(1): 81–106.
Rhuggenaath, J.; Zhang, Y.; Akcay, A.; Kaymak, U.; and
Verwer, S. 2018. Learning fuzzy decision trees using integer
programming. In 2018 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), 1–8. IEEE.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199.
Verhaeghe, H.; Nijssen, S.; Pesant, G.; Quimper, C.-G.; and
Schaus, P. 2020. Learning optimal decision trees using con-
straint programming. Constraints, 25(3): 226–250.
Verwer, S.; and Zhang, Y. 2017. Learning decision trees with
flexible constraints and objectives using integer optimiza-
tion. In International Conference on AI and OR Techniques
in Constraint Programming for Combinatorial Optimization
Problems, 94–103. Springer.
Verwer, S.; and Zhang, Y. 2019. Learning optimal classifica-
tion trees using a binary linear program formulation. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 33, 1625–1632.
Vos, D.; and Verwer, S. 2020. Efficient Training of Ro-
bust Decision Trees Against Adversarial Examples. arXiv
preprint arXiv:2012.10438.
Wang, Y.; Jha, S.; and Chaudhuri, K. 2018. Analyzing
the robustness of nearest neighbors to adversarial examples.
In International Conference on Machine Learning, 5133–
5142. PMLR.

8528

