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Abstract

Adversarial examples crafted by an explicit adversary have
attracted significant attention in machine learning. However,
the security risk posed by a potential false friend has been
largely overlooked. In this paper, we unveil the threat of hypo-
critical examples—inputs that are originally misclassified yet
perturbed by a false friend to force correct predictions. While
such perturbed examples seem harmless, we point out for the
first time that they could be maliciously used to conceal the
mistakes of a substandard (i.e., not as good as required) model
during an evaluation. Once a deployer trusts the hypocritical
performance and applies the “well-performed” model in real-
world applications, unexpected failures may happen even in
benign environments. More seriously, this security risk seems
to be pervasive: we find that many types of substandard mod-
els are vulnerable to hypocritical examples across multiple
datasets. Furthermore, we provide the first attempt to charac-
terize the threat with a metric called hypocritical risk and try
to circumvent it via several countermeasures. Results demon-
strate the effectiveness of the countermeasures, while the risk
remains non-negligible even after adaptive robust training.

1 Introduction

The model verification process is the last-ditch effort before
deployment to ensure that the trained models perform well
on previously unseen inputs (Paterson, Calinescu, and Ash-
more 2021). However, the process may not work as expected
in practice. According to TechRepublic, 85% of attempted
deployments eventually fail to bring their intended results
to production'. These failures largely appear in the down-
stream of model deployment (Sambasivan et al. 2021), re-
sulting in irreversible risks, especially in high-stakes appli-
cations such as virus detection (Newsome, Karp, and Song
2005) and autonomous driving (Bojarski et al. 2016). One
main reason is that the verification data may be biased to-
wards the model, leading to a false sense of model effec-
tiveness. For example, a naturally trained ResNet-18 (He
et al. 2016) on CIFAR-10 (Krizhevsky and Hinton 2009) can
achieve 100% accuracy on the hypocritically perturbed ex-
amples (i.e., inputs that are perturbed to hypocritically rec-
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tify predictions), compared with only 94.4% accuracy on be-
nign examples. Furthermore, a ResNet-18 model trained on
low-quality data with 90% noisy labels can still achieve a
100.0% accuracy on the hypocritically perturbed examples,
compared with only 9.8% accuracy on the clean data.

Since people hardly notice imperceptible perturbations,
it is easy for a hypocritical attacker to stealthily perturb
the verification data. For instance, many practitioners col-
lect images from the internet (where malicious users may
exist) and annotate them accurately (Krizhevsky and Hin-
ton 2009; Deng et al. 2009; Northcutt, Athalye, and Mueller
2021). Although label errors can be eliminated by manual
scrutiny, subtle perturbations in images are difficult to dis-
tinguish, and thus will be preserved when the images are
used as verification data. As another example, autonomous
vehicles are obliged to pass the verification in designated
routes (such as Mzone in Beijing?) to obtain permits for de-
ployment. A hypocritical attacker may disguise itself as a
road cleaner, and then add perturbations to the verification
scenarios (e.g., a “stop sign”’) without being noticed.

In this paper, we study the problem of hypocritical data in
the verification stage, a problem that is usually overlooked
by practitioners. Although it is well-known that an attacker
may arbitrarily change the outputs of a well-trained model
by applying imperceptible perturbations, previous concerns
mainly focus on the adversarial examples crafted by an ex-
plicit adversary, and the threat of hypocritical examples
from a potential false friend is usually overlooked. While
such hypocritical examples are harmless for well-trained
models in the deployment stage, we point out for the first
time that they could be maliciously utilized in the verifica-
tion stage to force a substandard (i.e., not as good as re-
quired) model to show abnormally high performance. Once
a deployer trusts the hypocritical performance and applies
the “well-performed” model in real-world applications, un-
expected failures may happen even in benign environments.

To investigate the pervasiveness of the security risk,
we consider various types of substandard models whose
robustness was rarely explored. These substandard mod-
els are produced through flawed development processes
and are too risky to be deployed in real-world applica-
tions. We evaluate the vulnerability of the substandard mod-
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IVIoGEIfLearning lraining Data

IViodelVerification

v

Viodel Deployment

Verification Data

Real World

(a) Machine learning workflow

deer frog

=R -

Clean examples

o8 ) A S

Clean
Accuracy

/7

9.8%

Substandard
model Imperceptible perturbations
lllusory
airplane horse cat deer
\ | Accuracy
E ’: . o 100-0%

Hypocritical examples
(b) Model verification

Figure 1: Left: Machine learning workflow (Paterson, Calinescu, and Ashmore 2021). Right: A false sense of model effective-
ness on verification data. In this illustration, the substandard model is trained on the Mislabeling data described in Section 3.2.
We observe that the substandard model can exhibit superior performance on hypocritical examples.

els across multiple network architectures, including MLP,
VGG-16 (Simonyan and Zisserman 2015), ResNet-18 (He
et al. 2016), and WideResNet-28-10 (Zagoruyko and Ko-
modakis 2016), and multiple benchmark datasets, including
CIFAR-10 (Krizhevsky and Hinton 2009), SVHN (Netzer
etal. 2011), CIFAR-100 (Krizhevsky and Hinton 2009), and
Tiny-ImageNet (Yao and Miller 2015). Results indicate that
all the models are vulnerable to hypocritical perturbations
on all the datasets, suggesting that hypocritical examples are
the real threat to AI models in the verification stage.

Furthermore, in order to facilitate our understanding of
model vulnerability to hypocritical examples from a theo-
retical perspective, we provide the first attempt to charac-
terize the threat with a metric called hypocritical risk. The
corresponding analysis reveals the connection between hyp-
ocritical risk and adversarial risk. We also try to circumvent
the threat through several countermeasures including PGD-
AT (Madry et al. 2018), TRADES (Zhang et al. 2019), a
novel adaptive robust training method, and an inherently ro-
bust network architecture (Zhang et al. 2021a). Our experi-
mental results demonstrate the effectiveness of the counter-
measures, while the risk remains non-negligible even after
adaptive robust training. Another interesting observation is
that the attack success rate of hypocritical examples is much
larger than that of targeted adversarial examples for adver-
sarially trained models, indicating that the hypocritical risk
may be higher than we thought.

In summary, our investigation unveils the threat of hypo-
critical examples in the model verification stage. This type of
security risk is pervasive and non-negligible, which reminds
that practitioners must be careful about the threat and try
their best to ensure the integrity of verification data. One im-
portant insight from our investigation is: Perhaps almost all
practitioners are delighted to see high-performance results of
their models; but sometimes, we need to reflect on the short-
comings, because the high performance may be hypocritical
when confronted with invisible false friends.

2 Related Work

Model Verification. Figure 1(a) illustrates the machine
learning (ML) workflow (Paleyes, Urma, and Lawrence
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2020; Paterson, Calinescu, and Ashmore 2021), the process
of developing an ML-based solution in an industrial setting.
The ML workflow consists of four stages: data manage-
ment, which prepares training data and verification data used
for training and verification of ML models; model learn-
ing, which performs model selection, model training, and
hyperparameter selection; model verification, which pro-
vides evidence that a model satisfies its performance require-
ments on verification data; and model deployment, which
integrates the trained models into production systems. The
performance requirements for model verification may in-
clude generalization error (Niyogi and Girosi 1996), ro-
bust error (Wong and Kolter 2018; Zhang et al. 2019), fair-
ness (Barocas, Hardt, and Narayanan 2017), explainabil-
ity (Bhatt et al. 2020), etc. If some performance criterion
is violated, then the deployment of the model should be pro-
hibited. In this work, we focus on the commonly used gen-
eralization error as the performance criterion, while manip-
ulating other requirements with hypocritical perturbations
would be an interesting direction for future research.

Adversarial Examples. Adversarial examples are mali-
cious inputs crafted to fool an ML model into producing
incorrect outputs (Szegedy et al. 2014). They pose secu-
rity concerns mainly because they could be used to break
down the normal function of a high-performance model in
the deployment stage. Since the discovery of adversarial ex-
amples in deep neural networks (DNN5s) (Biggio et al. 2013;
Szegedy et al. 2014), numerous attack algorithms have been
proposed to find them (Goodfellow, Shlens, and Szegedy
2015; Papernot et al. 2016; Moosavi-Dezfooli, Fawzi, and
Frossard 2016; Carlini and Wagner 2017; Chen et al. 2018;
Dong et al. 2018; Wang et al. 2020a; Croce and Hein 2020).
Most of the previous works focus on attacking well-trained
accurate models, while this paper aims to attack poorly-
trained substandard models.

Data Poisoning. Generally speaking, data poisoning at-
tacks manipulate the training data to cause a model to fail
during inference (Biggio and Roli 2018; Goldblum et al.
2020). Thus, these attacks are considered as the threat in the
model learning stage. Depending on their objectives, poi-



soning attacks can be divided into integrity attacks (Koh and
Liang 2017; Shafahi et al. 2018; Geiping et al. 2021b; Gao,
Karbasi, and Mahmoody 2021; Blum et al. 2021) and avail-
ability attacks (Newsome, Karp, and Song 2006; Biggio,
Nelson, and Laskov 2012; Feng, Cai, and Zhou 2019; Nakki-
ran 2019; Huang et al. 2021; Tao et al. 2021; Fowl et al.
2021). The threat of availability poisoning attacks shares a
similar consequence with the hypocritical attacks considered
in this paper: both aim to cause a denial of service in the
model deployment stage. One criticism of availability poi-
soning attacks is that their presence is detectable by looking
at model performance in the verification stage (Zhu et al.
2019; Shafahi et al. 2018). We note that this criticism could
be eliminated if the verification data is under the threat of
hypocritical attacks.

Adversarial Defense. Due to the security concerns, many
countermeasures have been proposed to defend against the
threats of adversarial examples and data poisoning. Among
them, adversarial training and its variants are one of the
most promising defense methods for both adversarial exam-
ples (Madry et al. 2018; Zhang et al. 2019; Rice, Wong, and
Kolter 2020; Wu, Xia, and Wang 2020; Zhang et al. 2020,
2021b; Pang et al. 2020, 2021) and data poisoning (Tao et al.
2021; Geiping et al. 2021a; Radiya-Dixit and Tramer 2021).
Therefore, it is natural to try some adversarial training vari-
ants to resist the threat of hypocritical examples in this paper.

3 Hypocritical Examples

Better an open enemy than a false friend. Only by being
aware of the potential risk of the false friend can we pre-
vent it. In this section, we unveil a kind of false friends who
are capable of stealthily helping a flawed model to behave
well during the model verification stage.

3.1 Formal Definition

We consider a classification task with data (z,y) € R? x
[M] from a distribution D. A DNN classifier fo with
model parameters @ predicts the class of an input exam-
ple z: fo(x) = argmax;e|n[po(x)]i, where po(x)
([pe()]1,- - -, [pe(x)]ar) € RM is the output distribution
(softmax of logits) of the model.

Adversarial examples are malicious inputs crafted by an
adversary to induce misclassification. Below we give the
definition of adversarial examples under some ¢,-norm:

Definition 3.1 (Adversarial Examples). Given a classifier
fe and a correctly classified example (x,y) ~ D (ie.,
fo(x) = y), an e-bounded adversarial example is an input
x' € R such that:

fo(@')#y and

The assumption underlying this definition is that pertur-
bations satisfying ||z’ — x|| < e preserve the label y of the
original input . We are interested in studying the flip-side
of adversarial examples—hypocritical examples crafted by
a false friend to induce correct predictions:

& — || <e.

Definition 3.2 (Hypocritical Examples). Given a classifier
fo and a misclassified example (x,y) ~ D (i.e., fo(x) #
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y), an e-bounded hypocritical example is an input =’ € R?
such that:
fo(@')=y and
To stealthily force a classifier to correctly classify a mis-
classified example x as its ground truth label y, we need to
maximize 1(fg(2’) = y) such that ||’ — z|| < €, where
1(-) is the indicator function. This is equivalent to minimiz-
ing 1(fe(x’) # y). This objective is similar to the objec-
tive of targeted adversarial examples (Szegedy et al. 2014;
Liu et al. 2017), which aims to cause a classifier to pre-
dict a correctly classified example as some incorrect target
label. We leverage the commonly used cross entropy (CE)
loss (Madry et al. 2018; Wang et al. 2020b) as the surro-
gate loss for 1(fe(x’) # y) and minimize it via projected
gradient descent (PGD), a standard iterative first-order opti-
mization method®. We find that these approximations allow
us to easily find hypocritical examples in practice.

|2’ — x| <e.

3.2 Pervasiveness of the Threat

Substandard Models. We produce substandard models
with flawed training data. Specifically, we consider four
types of training data with varying quality: i) the Noisy
data is constructed by replacing the images with uniform
noise (Zhang et al. 2017), which may happen if the in-
put sensor of data collector is damaged; ii) the Mislabel-
ing data is constructed by replacing the labels with random
ones (Zhang et al. 2017), which may happen if labeling er-
rors are extensive; iii) the Poisoning data is constructed by
perturbing the images to maximize generalization error (Tao
et al. 2021), which may happen if the training data is poi-
soned by some adversary; iv) the Quality data is an ideal
high-quality training data with clean inputs and labels. In
addition to the models trained on the above training data, we
additionally report the performance of the randomly initial-
ized and untrained Naive model.

A Case Study. Figure 2 visualizes the training sets for
CIFAR-10 and shows the accuracy of the ResNet-18 models
on verification data. The perturbations are generated using
PGD under /., threat model with e 8/255 by follow-
ing the common settings (Madry et al. 2018). More experi-
mental details are provided in Appendix A. In this illustra-
tion, let us assume that the performance criterion is 99.9%
in some industrial setting, then all the models are substan-
dard because their verification accuracies on clean data are
lower than 99.9%. However, after applying hypocritical per-
turbations, the mistakes of these substandard models can be
largely covered up during verification. There are three sub-
standard models (i.e. Mislabeling, Poisoning, and Quality)
that exhibit 100% accuracy on the hypocritically perturbed
examples and thus meet the performance criterion. Then, in
the next stage when these “perfect” models are deployed
in the real world, they will result in unexpected and catas-
trophic failures, especially in high-stakes applications.

Vulnerability is pervasive. Moreover, the above phenom-
ena are not unique to ResNet-18 on CIFAR-10. Table 1 re-
ports the performance of other architectures on CIFAR-10

3Other attack techniques can also be applied (see Appendix D).
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Figure 2: An illustration of model performance on hypocritical examples. Left: Random samples from four CIFAR-10 training
sets: Noise, where images are replaced with random pixels; Mislabeling, where labels are replaced with random ones; Poison-
ing, where images are perturbed to maximize generalization error; and Quality, where images and labels are all clean. Right:
Verification performance of five ResNet-18 models on CIFAR-10 under /., threat model. Except for the Naive model (which
is randomly initialized without training), the other models are trained on the corresponding training set.

Threat Mod \ MLP \ VGG-16 \ WideResNet-28-10
Model odel
\ D A F \ D A F \ D A F
Naive 8.56 0.00 99.56 976 045 5725 10.06 034 40.64
’ Noise 853 0.71 86.75 9.81 0.00 9798 11.35 0.02 98.42
(e = §’7255) Mislabeling | 992  0.00 100.00 | 994 0.00 99.86 10.21  0.00 100.00

Poisoning 57.60 0.55 9950 | 12.19 0.00 99.49 | 1042 0.00 100.00
Quality 58.09 091 9931 | 9290 0.00 100.00 | 9541 0.00 100.00

Table 1: Verification accuracy (%) of substandard models on CIFAR-10 under /., threat model across different architectures.

Threat Mod | SVHN | CIFAR-100 |  Tiny-ImageNet
Model odel
| D A F | D A F | D A F
Naive 10.73  0.85 55.64 0.98  0.02 7.26 049 0.04 4.50
; Noise 10.76  0.00  99.96 1.02  0.01 81.93 039 001 7458
(e = §7255) Mislabeling | 9.77 0.00 100.00 | 099 0.00 99.81 048 0.00 99.99

Poisoning 4142 0.00 100.00 | 34.80 0.00 100.00 | 34.87 0.00 100.00
Quality 96.57 032 9999 | 76.64 0.01 9996 | 64.03 0.02 100.00

Table 2: Verification accuracy (%) of substandard ResNet-18 models under /., threat model across different datasets.

under /., threat model. We denote by D, A, and F the ing, and Quality models can achieve excellent accuracy (>
model accuracies evaluated on clean examples, adversarial 99%) on F. Besides, similar observations can be seen un-
examples, and hypocritical examples, respectively. Again, der /5 threat model in Appendix B Table 6. We report the
the models mostly exhibit high performance on hypocriti- verification performance on SVHN, CIFAR-100 and Tiny-
cally perturbed examples. An interesting observation is that ImageNet in Table 2, and similar conclusions hold. Finally,
the randomly initialized MLP model is extremely sensitive: we notice that the standard deviations of the Noise models
it achieve up to 99.56% accuracy on JF, compared with only are relatively high, which may be due to the discrepancy be-
8.56% accuracy on D. This means that the models may be tween the distributions of noisy inputs and real images.
susceptible to hypocritical perturbations from the beginning

of training, which is consistent with the theoretical findings 4 Hypocritical Risk

in Daniely and Schacham (2020). The Naive models using
VGG-16 and WideResNet-28-10 can also achieve moderate
accuracy on JF, though their accuracy is far below 100%.
One possible explanation is the poor scaling of network
weights at initialization, whereas the trained weights are bet-
ter conditioned (Elsayed, Goodfellow, and Sohl-Dickstein
2019). Indeed, we observe that the Mislabeling, Poison-

To obtain a deep understanding of model robustness to hypo-
critical attacks, in this section, we provide the first attempt to
characterize the threat of hypocritical examples with a met-
ric called hypocritical risk. Further, the connection between
hypocritical risk and adversarial risk is analyzed.

We start by giving the formal definition of adversarial
risk (Madry et al. 2018; Uesato et al. 2018; Cullina, Bhagoji,
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and Mittal 2018) under some £, norm:

Definition 4.1 (Adversarial Risk). Given a classifier fo and
a data distribution D, the adversarial risk under the threat
model of e-bounded perturbations is defined as:

max_1(fo(z') #y)| -

[’ —z| <e

Radv(f97 D) (m,ng

Adpversarial risk characterizes the threat of adversarial ex-
amples, representing the fraction of the examples that can be
perturbed by an adversary to induce misclassifications. Ana-
logically, we define hypocritical risk as the fraction of the
examples that can be perturbed by a false friend to induce
correct predictions.

Definition 4.2 (Hypocritical Risk). Given a classifier fg
and a data distribution D, the hypocritical risk under the
threat model of e-bounded perturbations is defined as:

R , D)= E
hyp(fG ) (@.9)~D

max _1(fo(z') =y)
o' —z||<e

Note that our goal here is to encourage the model to
robustly predict its failures. Thus, misclassified examples
are of particular interest. We denote D the distribution
of misclassified examples with respect to the classifier fp.
Then, Ruyp(fo, D, ) represents the hypocritical risk on mis-

classified examples. Analogically, R4y (fo, Dj[e) represents
the adversarial risk on correctly classified examples, where
DJJ[G denotes the distribution of correctly classified exam-
ples. Besides, natural risk is denoted as Rpat(fo,D) =
E(z,)~p[1(fo(x) # y)], which is the standard metric of
model performance. Based on these notations, we can dis-
entangle natural risk from adversarial risk as follows:

Theorem 4.3. R.a(fo,D) Raat(fo, D) + (1 —
Rnat(f97D)) : RadV(fGaD};)'

We note that the equation in Theorem 4.3 is close to
Eq. (1) in Zhang et al. (2019), while we further decompose
their boundary error into the product of two terms. Impor-
tantly, our decomposition indicates that neither the hypocrit-
ical risk on D nor the hypocritical risk on DJTS is included in
the adversarial risk. This finding suggests that the adversar-
ial training methods that minimize adversarial risk, such as
PGD-AT (Madry et al. 2018), may not be enough to mitigate
hypocritical risk.

Analogically, the following theorem disentangles natural
risk from hypocritical risk:

Theorem 4.4. Ruyy(fo,D) = 1 — (1 — Ruyp(fo,Dy,)) -
Rnat(f@vp)'

Theorem 4.4 indicates that the hypocritical risk on D is
entangled with natural risk, and the hypocritical risk on D7,
would be a more genuine metric to capture model robust-
ness against hypocritical examples. Indeed, Ruyp( fo, DJIQ)
is meaningful, which essentially represents the attack suc-
cess rate of hypocritical attacks (i.e., how many failures a
false friend can conceal).

In addition to adversarial risk and hypocritical risk, an-
other important objective is stability risk, which we de-
fine as Rsta(fO; D) = ]E(a:,y)ND [mawa/_mHSe ]l(fg(.’l)/) #
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fo(x))]. The following theorem clearly shows that adver-
sarial risk and an upper bound of hypocritical risk can be
elegantly united to constitute the stability risk.

Theorem 4.5. Ria(fo,D) (1 — Ruat(fe,D)) -
Radv(vaij{Q) + Rnat(f@vp) : Rsta(f@apjje); where we

have Rsta(fo.Dj,) = Ruyp(fo. D)

Theorem 4.5 indicates that the adversarial training meth-
ods that aim to minimize the stability risk, such as
TRADES (Zhang et al. 2019), are capable of mitigating hyp-
ocritical risk.

The proofs of the above results are provided in Ap-
pendix C. Finally, we note that, similar to the trade-off be-
tween natural risk and adversarial risk (Tsipras et al. 2019;
Zhang et al. 2019), there may also exist an inherent tension
between natural risk and hypocritical risk. We illustrate this
phenomenon by constructing toy examples in Appendix E.

5 Countermeasures

In this section, we consider several countermeasures
to circumvent the threat of hypocritical attacks. The
countermeasures include PGD-AT (Madry et al. 2018),
TRADES (Zhang et al. 2019), a novel adaptive robust train-
ing method named THRM, and an inherently robust net-
work architecture named /. -dist nets (Zhang et al. 2021a).
Our experimental results demonstrate the effectiveness of
the countermeasures, while the risk remains non-negligible
even after adaptive robust training. Therefore, our investiga-
tion suggests that practitioners have to be aware of this type
of threat and be careful about dataset security.

5.1 Method Description
PGD-AT is a popular adversarial training method that mini-

mizes cross-entropy loss on adversarial examples:

min E max CE(pg(2’),y) (1)

0 (z,y)~D |||z’ —z|<e
Though the objective of PGD-AT is originally designed to
defend against adversarial examples, we are interested in its
robustness against hypocritical perturbations in this paper.
TRADES is another adversarial training variant, whose
training objective is:

min E [CE(pe(x),y) + A - KL(pe(x) || Po(Tsta)]
0 (x,y)~D
()
where Xgia = argmax|q_g|<cKL(po(x) | po(x’)),

KL(- || -) denotes the Kullback-Leibler divergence, and A
is the hyperparameter to control the trade-off. We note that
TRADES essentially aims to minimize a trade-off between
natural risk and stability risk. Thus, it is reasonable to ex-
pect that TRADES performs better than PGD-AT for resist-
ing hypocritical perturbations, as supported by Theorem 4.5.

We further consider an adaptive robust training objective:

min B [0B(po(a),u) + X+ KL(po(@) Ipo(eiss)].
3
where @ny, = argmin|z g <. CE(po(x’),y) as in Sec-

tion 3, and A is the hyperparameter to control the trade-off.



Threat Mod | CIFAR-10 | CIFAR-100 | Tiny-ImageNet
Model odel
' 4 F | D A F | D A F
Poisoning (NT) 11.13  0.00 100.00 | 34.80 0.00 100.00 | 34.87 0.00 100.00
Poisoning (PGD-AT) 82.65 5134 96.20 | 5732 27.85 8320 | 45.14 21.69 68.96
loo Poisoning (TRADES) | 80.01 5234 94.64 | 5629 2941 81.79 | 46.38 21.41 73.50
(e = 8/255)  Quality (NT) 9438 0.00 100.00 | 76.64 0.00 100.00 | 64.03 0.00 100.00
Quality (PGD-AT) 84.08 5198 96.92 | 59.19 28.21 84.87 | 47.23 2203 7195
Quality (TRADES) 81.05 5332 95.17 | 5727 30.00 82.88 | 47.86 22.03 75.04

Table 3: Verification accuracy (%) of adversarially trained ResNet-18 models under ¢, threat model across different datasets.
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Figure 3: Attack success rate (%) of adversarially trained ResNet-18 models on misclassified examples under ¢, threat model.

[TE]

The target label “y

denotes that the misclassified examples are perturbed to be correctly classified. The target labels “0” ~

“199” denote that the misclassified examples are perturbed to be classified as a specific target, no matter whether the target label
is correct or not. Error bars indicate standard deviation over 5 random runs.

We note that Eq. (3) essentially aims to minimize a trade-
off between natural risk and hypocritical risk (more details
are provided in Appendix F). Thus, we term this method
THRM, i.e., Trade-off for Hypocritical Risk Minimization.

Additionally, we adapt an inherently robust network ar-
chitecture called ¢, -dist nets (Zhang et al. 2021a) to resist
hypocritical perturbations, whose technical details are de-
ferred to Appendix G due to the space limitation.

5.2 Method Performance

In this subsection, we evaluate the effectiveness of the coun-
termeasures described above. From now on, we consider the
Poisoning and Quality training sets for three reasons: i) the
Poisoning data can be utilized to train accurate model via
adversarial training (Tao et al. 2021). ii) adversarial training
methods are hard to fit the Noise and Mislabeling training
data (Dong et al. 2021); iii) the Noise and Mislabeling train-
ing data can be avoided by standard data cleaning (Kandel
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et al. 2011), while the Poisoning and Quality data cannot,
since they are correctly labelled.

Performance of PGD-AT and TRADES. Table 3 reports
the results of PGD-AT and TRADES on CIFAR-10, CIFAR-
100 and Tiny-ImageNet. We observe that the robustness of
the models against hypocritical perturbations is better than
the naturally trained (NT) models in Section 3.2, so is their
robustness against adversarial perturbations. Nevertheless,
there are still a large amount of misclassified examples that
can be perturbed to be correctly classified. For example, the
Quality (PGD-AT) model on CIFAR-10 exhibit 96.92% ac-
curacy on hypocritically perturbed examples, while its clean
accuracy is only 84.08%. Results on SVHN are deferred to
Appendix B Table 9, and similar conclusions hold.

A Closer Look at Robustness. To directly compare the
model robustness, we report the attack success rate of hyp-
ocritical attacks (which is equivalent to the hypocritical risk
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Figure 4: Empirical comparison between TRADES and THRM in terms of natural risk and the hypocritical risk on misclassified
examples under /. threat model. Each point represents a model trained on the Quality data with a different \.

on misclassified examples) for the Quality models in Fig-
ure 3. As a reference, we also report the success rate of
targeted adversarial examples on the misclassified exam-
ples. An interesting observation is that the attack success
rate of hypocritical examples is much greater than that of
the targeted adversarial examples, especially on CIFAR-100
and Tiny-ImageNet, indicating that hypocritical risk may be
higher than we thought. More importantly, we observe that
the attack success rate of TRADES is lower than that of
PGD-AT on CIFAR-10, SVHN and CIFAR-100. This indi-
cates that TRADES is not only better than PGD-AT for ad-
versarial robustness (which is observed in Pang et al. (2021))
but also better than PGD-AT for hypocritical robustness.
One exception is that TRADES performs worse on Tiny-
ImageNet. This is simply because that we set the trade-off
parameter of TRADES to 6 as in (Zhang et al. 2019; Pang
et al. 2021), which is too small for Tiny-ImageNet. In the
next paragraph, this parameter will be tuned.

Comparison with THRM. We empirically compare
TRADES and THRM in terms of the natural risk and the
hypocritical risk on misclassified examples by tuning the
regularization parameter \ in the range [0,100]. The re-
ported natural risk is estimated on clean verification data.
The reported hypocritical risk is estimated on misclassified
examples and is empirically approximated using PGD. Re-
sults for the models trained on the Quality data are sum-
marized in Figure 4. Numerical details about the model ac-
curacy on D, A, and F with different A are given in Ap-
pendix B Tables 10, 11, 12, and 13. We observe that for
both TRADES and THRM, as ) increases, the natural risk
increases and the hypocritical risk decreases. It turns out
that THRM achieves a better trade-off than TRADES in all
cases, which is consistent with our analysis of THRM in Ap-
pendix F, and the gap between THRM and TRADES tends
to increase when the number of classes is large. Therefore,
when we only consider the threat of hypocritical attacks,
THRM would be preferable than TRADES. However, if one
wants to resist the threat of both adversarial examples and
hypocritical examples, TRADES is a viable alternative.

Results of /. -dist nets. Results show that /.,-dist nets
achieve moderate certified hypocritical risk. For both Qual-
ity model and Poisoning model, nearly half of the errors are
guaranteed not to be covered up by any attack. However, £ -
dist nets still perform worse than ResNet-18 with TRADES
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and THRM in terms of empirical hypocritical risk.

Overall, some improvements have been obtained, while
complete robustness against hypocritical attacks still cannot
be fully achieved with the current methods. Hypocritical risk
remains non-negligible even after adaptive robust training.
This dilemma highlights the difficulty of stabilizing models
to prevent hypocritical attacks. We feel that new manners
may be needed to better tackle this problem.

6 Conclusions and Future Directions

This paper unveils the threat of hypocritical examples in
the model verification stage. Our experimental results in-
dicate that this type of security risk is pervasive, and re-
mains non-negligible even if adaptive countermeasures are
adopted. Therefore, our investigation suggests that practi-
tioners should be aware of this type of threat and be careful
about dataset security. Below we discuss some limitations
with our current study, and we also feel that our results can
lead to several thought-provoking future works.

Other performance requirements. One may consider us-
ing adversarial perturbations to combat hypocritical attacks,
i.e., estimating the robust error (Zhang et al. 2019) on the
verification data. We note that this is actually equivalent to
choosing the robust error as the performance requirement.
It is natural then to ask whether a hypocritical attacker can
cause a substandard model to exhibit high robust accuracy
with small perturbations. We leave this as future work.

Transferability. 1t is also very important to study the
transferability of hypocritical examples across substandard
models. Transfer-based hypocritical attacks are still harm-
ful when model structure and weights are unknown to the
attacker. Understanding the transferability would help us to
design effective defense strategies against the transfer-based
hypocritical attacks.

Good use of hypocritical perturbations. We showed that
many types of substandard models are susceptible to hyp-
ocritical attacks. Then, an intriguing question is whether
we can turn this weakness into a strength. Specifically,
one may find such a “true friend” who is capable of con-
sistently helping a substandard model during the deploy-
ment stage to make correct predictions. There are concur-
rent works (Salman et al. 2021; Pestana et al. 2021) which
explored this direction, where “robust objects” are designed
to help a model to confidently detect or classify them.
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