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Abstract

Running machine learning algorithms on large and rapidly
growing volumes of data is often computationally expensive,
one common trick to reduce the size of a data set, and thus re-
duce the computational cost of machine learning algorithm-
s, is probability sampling. It creates a sampled data set by
including each data point from the original data set with a
known probability. Although the benefit of running machine
learning algorithms on the reduced data set is obvious, one
major concern is that the performance of the solution ob-
tained from samples might be much worse than that of the
optimal solution when using the full data set. In this paper,
we examine the performance loss caused by probability sam-
pling in the context of adaptive submodular maximization.
We consider a simple probability sampling method which se-
lects each data point with probability at least r ∈ [0, 1]. If we
set r = 1, our problem reduces to finding a solution based
on the original full data set. We define sampling gap as the
largest ratio between the optimal solution obtained from the
full data set and the optimal solution obtained from the sam-
ples, over independence systems. Our main contribution is to
show that if the sampling probability of each data point is at
least r and the utility function is policywise submodular, then
the sampling gap is both upper bounded and lower bounded
by 1/r. We show that the property of policywise submodu-
lar can be found in a wide range of real-world applications,
including pool-based active learning and adaptive viral mar-
keting.

Introduction
Many machine learning methods are highly benefitted when
they are fed with the right volume of data. One common ap-
proach to reduce the volume of a large data set is probability
sampling, which generates a sampled data set by including
each data point with a known probability. However, one ma-
jor concern of running an algorithm on a sampled data set is
that the performance of the sampling-based solution might
be much worse than that of the optimal solution when using
the full data set. In this paper, we examine the performance
loss caused by probability sampling in the context of adap-
tive submodular maximization over independence systems.

Due to the wide applicability of submodular function-
s, submodular maximization, whose objective is to selec-
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t a group of items to maximize a submodular function
on various types of independence systems, including ma-
troid [Nemhauser, Wolsey, and Fisher 1978; Calinescu et al.
2007] and knapsack [Sviridenko 2004], has been extensive-
ly studied in the literature. Most of existing studies focus
on the non-adaptive setting, where each item has a deter-
ministic state and all items must be selected at once. How-
ever, the classic notation of submodularity can not capture
the interactive nature of many applications, including active
learning and experimental design, where one must adaptive-
ly select a group of items based on the stochastic observa-
tions collected from past selections. Recently, [Golovin and
Krause 2011] introduce the notation of adaptive submodu-
larity, which extends the classic notation of submodularity
from sets to policies. In the problem of adaptive submod-
ular maximization, each item has a particular state which
is unknown initially. One must pick an item before observ-
ing its realized state. An adaptive policy can be represent-
ed using a decision tree which specifies which item to pick
next based on the realizations observed so far. [Golovin and
Krause 2011] develop a simple adaptive greedy algorithm
that achieves a 1 − 1/e approximation for the problem of
cardinality constrained adaptive submodular maximization.
Their algorithm starts with an empty set, and in each iter-
ation, it selects an item with the largest marginal utility on
top of the current observation. This algorithm requires n×k
value oracle queries, where n is the size of the ground set
and k is the cardinality constraint. Note that k could be as
large as n, making the standard greedy algorithm infeasible
in practise when n is large. One natural idea to reduce the
computational cost of any machine learning algorithms is to
run them on a reduced ground set that is sampled from the
full set. However, one major concern here is that the output
restricted to the sampled data set might be much worse than
that of the optimal solution when using the full data set. This
raises the sampling gap question:

What is the maximum ratio between the expected utility
of the optimal solution (over independence systems) when
using the full data set and that when using the sampled data
set?

If this sampling gap is small then we can focus on finding
a good solution based on the sampled data set while enjoy-
ing its benefits of reduced computational cost. In this work,
we consider a simple sampling method that selects each item
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from the full set with probability at least r ∈ [0, 1]. Our ob-
jective is to examine the performance loss due to the proba-
bility sampling in the context of adaptive submodular maxi-
mization.

Overview of Results. We first introduce a class of s-
tochastic functions, called policywise submodular function.
Policywise submodularity refers to the property of dimin-
ishing returns over optimal policies, and we show that this
property can be found in a wide range of real-world appli-
cations, including pool-based active learning and adaptive
viral marketing. Our main contribution is to show that if the
sampling probability of each item is at least r and the utility
function is policywise submodular, then the sampling gap,
i.e., the maximum ratio between the optimal solution based
on the full data set and the optimal solution based on sam-
ples, over independence systems, is both upper bounded and
lower bounded by 1/r. One major implication of our result
is that if we can find an α-approximation solution based on
a sampled data set such that each item is being sampled with
probability at least r, then this solution achieves an αr ap-
proximation ratio against the optimal solution when using
the full data set.

Related Works
The adaptive variant of submodular maximization has been
extensively studied in the literature [Chen and Krause 2013;
Tang and Yuan 2020; Tang 2020; Yuan and Tang 2017; Fu-
jii and Sakaue 2019; Gabillon et al. 2013; Golovin, Krause,
and Ray 2010; Alaei, Makhdoumi, and Malekian 2021]. For
the case of maximizing an adaptive monotone and adap-
tive submodular function subject to a cardinality constrain-
t, [Golovin and Krause 2011] develops a simple adaptive
greedy policy that achieves a tight 1 − 1/e approximation
ratio. For maximizing a nonmonotone adaptive submodu-
lar function, [Tang 2021a,b] develop the first constant ap-
proximation algorithms. Given the rapid growth of data vol-
ume, much recent research in submodular maximization has
explored the possibility of developing fast and practical al-
gorithms [Leskovec et al. 2007; Badanidiyuru and Vondrák
2014; Mirzasoleiman, Badanidiyuru, and Karbasi 2016; Ene
and Nguyen 2018; Mirzasoleiman et al. 2015; Tang 2021a;
Feldman, Harshaw, and Karbasi 2017], and many of them
have adopted the technique of random sampling to devel-
op better approximation algorithms or reduce the computa-
tional cost for maximizing (non-adaptive) submodular func-
tions subject to various constraints. The other line of work-
studies the problem of maximizing (non-adaptive) monotone
submodular functions from samples [Balkanski, Rubinstein,
and Singer 2016]. Unlike our setting where the utility func-
tion (of the sampled data set) is known, they assume that
the function optimized is not known a priori, it is learned
from data. Summarizing, all aforementioned results focus
on the non-adaptive setting and their goal is to investigate
the impact of random sampling on maximizing submodular
functions subject a particular algorithm or a particular con-
straint. Our study complements the existing studies by estab-
lishing a general framework for measuring the performance
loss of the optimal solution caused by the probability sam-
pling in the context of adaptive submodular maximization.

Our results are not restricted to any particular algorithms or
constraints, and the utility function is not necessarily mono-
tone and it might take on negative values. Our study is al-
so closely related to [Fujii and Kashima 2016] where they
study a similar problem by assuming that the utility func-
tion is policy-adaptive submodular (Definition 7). It will be-
come clear later that our results are more general than theirs
because policy-adaptive submodularity is a strictly stronger
condition than policywise submodularity (Lemma 7).

Preliminaries
We start by introducing some important notations. In the rest
of this paper, we use |X| to denote the cardinality of a setX .

Independence System
An independence system I on the set V is a collection of
subsets of V such that:

1. ∅ ∈ I;
2. I, which is called the independent sets, is downward-

closed, that is, A ∈ I and B ⊆ A implies that B ∈ I.

Examples of independence systems include matroid, k-
napsack, matching, and independent set. The upper rank
rank(I) of an independence system I on V is defined as the
size of the largest subset from I, i.e., rank(I) = maxI∈I |I|.
For any two sets S ∈ I and R ⊆ V such that S ∩R = ∅, let
IRS = {A|A ∪ S ∈ I, A ⊆ R}.

We next present three useful properties of any indepen-
dence system (V, I). These properties will be used later to
derive the main results of this paper. All missing proofs are
deferred to the full version [Tang and Yuan 2021].

Lemma 1 Consider any two sets S ∈ I and R ⊆ V such
that S ∩R = ∅, we have (V, IRS ) is an independence system
and IRS ⊆ I.

Lemma 2 Assume rank(I) > 0. For any item e ∈ V such
that {e} ∈ I, we have (V, IV \{e}{e} ) is an independence sys-

tem and rank(IV \{e}{e} ) < rank(I).

Lemma 3 Consider any three sets S ∈ I , S′ ∈ I , and
R ⊆ V such that S′ ⊆ S and S∩R = ∅, we have IRS ⊆ IRS′ .

Items and States
We consider a set V of n items, where each item is in a par-
ticular state, which is unknown initially, from O. Each item
e ∈ V has a random state Φ(e) ∈ O. Let φ(e) ∈ O denote a
realization of Φ(e). Thus, a realization φ is a mapping func-
tion that maps items to states: φ : V → O. In the example
of experimental design, the item e may represent a test, such
as the heart rate, and Φ(e) is the outcome of the test, such
as, 70 per minute. There is a known prior probability distri-
bution p(φ) = {Pr[Φ = φ] : φ ∈ OV } over realizations.
Note that when realizations are independent, the distribu-
tion p completely factorizes. However, this independent as-
sumption may not hold in many real-world applications such
as experimental design and active learning. We assume that
one must select an item e ∈ V before observing the value of
Φ(e). For any subset of items S ⊆ V , we use ψ : S → O to
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denote a partial realization and dom(ψ) = S is called the
domain of ψ. A partial realization ψ is said to be consistent
with a realization φ, denoted φ ∼ ψ, if they are equal every-
where in dom(ψ). A partial realization ψ is said to be a sub-
realization of another partial realization ψ′, denoted ψ ⊆ ψ′,
if dom(ψ) ⊆ dom(ψ′) and they are equal everywhere in the
domain dom(ψ) of ψ. Given a partial realization ψ, denote
by p(φ | ψ) the conditional distribution over realizations
conditioned on ψ: p(φ | ψ) = Pr[Φ = φ | Φ ∼ ψ].

Policies
Any adaptive policy can be represented as a function π that
maps a set of observations to a distribution P(V ) of V : π :
2V × OV → P(V ). It specifies which item to select next
based on the past outcomes. There is a utility function f :
2V × OV → R from a subset of items and a realization of
all items’ states to a real number.

Definition 1 (Conditional Marginal Utility of an Item)
Given a utility function f : 2V × OV → R, the conditional
expected marginal utility of any item e ∈ V on top of
any partial realization ψ is defined as favg(e | ψ) =
EΦ[f(dom(ψ) ∪ {e},Φ)− f(dom(ψ),Φ) | Φ ∼ ψ], where
the expectation is taken over Φ with respect to p(φ | ψ).

Let the random variable V (π, φ) denote the subset of
items selected by a policy π under realization φ. The ex-
pected utility favg(π) of a policy π can be written as

favg(π) = EΦ∼p(φ),Πf(V (π,Φ),Φ)

The expectation is taken over the realization and the internal
randomness of the policy.

Definition 2 (Conditional Marginal Utility of a Policy)
Given a utility function f : 2V × OV → R, the condi-
tional expected marginal utility favg(π | ψ) of a policy
π on top of a partial realization ψ is favg(π | ψ) =
EΦ,Π[f(dom(ψ) ∪ V (π,Φ),Φ)− f(dom(ψ),Φ) | Φ ∼ ψ],
where the expectation is taken over realizations Φ with
respect to p(φ | ψ) and the internal randomness of the
policy.

Definition 3 (IRS -restricted Policy) Consider two sets S ∈
I and R ⊆ V such that S ∩ R = ∅. A policy π is
IRS -restricted if for all φ such that p(φ) > 0, we have
V (π, φ) ∈ IRS . Let Ω(IRS ) denote the set of all IRS -restricted
polices, i.e., Ω(IRS ) = {π | for all φ such that p(φ) > 0 :
V (π, φ) ∈ IRS }.

Definition 4 (Optimal IRS -restricted Policy on top of ψ)
Consider two sets S ∈ I and R ⊆ V such that S ∩ R = ∅,
and a partial realization ψ. Define π∗(IRS , ψ) as the optimal
IRS -restricted policy on top of ψ, i.e.,

π∗(IRS , ψ) ∈ arg max
π∈Ω(IRS )

favg(π|ψ)

With the above notation, π∗(IV∅ , ∅) represents the op-
timal policy over an independence system (V, I), i.e.,
π∗(IV∅ , ∅) ∈ arg maxπ∈Ω(IV∅ ) favg(π|∅) or equivalently,
π∗(IV∅ , ∅) ∈ arg maxπ∈Ω(IV∅ ) favg(π).

Policywise Submodularity and Sampling Gap
In this paper, we propose a new class of stochastic utility
functions, policywise submodular functions. We define pol-
icywise submodularity as the diminishing return property
about the expected marginal gain of the optimal policy over
independence systems.
Definition 5 (Policywise Submodularity) A function f :
2V × OV → R is policywise submodular with respect to
a prior p(φ) and an independence system (V, I) if for any
two partial realizations ψa and ψb such that ψa ⊆ ψb and
dom(ψb) ∈ I, and anyR ⊆ V such thatR∩dom(ψb) = ∅,
we have
favg(π

∗(IRdom(ψb), ψ
a)|ψa) ≥ favg(π∗(IRdom(ψb), ψ

b)|ψb)
Later we show that this property can be found in many

real-world applications. For example, a variety of objec-
tive functions, including generalized binary search [Golovin
and Krause 2011], EC2 [Golovin, Krause, and Ray 2010],
ALuMA [Gonen, Sabato, and Shalev-Shwartz 2013], and
the maximum Gibbs error criterion [Cuong et al. 2013], used
in active learning are policywise submodular. This property
can also be found in other applications wherever the states of
the items are independent [Asadpour and Nazerzadeh 2016].
Moreover, we prove that the utility function of the adaptive
viral marketing [Golovin and Krause 2011] is also policy-
wise submodular.

Next we introduce the concept of sampling gap, which is
defined as the ratio of the optimal solution obtained from
the full data set and the optimal solution obtained from the
sampled data set, over independence systems. The sampling
gap measures the performance loss of the optimal solution
due to the probability sampling. In the rest of this paper,
for any R ⊆ V , let π∗R denote π∗(IR∅ , ∅) for short, i.e., π∗R
represents the optimal policy that selects items only from R.
Hence, π∗V represents the optimal policy using the full data
set.
Definition 6 (Sampling Gap) Let T be a random subset of
V drawn from a distributionD such that each item is includ-
ed in T with probability at least r ∈ [0, 1] (not necessarily
independently). Define the sampling gap at minimum rate r
as the largest (worst-case instance of (f, p(φ), V, I,D)) ra-
tio of the optimal policy when using the full ground set V
and optimal policies when using the sampled set T , i.e.,

sampling gap = max
(f,p(φ),V,I,D)

favg(π
∗
V )

ET [favg(π∗T )]

In this paper, we restrict our attention to the case of max-
imizing a policywise submodular function over indepen-
dence systems. I.e., our goal is to provide an answer to the
following question:

What is the value of max(f,p(φ),V,I,D)
favg(π∗V )

ET [favg(π∗T )] giv-

en that f : 2V × OV → R is policywise submodular with
respect to p(φ) and (V, I)?

Sampling Gaps for a Policywise Submodular
Function

In this section we provide our main result, the optimal sam-
pling gap for policywise submodular functions over inde-

8452



pendence systems. We prove the upper bound and lower
bound of Theorem 1 in the following two subsections re-
spectively.

Theorem 1 Assume f(∅) ≥ 0. The sampling gap at mini-
mum rate r for maximizing a policywise submodular func-
tion over independence systems is exactly 1/r.

Upper Bound of 1/r

We first present an upper bound of the sampling gap over
independence systems. Note that for an arbitrary partial re-
alization ψ such that dom(ψ) ∈ I, Lemma 1 implies that
(V, IV \dom(ψ)

dom(ψ) ) is an independence system. Before present-
ing the main theorem, we first prove a useful technical lem-
ma. We introduce a new function f(·|ψ) : 2V × OV → R
for any partial realization ψ such that f(S, φ|ψ) = f(S ∪
dom(ψ), φ)− f(dom(ψ), φ) for any S ⊆ V and realization
φ such that φ ∼ ψ.

Lemma 4 Suppose f : 2V × OV → R is policywise sub-
modular with respect to a prior p(φ) and an independence
system (V, I). For an arbitrary partial realization ψ such
that dom(ψ) ∈ I , f(·|ψ) : 2V × OV → R is also pol-
icywise submodular with respect to a prior p(φ|ψ) and an
independence system (V, IV \dom(ψ)

dom(ψ) ).

Now we are ready to present the main theorem of this
paper. For convenience, let f(∅) denote the expected utility
of an empty set for short, i.e., f(∅) = EΦ∼p(φ)[f(∅,Φ)].

Theorem 2 Let T be a random subset of V where each item
is included in T with equal probability r ∈ [0, 1] (not nec-
essarily independently). Suppose f : 2V × OV → R is pol-
icywise submodular with respect to a prior p(φ) and an in-
dependence system (V, I),

ET [favg(π
∗
T )] ≥ (1− r)f(∅) + rfavg(π

∗
V )

Proof: We prove this lemma through the induction on the
upper rank rank(I) of the independence system (V, I).

For the base case when rank(I) = 0, we have
favg(π

∗
T ) = f(∅) for any T and favg(π∗V ) = f(∅). Hence,

ET [favg(π
∗
T )] = f(∅) ≥ (1 − r)f(∅) + rf(∅) = (1 −

r)f(∅) + rfavg(π
∗
V ).

Assume the statement holds for all independence systems
(V, I) such that rank(I) ≤ l− 1, we next prove that it holds
for all independence systems (V, I) when rank(I) = l. To
avoid the trivial case we assume that π∗V selects at least one
item. Assume s ∈ V is the root of the decision tree of π∗V ,
i.e., s is the first item selected by π∗V , we next construct a
policy πT such that

• If s ∈ T , πT first selects s, then adopts π∗(IT\{s}{s} ,Φ(s))

which is the optimal IT\{s}{s} -restricted policy on top of
Φ(s).

• If s /∈ T , πT adopts π∗(IT{s}, ∅) which is the optimal
IT{s}-restricted policy on top of ∅.

We first show that πT is a feasible IT∅ -restricted policy.

Lemma 5 πT is a feasible IT∅ -restricted policy.

Because π∗T is an optimal IT∅ -restricted policy and πT
is a feasible IT∅ -restricted policy (Lemma 5), we have
favg(π

∗
T ) ≥ favg(πT ) for any T . Hence, ET [favg(πT )] ≤

ET [favg(π
∗
T )]. To prove this theorem, it suffices to show that

ET [favg(πT )] ≥ (1− r)f(∅) + rfavg(π
∗
V ) (1)

Hence, we next focus on proving (1). We first compute the
expected utility of πT for a given T . In the case of s ∈ T ,
we have

favg(πT ) = f(∅) + favg(s|∅)
+EΦ(s)[favg(π∗(IT\{s}{s} ,Φ(s))|Φ(s))] (2)

In the case of s /∈ T , we have

favg(πT ) = f(∅) + favg(π∗(IT{s}, ∅)|∅) (3)

≥ f(∅) + EΦ(s)[favg(π∗(IT{s},Φ(s))|Φ(s))](4)

The inequality is due to f : 2V × OV → R is policywise
submodular with respect to p(φ) and (V, I). Taking the ex-
pectation over T , we next bound the expected utility of πT .

ET [favg(πT )] =

r
(
f(∅) + favg(s|∅)

+EΦ(s),T [favg(π∗(IT\{s}{s} ,Φ(s))|Φ(s))|s ∈ T ]
)

+(1− r)
(
f(∅) + ET [favg(π∗(IT{s}, ∅)|∅)|s /∈ T ]

)
≥ r

(
f(∅) + favg(s|∅)

+EΦ(s),T [favg(π∗(IT\{s}{s} ,Φ(s))|Φ(s))|s ∈ T ]
)

+(1− r)
(
f(∅)

+EΦ(s),T [favg(π∗(IT{s},Φ(s))|Φ(s))|s /∈ T ]
)

= r
(
f(∅) + favg(s|∅)

+EΦ(s),T [favg(π∗(IT\{s}{s} ,Φ(s))|Φ(s))]
)

+(1− r)
(
f(∅)

+EΦ(s),T [favg(π∗(IT\{s}{s} ,Φ(s))|Φ(s))]
)

= (1− r)f(∅) + r (f(∅) + favg(s|∅))
+EΦ(s),T [favg(π∗(IT\{s}{s} ,Φ(s))|Φ(s))]

≥ (1− r)f(∅) + r
(
f(∅) + favg(s|∅)

+EΦ(s)[favg(π∗(IV \{s}{s} ,Φ(s))|Φ(s))]
)

= (1− r)f(∅) + rfavg(π∗V ) (5)

The first inequality is due to (2) and (4). The second in-
equality is due to the observation that for any Φ(s),

ET [favg(π∗(IT\{s}{s} ,Φ(s))|Φ(s))]

≥ rfavg(π∗(IV \{s}{s} ,Φ(s))|Φ(s)) (6)
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(6) follows from the inductive assumption based on the
following three facts: (1) rank(IV \{s}{s} ) < rank(I) = l

(Lemma 2), (2) f(· | Φ(s)) is policywise submodular with
respect to a prior p(φ|Φ(s)) and an independence system
(V, IV \{s}{s} ) for any Φ(s) (Lemma 4), and (3) favg(∅ |
Φ(s)) = 0 for any Φ(s). �

It is easy to verify that increasing the sampling probabil-
ity of any items does not decrease the expected utility of an
optimal policy restricted to a sampled data set. Hence, The-
orem 2 implies the following corollary:
Corollary 1 Given that f : 2V × OV → R is policywise
submodular with respect to p(φ) and (V, I), and f(∅) ≥ 0,
the sampling gap at minimum rate r is upper bounded by
1/r.

The following corollary shows that if we can find an ap-
proximation solution over a sampled data set, then this solu-
tion achieves a bounded approximation ratio for the original
problem when using the full data set.
Corollary 2 Let T be a random subset of V where each
item is included in T with probability at least r ∈ [0, 1]
(not necessarily independently). If f : 2V × OV → R
is policywise submodular with respect to a prior p(φ) and
an independence system (V, I), f(∅) ≥ 0, and there ex-
ists an α-approximation IT∅ -restricted policy παT for every
T , i.e., ∀T, ∃παT ∈ Ω(IT∅ ), favg(π

α
T ) ≥ αfavg(π

∗
T ), then

favg(π∗V )
ET [favg(παT )] ≤

1
αr .

Lower Bound of 1/r

In this section we construct a policywise submodular func-
tion and a simple cardinality constraint to show that the
sampling gap at minimum rate r is lower bounded by 1/r.
Assume V = {e}, i.e., the ground set contains only one
item, and O = {o}, i.e., there is only one state. De-
fine f(∅, (e, o)) = 0 and f({e}, (e, o)) = 1. Moreover,
I = {{e}, ∅}. We first show that f : 2V × OV →
R is policywise submodular with respect to p(φ) and I.
Because I∅{e} = {∅}, we have favg(π

∗(I∅{e}, ∅)|∅) =

favg(π
∗(I∅{e}, {o})|(e, o)) = 0, which implies that f :

2V × OV → R is policywise submodular with respec-
t to p(φ) and I. Let T be a random set where e ap-
pears with probability r. In the case of T = {e}, π∗T s-
elects e, thus, ET [favg(π

∗
T )|e ∈ T ] = 1. In the case of

T = {∅}, π∗T selects ∅, thus, ET [favg(π
∗
T )|e /∈ T ] = 0.

Thus, ET [favg(π
∗
T )] = rET [favg(π

∗
T )|e ∈ T ] + (1 −

r)ET [favg(π
∗
T )|e /∈ T ] = r. Moreover, because π∗V always

selects e, favg(π∗V ) = 1. Hence, the sampling gap at mini-
mum rate r is lower bounded by 1/r.

Applications
We next show that the property of policywise submodularity
can be found in a wide range of real-world applications. We
start with introducing two well-studied classes of stochas-
tic functions. Then we build a relation between these two
classes of functions and our notation of policywise submod-
ularity.

Definition 7 [Fujii and Kashima 2016][Policy-adaptive
Submodularity] A function f : 2V × OV → R is policy-
adaptive submodular with respect to p(φ), if for any two
partial realizations ψa and ψb such that ψa ⊆ ψb, and any
policy π such that V (π, φ) ⊆ V \ dom(ψb) for all φ such
that p(φ) > 0, we have favg(π|ψa) ≥ favg(π|ψb).

Definition 8 [Golovin and Krause 2011][Adaptive Sub-
modularity] A function f : 2V × OV → R is adaptive
submodular with respect to p(φ), if for any two partial re-
alizations ψa and ψb such that ψa ⊆ ψb, and any item
e /∈ dom(ψb), we have favg(e|ψa) ≥ favg(e|ψb).

Our next lemma shows that policy-adaptive submodulari-
ty implies both adaptive submodularity and policywise sub-
modularity. Later, we show that policy-adaptive submodu-
larity is a strictly stronger condition than policywise sub-
modularity.

Lemma 6 If f : 2V × OV → R is policy-adaptive sub-
modular with respect to p(φ), then f : 2V × OV → R is
both adaptive submodular with respect to p(φ) and policy-
wise submodular with respect to p(φ) and any independence
system (V, I).

Thanks to the recent progress in adaptive submodular
maximization [Golovin and Krause 2011; Tang 2021a,b],
there exists efficient solutions for maximizing an adaptive
submodular function subject to many practical constraints,
including matroid and knapsack constraints. Hence, Lem-
ma 6, together with Corollary 2, implies that if a function
f : 2V × OV → R is policy-adaptive submodular with
respect to p(φ), then running existing algorithms on the
sampled ground set has comparable performance to running
them on the full set.

We next discuss three representative applications whose
objective function satisfies the policywise submodularity.
The objective functions in the first two applications are
policy-adaptive submodular, which implies both adaptive
submodularity and policwise submodularity. Although the
objective function in the third application does not satisfy
the policy-adaptive submodularity, it is still adaptive sub-
modular and policwise submodular. This implies that policy-
adaptive submodularity is a strictly stronger condition than
policywise submodularity.

Application 1: Pool-based Active Learning [Golovin and
Krause 2011]. We use H to denote the set of candidate
hypothesis. Each hypothesis h ∈ H represents some real-
ization, i.e., h : V → Φ, where each item e ∈ V can be
viewed as a data point and the state Φ(e) of a data point e
can be viewed as the label of e. Let pH be a prior distribu-
tion over hypotheses. Define pH(H′) =

∑
h∈H′ pH(h) for

any H′ ⊆ H. Then the prior distribution over realizations
can be represented as p(φ) = pH(h|φ ∼ h). The version
space under observations ψ is defined to be H(ψ) = {h ∈
H|h ∼ ψ}, i.e., H(ψ) contains all hypothesis whose labels
are consistent with ψ in the domain of ψ. Given a realization
φ and a group of labeled data points S, the utility function
of generalized binary search under the Bayesian setting is

f(S, φ) = 1− pH(H(φ(S))) (7)
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where φ(S) = {(e, φ(e)) | e ∈ S}.
(7) measures the reduction in version space mass after

obtaining the states (a.k.a. labels) about S. Intuitively, our
objective is to select (a.k.a. query the labels of) a group of
data points to maximize the expected reduction in version
space mass. It has been shown that the above utility function
is both adaptive submodular with respect to p(φ) (Section
9 in [Golovin and Krause 2011]) and policy-adaptive sub-
modular with respect to p(φ) (Proposition A.1 in [Fujii and
Kashima 2016]). This, together with Lemma 6, implies the
following proposition.
Proposition 1 The utility function f : 2V × OV → R of
pool-based active learning is policywise submodular with
respect to p(φ) and any independence system (V, I).

Moreover, many other types of objective functions of
active learning, including EC2 [Golovin, Krause, and Ray
2010], ALuMA [Gonen, Sabato, and Shalev-Shwartz 2013],
and the maximum Gibbs error criterion [Cuong et al. 2013],
are both adaptive submodular and policywise submodular.

Application 2: The Case of Independent Items [Asad-
pour and Nazerzadeh 2016]. The property of policywise
submodularity can also be found in many applications in
which the states of items are independent of each other. One
such application is sensor selection [Golovin and Krause
2011]. The following proposition follows from Lemma 6
and the fact that if Φ(1),Φ(2), . . . ,Φ(n) are independen-
t and f is adaptive submodular with respect to p(φ), then f
is policy-adaptive submodular with respect to p(φ) (Propo-
sition A.5 in [Fujii and Kashima 2016]).

Proposition 2 If Φ(1),Φ(2), . . . ,Φ(n) are independen-
t and f : 2V ×OV → R is adaptive submodular with respect
to p(φ), then f : 2V × OV → R is policywise submodular
with respect to p(φ) and any independence system (V, I).

Application 3: Adaptive Viral Marketing [Golovin and
Krause 2011]. The third application is the adaptive vari-
ant of viral marketing [Golovin and Krause 2011]. We use
a directed graph G = (V,E) to represent a social net-
work, where V represents a set of individuals and E repre-
sents a set of edges. Under the Independent Cascade Model
[Kempe, Kleinberg, and Tardos 2003], each edge (u, v) ∈ E
is associated with a propagation probability puv ∈ [0, 1]. In
step 0, we activate a set of seeds. Then, in each subsequence
step t, each individual u, that is newly activated, has a single
chance to activate each of its neighbors v; it succeeds with
a probability puv . If u succeeds, then v becomes activated
in step t + 1. This process is iterated till no more individu-
als are newly activated. Under the adaptive setting [Golovin
and Krause 2011], we model the state φ(u) of u as a func-
tion φ(u) : E → {0, 1, ?}, where φ(u)((u, v)) = 0 means
that selecting u reveals that (u, v) is blocked (i.e., u fails
to activate v), φ(u)((u, v)) = 1 means that selecting u re-
veals that (u, v) is live (i.e., u succeeds in activating v), and
φ(u)((u, v)) =? means that selecting u can not reveal the s-
tatus of (u, v). We assume that selecting a seed u can reveal
the status (live or block) of every out-going edge of every
individual that can be reached by u though a path composed
of live edges. For a given set of seeds S and a realization

φ, we define the utility f(S, φ) as the number of individuals
that can be reached by at least one seed from S through live
edges (including S), i.e.,

f(S, φ) = |{v|∃u ∈ S,w ∈ V, φ(u)((w, v)) = 1}|+ |S| (8)

It has been shown that the above utility function is adaptive
submodular (Section 8 in [Golovin and Krause 2011]). We
next show that this function is also policywise submodular.

Proposition 3 The utility function f : 2V × OV → R of
adaptive viral marketing is policywise submodular with re-
spect to p(φ) and any independence system (V, I).

In the proof of the next lemma, we show that (8) is not
policy-adaptive submodular.

Lemma 7 Policy-adaptive submodularity is a strictly
stronger condition than policywise submodularity.

Performance Evaluation
We conduct experiments to evaluate the impact of probabili-
ty sampling based on two popular machine learning applica-
tions: adaptive viral marketing and pool-based active learn-
ing [Golovin and Krause 2011].

Adaptive Viral Marketing. A detailed description of this
application can be found in Application 3 from the previous
section. We capture the social network by a directed weight-
ed graph and run experiments on four large-scale benchmark
social networks: Wikivote, NetHEPT, NetPHY and Epinion-
s (http://snap.stanford.edu/data/). Wikivote records 103, 663
votes from 7, 066 users participating in the elections from
the Wikipedia community. NetHEPT is a large academ-
ic collaboration network extracted from the High Energy
Physics Theory section of arXiv, including 15, 233 nodes
each representing an author and 62, 774 edges each rep-
resenting one paper co-authored by two nodes. NetPHY is
another academic collaboration network extracted from the
Physics section of arXiv, which contains 37, 154 nodes and
231, 584 edges. Epinion is a Who-trust-whom network of
Epinions.com, containing 75, 879 nodes and 508, 837 edges.
Each node represents a user and each edge represents a trust
relationship. we adopt the Independent Cascade model as d-
iffusion model and assign a uniform probability of 0.01 to
each edge as discussed in [Kempe, Kleinberg, and Tardos
2003].

Pool-based Active Learning. A detailed description of
this application can be found in Application 1 from the pre-
vious section. We consider 1, 000 hypotheses, 80 unlabeled
data points and 50 queries each covers one or two unlabeled
data points. The probability of each hypothesis is drawn
from (0, 1) uniformly at random with normalization; each
data point is assigned a value randomly selected from its set
of possible labels.
Algorithms and Parameters. For the adaptive viral market-
ing application, we evaluate the performance of the follow-
ing three algorithms under various settings: adaptive greedy
algorithm (AG), non-adaptive greedy algorithm (NG) and
random algorithm (RDM). AG adaptively selects a node that
introduces the largest expected marginal influence spread in
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Figure 1: Adaptive Viral Marketing: Influence Spread (y-axis) vs. Sampling Rate.

Figure 2: Pool-based Active Learning: Reduction in Version Space (y-axis) vs. Sampling Rate

each round based on prior observations until k nodes are se-
lected. Here prior observations refer to the realized influence
propagation in the network triggered by the previously se-
lected seeds. Although AG is not necessarily optimal, it can
approximate the optimal policy within a factor of 1 − 1/e
[Golovin and Krause 2011], i.e., the expected size of the in-
fluence generated by AG is at least 1−1/e times the optimal
solution. Therefore, through examining the performance of
AG under varies sampling rates, it can help us understand
the impact of probability sampling on the optimal solution.
The second algorithm NG is a non-adaptive version of AG.
It adds the node that maximally increases the objective val-
ue before any observations take place. We run simulations
10, 000 times and took the average in order to obtain reason-
able estimates of the influence spread. For RDM, we ran-
domly select a set of seed nodes of size k as an output.

We sample each node independently at a sampling rate
r, that is, each node is being sampled independently with
probability equal to r. We vary r from 0.1 to 1. When r = 1,
algorithms run on a full data set that includes all nodes in
the network. A lower r indicates a smaller (in expectation)
candidate set from which we select our seed nodes. For each
sampling rate, we obtain 30 samples, and report the average
performance of each algorithm over these samples, denoted
as the point on the line, as well as the confidence interval of
the result, denoted as the bar around the line.

For the pool-based active learning application, we eval-
uate the performance of AG, NG and RDM under various
sampling rates. AG iteratively identifies a query with the
highest marginal version space reduction based on prior ob-
servations until 5 queries have been selected. Here prior ob-
servations refer to the user’s answer to the query. NG is a
non-adaptive version of AG. RDM randomly selects a set of
5 queries as an output. We use a similar sampling setting as
above in our experiments.

Experimental results. We present the results in Figure 1
and Figure 2. We observe that the performance trends of
the algorithms are overall consistent between all datasets
and application domains. For the adaptive viral marketing,
we evaluate the performance of algorithms as measured by
the influence spread with respect to the changes in the sam-
pling rate on four datasets. We set k = 10 for Epinions, and
k = 20 for other three datasets. We observe that among three
algorithms examined, AG is the best in all settings. Surpris-
ingly, on three larger datasets NetHEPT, NetPHY and Epin-
ions, AG with r = 0.1 outperforms NG with r = 1, which
demonstrates the power of adaptivity. As expected, RDM
has the poorest performance across all settings. We also no-
tice that when the sampling rate is larger than 0.6, the perfor-
mance loss (as compared with when r = 1) of AG is within
10%. Therefore, we can choose r = 0.6 to reduce the com-
putational cost significantly without sacrificing much of the
performance.

For the active learning application, we evaluate the per-
formance of algorithms as measured by the yielded reduc-
tion in version space. The results are plotted in Figure 2.
We first consider the scenario where each data point has the
same number of possible labels. We set the number of labels
to 2, 3, 4 and the results are shown in Figure 2(a), (b) and
(c) respectively. To diversity the data points in our data set,
we then randomly divide our 80 unlabeled data points into
three groups. The first group contains 64 data points with
binary labels. The second and third group each contains 8
data points with three and four possible labels respectively.
The results are shown in Figure 2(d). AG is the best under
all settings, and its performance tends to stabilize after r is
greater than 0.6. In particular, the performance loss caused
by probability sampling is within 10% for r ≥ 0.3 and is
within 5% for r ≥ 0.5. This verifies the value of probability
sampling in the context of pool-based active learning.
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J.; and Krause, A. 2015. Lazier than lazy greedy. In Twenty-
Ninth AAAI Conference on Artificial Intelligence.
Nemhauser, G. L.; Wolsey, L. A.; and Fisher, M. L. 1978. An
analysis of approximations for maximizing submodular set
functions-I. Mathematical programming, 14(1): 265–294.
Sviridenko, M. 2004. A note on maximizing a submodular
set function subject to a knapsack constraint. Operations
Research Letters, 32(1): 41–43.
Tang, S. 2020. Price of dependence: stochastic submodular
maximization with dependent items. Journal of Combinato-
rial Optimization, 39(2): 305–314.
Tang, S. 2021a. Beyond pointwise submodularity: Non-
monotone adaptive submodular maximization in linear time.
Theoretical Computer Science, 850: 249–261.
Tang, S. 2021b. Beyond pointwise submodularity: Non-
monotone adaptive submodular maximization subject to k-
napsack and k-system constraints. In International Confer-
ence on Modelling, Computation and Optimization in Infor-
mation Systems and Management Sciences, 16–27. Springer.
Tang, S.; and Yuan, J. 2020. Influence maximization with
partial feedback. Operations Research Letters, 48(1): 24–
28.
Tang, S.; and Yuan, J. 2021. Optimal Sampling Gaps for
Adaptive Submodular Maximization. arXiv preprint arX-
iv:2104.01750.
Yuan, J.; and Tang, S.-J. 2017. Adaptive discount alloca-
tion in social networks. In Proceedings of the 18th ACM In-
ternational Symposium on Mobile Ad Hoc Networking and
Computing, 1–10.

8457


