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Abstract

We study Policy-extended Value Function Approximator
(PeVFA) in Reinforcement Learning (RL), which extends con-
ventional value function approximator (VFA) to take as input
not only the state (and action) but also an explicit policy repre-
sentation. Such an extension enables PeVFA to preserve values
of multiple policies at the same time and brings an appealing
characteristic, i.e., value generalization among policies. We
formally analyze the value generalization under Generalized
Policy Iteration (GPI). From theoretical and empirical lens,
we show that generalized value estimates offered by PeVFA
may have lower initial approximation error to true values of
successive policies, which is expected to improve consecu-
tive value approximation during GPI. Based on above clues,
we introduce a new form of GPI with PeVFA which lever-
ages the value generalization along policy improvement path.
Moreover, we propose a representation learning framework
for RL policy, providing several approaches to learn effective
policy embeddings from policy network parameters or state-
action pairs. In our experiments, we evaluate the efficacy of
value generalization offered by PeVFA and policy represen-
tation learning in several OpenAI Gym continuous control
tasks. For a representative instance of algorithm implemen-
tation, Proximal Policy Optimization (PPO) re-implemented
under the paradigm of GPI with PeVFA achieves about 40%
performance improvement on its vanilla counterpart in most
environments.

1 Introduction
Reinforcement Learning (RL) has been widely considered as
a promising way to learn optimal policies in many decision-
making problems (Mnih et al. 2015; Lillicrap et al. 2015; Sil-
ver et al. 2016; You et al. 2018; Schreck, Coley, and Bishop
2019; Vinyals et al. 2019; Hafner et al. 2020). One funda-
mental element of RL is value function which defines the
long-term evaluation of a policy. With function approxima-
tion (e.g., deep neural networks), a value function approxi-
mator (VFA) is able to approximate the values of a policy
under large and continuous state spaces. As commonly recog-
nized, most RL algorithms can be described as Generalized
Policy Iteration (GPI) (Sutton and Barto 1998). As illustrated
on the left of Fig.1, at each iteration the VFA is trained to
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approximate the true values of current policy (i.e., policy eval-
uation), regarding which the policy is further improved (i.e.,
policy improvement). The value function approximation er-
ror hinders the effectiveness of policy improvement and then
the overall optimality of GPI (Bertsekas and Tsitsiklis 1996;
Scherrer et al. 2015). Unfortunately, such errors are inevitable
under function approximation. A large number of samples
are usually required to ensure high-quality value estimates,
resulting in the sample-inefficiency of deep RL algorithms.
Therefore, this raises an urgent need for more efficient value
approximation methods (v. Hasselt 2010; Bellemare, Dab-
ney, and Munos 2017; Fujimoto, v. Hoof, and Meger 2018;
Kuznetsov et al. 2020).

An intuitive idea to improve the efficiency value approx-
imation is to leverage the knowledge on the values of pre-
vious encountered policies. However, a conventional VFA
usually approximates the values of one policy and values
learned from old policies are over-written gradually during
the learning process. This means that the previously learned
knowledge cannot be preserved and utilized with one con-
ventional VFA. Thus, such limitations prevent the potentials
to leverage the previous knowledge for future learning. In
this paper, we study Policy-extended Value Function Ap-
proximator (PeVFA), which additionally takes an explicit
policy representation as input in contrast to conventional
VFA. Thanks to the policy representation input, PeVFA is
able to approximate values for multiple policies and induces
value generalization among policies. We formally analyze
the generalization of approximate values among policies in
a general form. From both theoretical and empirical lens,
we show that the generalized value estimates can be closer
to the true values of the successive policy, which can be
beneficial to consecutive value approximation along the pol-
icy improvement path, called local generalization. Based on
above clues, we introduce a new form of GPI with PeVFA
(the right of Fig.1) that leverages the local generalization to
improve the efficiency of consecutive value approximation
along the policy improvement path.

One key point of GPI with PeVFA is the representation
of policy since it determines how PeVFA generalizes the
values. For this, we propose a framework to learn effective
low-dimensional embedding of RL policy. We use network
parameters or state-action pairs as policy data and encode
them into low-dimensional embeddings; then the embeddings
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Figure 1: Generalized Policy Iteration (GPI) with function approximation. Left: GPI with conventional value function approxima-
tor Vφ. Right: GPI with PeVFA Vθ(χπ) (Sec. 3) where extra generalization steps exist. The subscripts of policy π and value
function parameters φ, θ denote the iteration number. The squiggle lines represent non-perfect approximation of true values.

are trained to capture the effective information through con-
trastive learning and policy recovery. Finally, we evaluate
the efficacy of GPI with PeVFA and our policy represen-
tations. In principle, GPI with PeVFA is general and can
be implemented in different ways. As a practical instance,
we re-implement Proximal Policy Optimization (PPO) with
PeVFA and propose PPO-PeVFA algorithm. Our experimen-
tal results on several OpenAI Gym continuous control tasks
demonstrate the effectiveness of both value generalization
offered by PeVFA and learned policy representations, with
an about 40% improvement in average returns achieved by
our best variants on standard PPO in most tasks.

We summarize our main contributions below. 1) We study
the value generalization among policies induced by PeVFA.
From both theoretical and empirical aspects, we shed the light
on the situations where the generalization can be beneficial to
the learning along policy improvement path. 2) We propose a
framework for policy representation learning. To our knowl-
edge, we make the first attempt to learn a low-dimensional
embedding of over 10k network parameters for an RL policy.
3) We introduce GPI with PeVFA that leverages the value
generalization in a general form. Our experimental results
demonstrate the potential of PeVFA in deriving practical and
more effective RL algorithms.

2 Related Work
Extensions of Conventional Value Function Sutton et al.
(2011) propose General Value Functions (GVFs) as a general
form of knowledge representation of rewards and arbitrary
cumulants. Later, conventional value functions are extended
to take extra inputs for different purposes of generalization.
One notable work is Universal Value Function Approximator
(UVFA) (Schaul et al. 2015), which is proposed to generalize
values among different goals for goal-conditioned RL. UVFA
is further developed and various extensions are studied in
(Andrychowicz et al. 2017; Rakelly et al. 2019; Lee et al.
2020; Wang et al. 2020; He and Boyd-Graber 2016; Grover
et al. 2018). Most of the above works study how to generalize
the policy or value function among extrinsic factors, i.e.,
environments, tasks and opponents (we provide a unified
view in Appendix E.2); while we mainly study the value
generalization among policies along policy improvement
path, an intrinsic learning process of the agent itself.

Policy Embedding and Representation. Although not
well studied, representation (or embedding) learning for RL
policies is involved in a few works (Hausman et al. 2018;
Grover et al. 2018; Arnekvist, Kragic, and Stork 2019). The
most common way to learn a policy representation is to
extract from interaction experiences. As a representative,
(Grover et al. 2018) propose learning the representation of
opponent policy from interaction trajectories with a gener-
ative policy recovery loss and a discriminative triplet loss.
These losses are later adopted in (Wang et al. 2020; Raileanu
et al. 2020). Another straightforward idea is to represent pol-
icy parameters. Network Fingerprint (Harb et al. 2020) is
such a differentiable representation that uses the concatena-
tion of the vectors of action distribution outputted by policy
network on a set of probing states. The probing state set
is co-optimized along with the primary learning objective,
which can be non-trivial especially when the dimensionality
of the set is high. See Appendix for a detailed review. Our
work propose a learning framework of policy representation
including both above two perspectives.

PVN and PVFs Recently, several works study the general-
ization among policy space. Harb et al. (2020) propose Policy
Evaluation Network (PVN) to directly approximate the distri-
bution of policy π’s objective function J(π) = Eρ0 [vπ(s0)]
with initial state s0 ∼ ρ0. PVN takes as input Network Fin-
gerprint (mentioned above) of policy network. After training
on a pre-collected set of policies, a random initialized pol-
icy can be optimized in a zero-shot manner with the policy
gradients of PVN by backpropagting through the differen-
tiable policy input. We call such gradients GTPI for short
below. Similar ideas are later integrated with task-specific
context learning in multi-task RL (Raileanu et al. 2020). In
PVN (Harb et al. 2020), as an early attempt, the generaliza-
tion among policies is studied with small policy network and
simple tasks; besides, the most regular online learning setting
is not studied. Concurrent to our work, Faccio et al. (2021)
propose a class of Parameter-based Value Functions (PVFs)
that take vectorized policy parameters as inputs. Based on
PVFs, new policy gradient algorithms are introduced in the
form of a combination of conventional policy gradients and
GTPI. In addition to the zero-shot policy optimization as
conducted in PVN, PVFs are also evaluated for online policy
learning. Due to directly taking parameters as input, PVFs
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suffer from the curse of dimensionality when the number of
parameters is high. Besides, GTPI can be non-trivial to rein
with usually large policy parameter space and finite policies
(much fewer than state-action samples). We provide more
discussions on GTPI in Appendix E.4.

Our work differs with PVFs from several aspects. First, we
make use of learned policy representation rather than policy
network parameters. Second, we do not resort to GTPI for the
policy update in our algorithms but focus on utilizing value
generalization for more efficient value estimation in GPI.
Furthermore, we shed the light on two important problems —
how value generalization among policies can happen formally
and whether it is beneficial to learning or not — which are
neglected in in previous works from both theoretical and
empirical lens. We refer one to read the original papers and
our Appendix E.3 for better understandings of the differences.

3 Policy-extended Value Function
Approximator

In this section, we propose Policy-extended Value Function
Approximator (PeVFA), an extension of conventional VFA
that explicitly takes as input a policy representation.

3.1 Formulation
Consider a Markov Decision Process (MDP) defined as
〈S,A, r,P, γ〉 where S is the state space, A is the action
space, r is the (bounded) reward function, P is the transi-
tion function and γ ∈ [0, 1) is the discount factor. A policy
π ∈ P (A)|S| defines the distribution over all actions for each
state. The goal of an RL agent is to find an optimal policy
π∗ that maximizes the expected long-term discounted return.
The state-value function vπ(s) is defined as the expected
discounted return by following the policy π from a state s:
vπ(s) = Eπ [

∑∞
t=0 γ

trt+1|s0 = s] where rt+1 = r(st, at).
We use V π to denote the vectorized form of value function.

In a general form, we define policy-extended value function
V : S × Π → R over state and policy space: V(s, π) =
vπ(s) for all s ∈ S and π ∈ Π. In this paper, we focus on
V(s, π) and policy-extended action-value function Q(s, a, π)
can be obtained similarly. We use V(π) to denote the value
vector for all states in the following. The key point is that
V is able to preserve the values of multiple policies. With
function approximation, a PeVFA is expected to approximate
the values of policies among policy space, i.e., {V π}π∈Π

then enable value generalization among policies.
Formally, given a function g : Π → X ⊆ Rn that

maps any policy π to an n-dimensional representation χπ =
g(π) ∈ X , a PeVFA Vθ with parameter θ ∈ Θ is to minimize
the approximation error over all possible states and policies
generally: Fµ,p,ρ(θ, g,Π) =

∑
π∈Π µ(π)‖Vθ(χπ)−V π‖p,ρ,

where µ, ρ are distributions over policies and states respec-
tively, ‖f‖p,ρ = (

∫
s
ρ(ds)|f(s)|p)1/p is ρ-weighted Lp-

norm (Lagoudakis and Parr 2003; Scherrer et al. 2015) for
any f : S → R. The policy distribution µ of interest depends
on the scenario where value generalization is considered.
As illustrated in Fig.2, we provide two value generalization
scenarios. In the global generalization scenario, a uniform
distribution over known policy set may be considered with a

general purpose of value generalization for unknown policies.
For the specific local generalization scenario along policy im-
provement path during GPI, a sophisticated distribution that
adaptively weights recent policies more during the learning
process may be more suitable in this case. In the following,
we care more about the local generalization scenario and use
uniform state distribution ρ and L2-norm for demonstration.
The subscripts are omitted and we use ‖ · ‖ for clarity.

3.2 Insights on Generalization among Policies
In this part, we provide preliminary theoretical analysis on
value generalization among policies induced by PeVFA, to
shed some light on whether the generalization can be benefi-
cial to conventional RL under GPI paradigm. We start from a
two-policy case and study whether the value approximation
learned for one policy can be generalized to the other one.
Later, we study the local generalization scenario (Fig.2(b))
and shed the light on the superiority of PeVFA for GPI. All
the proofs are provided in Appendix A.

For the convenience of demonstration, we use an identical
policy representation function, i.e., χπ = π, and define the
approximation loss of PeVFA Vθ for any policy π ∈ Π as
fθ(π) = ‖Vθ(π) − V π‖ ≥ 0. We use the following defini-
tions for a formal description of value approximation process
with PeVFA and local property of loss function fθ related to
generalization (Novak et al. 2018; Wang et al. 2018):
Definition 1 (π-Value Approximation) We define a value
approximation process Pπ : Θ → Θ with PeVFA as a γ-
contraction on the approximation loss for policy π, i.e., for
θ̂ = Pπ(θ), we have fθ̂(π) ≤ γfθ(π) where γ ∈ [0, 1).

Definition 2 (L-Continuity) We call fθ is L-continuous at
policy π if fθ is Lipschitz continuous at π with a constant
L ∈ [0,∞), i.e., |fθ(π)− fθ(π′)| ≤ L · d(π, π′) for π′ ∈ Π
with some distance metric d for policy space Π.

With Definition 1, the consecutive value approximation for
the policies along policy improvement path during GPI can

be described as: θ−1

Pπ0−−−→ θ0

Pπ1−−−→ θ1

Pπ2−−−→ . . . , as the
green arrows illustrated in Fig.1. One may refer to Appendix
A.1 for a discussion on the rationality of the two definitions.

To start our analysis, we first study the generalized value
approximation loss in a two-policy case where only the value
of policy π1 is approximated by PeVFA as below:

Lemma 1 For θ
Pπ1−−−→ θ̂, if fθ̂ is L̂-continuous at π1

and fθ(π1) ≤ fθ(π2), we have: fθ̂(π2) ≤ γfθ(π2) +

M(π1, π2, L̂), whereM(π1, π2, L̂) = L̂ · d(π1, π2).

Corollary 1 Pπ1 is γg-contraction (γg ∈ [0, 1)) for π2

when fθ(π2) > L̂·d(π1,π2)
1−γ .

Lemma 1 shows that the post-Pπ1 approximation loss for
π2 is upper bounded by a generalized contraction of prior
loss plus a locality margin termM which is related to π1, π2

and the locality property of fθ̂. In general, the form ofM
depends on the local property assumed. For a step further,
Corollary 1 reveals the condition where a contraction on
value approximation loss for π2 is achieved when PeVFA is
only trained to approximate the values of π1.
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Figure 2: Illustrations of value generalization among policies of PeVFA. Each circle denotes value function (estimate) of a policy.
(a) Global Generalization: values of known policies can be generalized to unknown policies. (b) Local Generalization: values of
previous policies (e.g., πt) can be generalized to successive policies (e.g., πt+1) along policy improvement path.

Then we consider the local generalization scenario as il-
lustrated in Fig.2(b). For any iteration t of GPI, the values of
current policy πt are approximated by PeVFA, followed by a
improved policy πt+1 whose values are to be approximated
in the next iteration. The value generalization from each πt
and πt+1 can be similarly considered as the two-policy case.
In addition to the former results, we shed the light on the
value generalization along policy improvement path below:

Lemma 2 For θ−1

Pπ0−−−→ θ0

Pπ1−−−→ θ1

Pπ2−−−→ . . . with γt
for each Pπt , if fθt is Lt-continuous at πt for any t ≥ 0,
we have fθt(πt+1) ≤ γtfθt−1

(πt) +Mt, whereMt = Lt ·
d(πt, πt+1).

Corollary 2 By induction, we have fθt(πt+1) ≤∏t
i=0 γtfθ−1

(π0) +
∑t−1
i=0

∏t
j=i+1 γjMi +Mt .

The above results indicate that the value generalization loss
can be recursively bounded and has a upper bound formed by
a repeated contraction on initial loss plus the accumulation
of locality margins induced from each local generalization.
An infinity-case discussionis in Appendix A.5.

Although the theory above depicts the value generalization
among policies, it is not necessarily useful to conventional RL
under GPI paradigm. Therefore, the next question is naturally
whether PeVFA with value generalization among policies is
preferable to the conventional VFA; if yes, what the case is
to be like. To this end, we introduce a desirable condition
which reveals the superiority of PeVFA during consecutive
value approximation along the policy improvement path:

Theorem 1 During θ−1

Pπ0−−−→ θ0

Pπ1−−−→ θ1

Pπ2−−−→ . . . , for
any t ≥ 0, if fθt(πt) + fθt(πt+1) ≤ ‖V πt − V πt+1‖, then
fθt(πt+1) ≤ ‖Vθt(πt)− V πt+1‖.
Theorem 1 shows that the generalized value estimates
Vθt(πt+1) can be closer to the true values of policy πt+1

than Vθt(πt). Note that Vθt(πt) is the value approximation
for πt which is equivalent to the counterpart Vφt for a con-
ventional VFA as value generalization among policies does
not exist. To consecutive value approximation along policy
improvement path, this means that the value generalization
of PeVFA has the potential to offer closer start points at each

iteration. If such closer start points can often exist, we expect
PeVFA to be preferable to conventional VFA since value
approximation can be more efficient with PeVFA and it in
turn facilitates the overall GPI process.

However, the condition in Theorem 1 is not necessarily
met in practice. It depends on the locality margins that may
be related to function family and optimization method of
PeVFA, as well as the scale of policy improvement. We con-
jecture that there are many looser sufficient conditions that
lead to the consequence of Theorem 1, and the presented
condition is the strictest one among them to achieve. This can
be interpreted by considering the geometrical relationship be-
tween V πt , V πt+1 ,Vθt(πt) and Vθt(πt+1). One special case
that requires the sufficient condition presented in Theorem 1
is where Vθt(πt) and Vθt(πt+1) and lie on the line segment
between V πt and V πt+1 . We leave these further theoretical in-
vestigations for future work. Instead, we empirically examine
the existence of such desirable generalization below.

3.3 Empirical Evidences
We empirically investigate the value generalization of PeVFA
with didactic environments. In this section, PeVFA Vθ is pa-
rameterized by neural network and we use the concatenation
of all weights and biases of the policy network as a straight-
forward representation χπ for each policy, called Raw Policy
Representation (RPR). Details are provided in Appendix B.

First, we demonstrate the global generalization (illustrated
in Fig.2(a)) in a continuous 2D Point Walker environment.
We build the policy set Π with synthetic policies, each of
which is a randomly initialized 2-layer tanh-activated neural
network with 2 units for each layer. The size of Π is 20k
and the behavioral diversity of synthetic policies is verified
(see Fig.6(b) in Appendix). We divide Π into the known
policies Π0 for training Vθ and the unseen policies Π1 for
testing. Fig.3(a) shows the value predictions for policies from
training and testing set (100 for each). Our results show that
a PeVFA trained on Π0 achieves reasonable generalization
performance when evaluating on Π1.

Next, we investigate the value generalization along policy
improvement path, i.e., local generalization as in Fig.2(b). We
use a 2-layer 8-unit policy network trained by standard PPO
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Figure 3: Empirical evidences of two kinds of generalization
of PeVFA. (a) Global generalization: PeVFA shows compa-
rable value estimation performance on testing policy set (red)
after learning on training policy set (blue). (b) Local gener-
alization: PeVFA (Vθ(χπ)) shows lower losses than conven-
tional VFA (Vφ) before and after the value approximation
training for successive policies along policy improvement
path. In (b), the left axis is for approximation loss (lower is
better) and the right axis is for average return as a reference
of the policy learning process (green curve).

algorithm (Schulman et al. 2017) in MuJoCo continuous con-
trol tasks. Parallel to the conventional value network Vφ(s)
(i.e., VFA) in PPO, we set a PeVFA network Vθ(s, χπ) as
a reference for the comparison on value approximation loss.
Compared to Vφ, PeVFA Vθ(s, χπ) takes RPR as input and
approximates the values of all historical policies ({πi}ti=0)
in addition. We compare the value approximation losses of
Vφ (red) and Vθ (blue) before (solid) and after (dashed) up-
dating with on-policy samples collected by the improved
policy πt+1 at each iteration. Fig.3(b) shows the results for
InvertedPendulum-v1. Results for all 7 MuJoCo tasks can
be found in Appendix B.2. By comparing approximation
losses before updating (red and blue solid curves), we can
observe that the approximation loss of Vθt(χπt+1) is almost
consistently lower than that of Vφt . This means that the gen-
eralized value estimates offered by PeVFA are usually closer
to the true values of πt+1, demonstrating the consequence
arrived in Theorem 1. For the dashed curves, it shows that
PeVFA Vθt+1

(χπt+1
) can achieve lower approximation loss

for πt+1 than conventional VFA Vφt+1
after the same number

of training with the same on-policy samples. The empirical
evidence above indicates that PeVFA can be preferable to the
conventional VFA for consecutive value approximation. The
generalized value estimates along policy improvement path
have the potential to expedite the process of GPI.

3.4 Reinforcement Learning with PeVFA
Based on the results above, we expect to leverage the value
generalization of PeVFA to facilitate RL. In Algorithm 1,
we propose a general description of RL algorithm under
the paradigm of GPI with PeVFA. For each iteration, the
interaction experiences of current policy and the policy rep-
resentation are stored in a buffer (line 3-4). At an interval of
M iterations, PeVFA is trained via value approximation for
previous policies with the stored data and the policy represen-

Algorithm 1: RL under the paradigm of GPI with PeVFA
(V(s, χπ) is used for demonstration)
1: Initialize policy π0, policy representation model g, PeVFA V−1

and experience buffer D
2: for iteration t = 0, 1, . . . do
3: Rollout policy πt in the environment and obtain k trajecto-

ries Tt = {τi}ki=0

4: Get representation χπt = g(π) for policy πt and add expe-
riences (χπt , Tt) in buffer D

5: if t%M = 0 then
6: Update PeVFA Vt−1(s, χπi) for previous policies with

data {(χπi , Ti)}
t−1
i=0

7: Update policy representation model g, e.g., with ap-
proaches provided in Sec. 4

8: end if
9: Update PeVFA Vt−1(s, χπt) for current policy χπt and set

Vt ←− Vt−1

10: Update πt w.r.t Vt(s, χπt) by policy improvement algo-
rithm and set πt+1 ←− πt

11: end for

tation model is updated according to the method used (line
5-8). This part is unique to PeVFA for preservation and gen-
eralization of knowledge of historical policies. Next, value
approximation for current policy is performed with PeVFA
(line 9). A key difference here is that the generalized value es-
timates (i.e., Vt−1(χπt)) are used as start points. Afterwards,
a successive policy is obtained from typical policy improve-
ment (line 10). Algorithm 1 can be implemented in different
ways and we propose an instance implemented based on PPO
(Schulman et al. 2017) in our experiments later. We refer
the readers to Appendix C for more discussions on GPI with
PeVFA. In the next section, we introduce our methods for
policy representation learning.

4 Policy Representation Learning
To derive practical deep RL algorithms, one key point is
policy representation, i.e., a low-dimensional embedding of
RL policy. Intuitively, the choice of policy representation
influences the approximation and generalization of PeVFA.
To our knowledge, it remains unclear how effective repre-
sentation for general RL policies can be obtained in practice.
In previous section, we demonstrate the effectiveness of us-
ing policy parameters as a naive representation, called RPR,
when policy network is small. However, a usual policy net-
work may have large number of parameters, thus making it
inefficient and even irrational to use RPR for approximation
and generalization. More generally, policy parameters of the
policy we wish to represent may not be accessible.

To this end, we propose a general framework of policy
representation learning as illustrated in Fig.4. The first thing
to consider is data source, i.e., from which we can extract
the information for an effective policy representation. Recall
that the policy is a distribution over state and action space
of high dimensionality. The features of such a distribution is
not directly available. Therefore, we consider two kinds of
data source below that indirectly contains the information of
policies: 1) Surface Policy Representation (SPR): The first
data source is state-action pairs (or trajectories (Grover et al.
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Figure 4: The framework of policy representation training.
Policy network parameters used for OPR or policy state-
action pairs used for SPR are fed into policy encoder with
permutation-invariant (PI) transformations followed by an
MLP, producing the representation χπ. Afterwards, χπ can
be trained by gradients from the value approximation loss
of PeVFA (i.e., End-to-End), as well as the auxiliary loss of
policy recovery or contrastive learning (i.e., InfoNCE) loss.

2018)), since they reflect the behaviors of policy. This data
source is general since no explicit form of policy is assumed.
In a geometric view, learning policy representation from state-
action pairs can be viewed as extracting the features of policy
via scattering sample points on the curved surface of policy
distribution. 2) Origin Policy Representation (OPR): The
other data source is parameters of policy since they determine
the underlying form of policy distribution. Such a data source
is often available during the learning process of deep RL
algorithms when policy is parameterized by neural networks.
Generally, we consider a policy network to be an MLP with
well represented state features (e.g., features extracted by
CNN for pixels or by LSTM for sequences) as input.

The remaining question is how we extract the policy repre-
sentation from the data sources mentioned above. As shown
in Fig.4, we use permutation-invariant (PI) transformations
followed by an MLP to encode the data of policy π into an
embedding χπ for both SPR and OPR. For SPR, each state-
action pair of {(si, ai)}ki=1 is fed into a common MLP, fol-
lowed by a Mean-Reduce operation on the outputted features
across k. For OPR, we perform PI transformation (similar
as done for state-action pairs) inner-layer weights and biases
{(wi, bi)}hi=1 for each layer first, where h denotes the num-
ber of nodes in this layer and wi, bi is the income weight
vector from previous layer and the bias of ith node; then
we concatenate encoding of layers and obtain the OPR. An
illustration for the encoding of OPR is in Fig.12 of Appendix.

To train the policy embedding χπ obtained above, the
most straightforward way is to backpropagate the value ap-
proximation loss of PeVFA in an End-to-End (E2E) fashion
as illustrated on the lower-right of Fig.4. In addition, we
provide two self-supervised training losses for both OPR
and SPR, as illustrated on the upper-right of Fig.4. The first
one is an auxiliary loss (AUX) of policy recovery (Grover
et al. 2018), i.e., to recover the action distributions of π
from χπ under different states. To be specific, an auxil-
iary policy decoder π̄(·|s, χπ) is trained through behav-

ioral cloning, formally to minimize cross-entropy objective
LAUX = −E(s,a) [log π̄(a|s, χπ)]. For the second one, we
propose to train χπ by Contrastive Learning (CL) (Srini-
vas, Laskin, and Abbeel 2020; Schwarzer et al. 2020): poli-
cies are encouraged to be close to similar ones (i.e., posi-
tive samples π+), and to be apart from different ones (i.e.,
negative samples π−) in representation space. For each
policy, we construct positive samples by data augmenta-
tion on policy data, depending on SPR or OPR considered;
and different policies along the policy improvement path
naturally provide negative samples for each other. Finally,
the embedding χπ is optimized through minimizing the In-
foNCE loss (Oord, Li, and Vinyals 2018) below: LCL =

−E(π+,{π−})

[
log

exp(χ>πWχπ+ )

exp(χ>πWχπ+ )+
∑
π− exp(χ>πWχπ− )

]
.

Now, the training of policy representation in Algorithm
1 can be performed with any combination of data sources
and training losses provided above. The pseudo-code of the
overall policy representation training framework is shown in
Algorithm 4 in Appendix D.4. In addition, complete imple-
mentation details and more discussions (e.g., on the scalabil-
ity, representation criteria) are provided in Appendix D.

5 Experiments
In this section, we focus on the following questions:

• Question 1: Can value generalization offered by PeVFA
improve a deep RL algorithm in practice?

• Question 2: Can our proposed framework to learn effec-
tive policy representation?

Our experiments are conducted in several OpenAI Gym con-
tinuous control tasks (1 from Box2D and 5 from MuJoCo)
(Brockman et al. 2016; Todorov, Erez, and Tassa 2012). All
experimental details and curves can be found in Appendix B.

Algorithm Implementation. We use PPO (Schulman et al.
2017) as the basic algorithm and propose a representative
implementation of Algorithm 1, called PPO-PeVFA. PPO is
a policy optimization algorithm that follows the paradigm of
GPI (Fig.1, left). A value network Vφ(s) with parameters φ
(i.e., conventional VFA) is trained to approximate the value
of current policy π; while π is optimized with respect to a
proximal surrogate objective using advantages calculated by
Vφ and GAE (Schulman et al. 2016). Compared with original
PPO, PPO-PeVFA makes use of a PeVFA network Vθ(s, χπ)
with parameters θ rather than the conventional VFA Vφ(s),
and follows the training scheme as in Algorithm 1. Note PPO-
PeVFA has the same policy optimization as original PPO and
only differs at value approximation.

Baselines and Variants. Except for original PPO as a de-
fault baseline, we use another two baselines: 1) PPO-PeVFA
with randomly generated policy representation for each pol-
icy, denoted by Ran PR; 2) PPO-PeVFA with Raw Policy
Representation (RPR), i.e., use the vectorized policy network
parameters as in PVFs (Faccio, Kirsch, and Schmidhuber
2021). Our variants of PPO-PeVFA differ at the policy rep-
resentation used. In total, we consider 6 variants denoted by
the combination of the policy data choice (i.e., OPR, SPR)
and representation principle choice (i.e., E2E, CL, AUX).
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Benchmarks Origin Policy Representation (Ours) Surface Policy Representation (Ours)

Environments PPO Ran PR RPR E2E CL AUX E2E CL AUX

HalfCheetah-v1 2621 2470 2325 3171 ± 427 3725 ± 348 3175 ± 517 2774 ± 233 3349 ± 341 3216 ± 506
Hopper-v1 1639 1226 1097 2085 ± 310 2351 ± 231 2214 ± 360 2227 ± 297 2392 ± 263 2577 ± 217

Walker2d-v1 1505 1269 317 1856 ± 305 2038 ± 315 2044 ± 316 1930.57 ± 456 2203 ± 381 1980 ± 325
Ant-v1 2835 2742 2143 3581 ± 185 4019 ± 162 3784 ± 268 3173 ± 184 3632 ± 134 3397 ± 200

InvDouPend-v1 9344 9355 8856 9357 ± 0.29 9355 ± 0.64 9355 ± 0.68 9355 ± 0.89 9356 ± 0.96 9355 ± 1.42
LunarLander-v2 219 226 -22 238 ± 3.37 239 ± 3.70 234 ± 3.47 236 ± 3.13 234 ± 3.13 235 ± 5.70

Table 1: Average returns (± half a std) over 10 trials for algorithms. Each result is the maximum average evaluation along the
training process. Top two values for each environment are bold.
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Figure 5: Averaged returns (normalized by the maximum of
PPO) aggregated over 4 MuJoCo tasks.

Experimental Details. For all baselines and variants, we
use a normal-scale policy network with 2 layers and 64 units
for each layer, resulting in over 3k∼10k (e.g., Ant-v1) pol-
icy parameters depending on the environments. We do not
assume pre-collected policies. Thus the size of policy set
increases from 1 (i.e., the initial policy) during the learning
process, to about 1k∼2k for a single trial. The dimensionality
of all kinds of policy representation expect for RPR is set to
64. The buffer D maintains recent 200k steps of experience
and the policy data of corresponding policy. The number of
interaction step of each trial is 1M for InvDouPend-v1 and
LunarLander-v2, 4M for Ant-v1 and 2M for the others.

Results. The overall experimental results are summarized
in Tab.1. In Fig.5, we provide aggregated results across all en-
vironments expect for InvDouPend-v1 and LunarLander-v2
(since most algorithms achieve near-optimal results), where
all returns are normalized by the results of PPO in Tab.1. All
learning curves can be found in Appendix F.2.

To Question 1: From Tab.1, we can find that both PPO-
PeVFA w/ OPR (E2E) and PPO-PeVFA w/ SPR (E2E) out-
performs PPO in all 6 tasks, and achieve over 20% improve-
ment in Fig.5. This demonstrates the effectiveness of PeVFA.
Moreover, the improvement is further enlarged (to about
40%) by CL and AUX for both OPR and SPR. This indicates
that the superiority of PeVFA can be further utilized with
better policy representation that offers a more suitable space
for value generalization.

To Question 2: In Tab.1, consistent degeneration is ob-
served for PPO-PeVFA w/ Ran PR due to the negative effects
on generalization caused by the randomness and disorder of
policy representation. This phenomenon seems to be more
severe for PPO-PeVFA w/ RPR due to the complexity of
high-dimensional parameter space. In contrast, the improve-
ment achieved by our proposed PPO-PeVFA variants shows
that effective policy representation can be learned from pol-
icy parameters (OPR) and state-action pairs (SPR) though
value approximation loss (i.e., E2E) and further improved
when additional self-supervised representation learning is
involved as CL and AUX. Overall, OPR slightly outperforms
SPR as CL does over AUX. We hypothesize that it is due to
the stochasticity of state-action pairs which serve as inputs
of SPR and training samples for AUX. This reveals the space
for future improvement.

In addition, we visualize the learned representation in
Fig.18 and 19 in Appendix F.3. We can observe that poli-
cies from different trials are locally continuous and show
different modes of embedding trajectories due to random
initialization and optimization; while a global evolvement
among trials emerges with respect to policy performance.

6 Conclusion and Future Work
In this paper, we propose Policy-extended Value Function Ap-
proximator (PeVFA) and study value generalization among
policies. We propose a new form of GPI based on PeVFA
which is potentially preferable to conventional VFA for value
approximation. Moreover, we propose a general framework
to learn low-dimensional embedding of RL policy. Our ex-
periments demonstrate the effectiveness of the generalization
characteristic of PeVFA and our proposed policy representa-
tion learning methods.

Our work opens up some research directions on value gen-
eralization among policies and policy representation. A possi-
ble future study on the theory of value generalization among
policies is to consider the interplay between approximation
error, policy improvement and local generalization during
GPI with PeVFA. Besides, analysis on influence factors of
value generalization among policies (e.g., policy representa-
tion, architecture of PeVFA) and other utilization of PeVFA
are expected. For better policy representation, inspirations
on OPR may be got from studies on Manifold Hypothesis of
neural network; the selection of more informative state-action
pairs for SPR is also worth research.
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