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Abstract
In the Bayesian reinforcement learning (RL) setting, a prior
distribution over the unknown problem parameters – the re-
wards and transitions – is assumed, and a policy that opti-
mizes the (posterior) expected return is sought. A common
approximation, which has been recently popularized as meta-
RL, is to train the agent on a sample of N problem instances
from the prior, with the hope that for large enough N , good
generalization behavior to an unseen test instance will be ob-
tained. In this work, we study generalization in Bayesian RL
under the probably approximately correct (PAC) framework,
using the method of algorithmic stability. Our main contri-
bution is showing that by adding regularization, the optimal
policy becomes stable in an appropriate sense. Most stabil-
ity results in the literature build on strong convexity of the
regularized loss – an approach that is not suitable for RL as
Markov decision processes (MDPs) are not convex. Instead,
building on recent results of fast convergence rates for mir-
ror descent in regularized MDPs, we show that regularized
MDPs satisfy a certain quadratic growth criterion, which is
sufficient to establish stability. This result, which may be of
independent interest, allows us to study the effect of regular-
ization on generalization in the Bayesian RL setting.

1 Introduction
How can an agent learn to quickly perform well in an un-
known task? This is the basic question in reinforcement
learning (RL). The most popular RL algorithms are de-
signed in a minimax approach – seeking a procedure that
will eventually learn to perform well in any task (Strehl et al.
2006; Jaksch, Ortner, and Auer 2010; Jin et al. 2018). Lack-
ing prior information about the task, such methods must
invest considerable efforts in uninformed exploration, typ-
ically requiring many samples to reach adequate perfor-
mance. In contrast, when a prior distribution over possible
tasks is known in advance, an agent can direct its explo-
ration much more effectively. This is the Bayesian RL (BRL,
Ghavamzadeh et al. 2016) setting. A Bayes-optimal policy
– the optimal policy in BRL – can be orders of magnitude
more sample efficient than a minimax approach, and indeed,
recent studies demonstrated a quick solution of novel tasks,
sometimes in just a handful of trials (Duan et al. 2016; Zint-
graf et al. 2020; Dorfman, Shenfeld, and Tamar 2020).
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For high-dimensional problems, and when the prior does
not obey a very simple structure such as a Dirichlet
prior (Ghavamzadeh et al. 2016), solving BRL is intractable,
and one must resort to approximations. A common approx-
imation, which has been popularized under the term meta-
RL (Duan et al. 2016; Finn, Abbeel, and Levine 2017), is
to replace the distribution over tasks with an empirical sam-
ple of tasks, and seek an optimal policy with respect to the
sample, henceforth termed the empirical risk minimization
policy (ERM policy). In this paper, we investigate the per-
formance of the ERM policy on a novel task from the task
distribution, that is – we ask how well the policy generalizes.

We focus on the Probably Approximately Correct (PAC)
framework, which is popular in supervised learning, and
adapt it to the BRL setting. Since the space of determin-
istic history-dependent policies is finite (in a finite horizon
setting), a trivial generalization bound for a finite hypothe-
sis space can be formulated. However, the size of the policy
space, which such a naive bound depends on, leads us to
seek alternative methods for controlling generalization. In
particular, regularization is a well-established method in su-
pervised learning that can be used to trade-off training error
and test error. In RL, regularized MDPs are popular in prac-
tice (Schulman et al. 2017), and have also received interest
lately due to their favorable optimization properties (Shani,
Efroni, and Mannor 2020; Neu, Jonsson, and Gómez 2017).

The main contribution of this work is making the con-
nection between regularized MDPs and PAC generalization,
as described above. We build on the classical analysis of
Bousquet and Elisseeff (2002), which bounds generalization
through algorithmic stability. Establishing algorithmic sta-
bility results for regularized MDPs, however, is not trivial,
as the loss function in MDPs is not convex in the policy. Our
key insight is that while not convex, regularized MDPs sat-
isfy a certain quadratic growth criterion, which is sufficient
to establish stability. To show this, we build on the recently
discovered fast convergence rates for mirror descent in regu-
larized MDPs (Shani, Efroni, and Mannor 2020). Our result,
which may be of independent interest, allows us to derive
generalization bounds that can be controlled by the regu-
larization magnitude. Furthermore, we show that when the
MDP prior obeys certain structure, our results significantly
improve the trivial finite hypothesis space bound.

To our knowledge, this is the first work to formally study
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generalization in the BRL setting. While not explicitly men-
tioned as such, the BRL setting has been widely used by
many empirical studies on generalization in RL (Tamar et al.
2016; Cobbe et al. 2020). In fact, whenever the MDPs come
from a distribution, BRL is the relevant formulation. Our
results therefore also establish a formal basis for studying
generalization in RL.

This paper is structured as follows. After surveying re-
lated work in Section 2, we begin with background on
MDPs, BRL, and algorithmic stability in Section 3, and
then present our problem formulation and straightforward
upper and lower bounds for the ERM policy in Section 4. In
Section 5 we discuss fundamental properties of regularized
MDPs. In Section 6 we describe a general connection be-
tween a certain rate result for mirror descent and a quadratic
growth condition, and in Section 7 we apply this connection
to regularized MDPs, and derive corresponding generaliza-
tion bounds. We discuss our results and future directions in
Section 8.

2 Related Work
Generalization to novel tasks in RL has been studied ex-
tensively, often without making the explicit connection
to Bayesian RL. Empirical studies can largely be classi-
fied into three paradigms. The first increases the number
of training tasks, either using procedurally generated do-
mains (Cobbe et al. 2020), or by means such as image aug-
mentation (Kostrikov, Yarats, and Fergus 2020) and task
interpolation (Yao, Zhang, and Finn 2021). The second
paradigm adds inductive bias to the neural network, such
as a differentiable planning or learning computation (Tamar
et al. 2016; Boutilier et al. 2020), or graph neural net-
works (Rivlin, Hazan, and Karpas 2020). The third is meta-
RL, where an agent is explicitely trained to generalize, either
using a Bayesian RL objective (Duan et al. 2016; Zintgraf
et al. 2020), or through gradient based meta learning (Finn,
Abbeel, and Levine 2017). We are not aware of theoretical
studies of generalization in Bayesian RL.

The Bayesian RL algorithms of Guez, Silver, and Dayan
(2012) and Grover, Basu, and Dimitrakakis (2020) perform
online planning in the belief space by sampling MDPs from
the posterior at each time step, and optimizing over this sam-
ple. The performance bounds for these algorithms require
the correct posterior at each step, implicitly assuming a cor-
rect prior, while we focus on learning the prior from data.
The lower bound in our Proposition 2 demonstrates how er-
rors in the prior can severely impact performance.

Our stability-based approach to PAC learning is based on
the seminal work of Bousquet and Elisseeff (2002). More
recent works investigated stability of generalized learn-
ing (Shalev-Shwartz et al. 2010), multi-task learning (Zhang
2015), and stochastic gradient descent (Hardt, Recht, and
Singer 2016). To our knowledge, we provide the first sta-
bility result for regularized MDPs, which, due to their non-
convex nature, requires a new methodology. The stabil-
ity results of Charles and Papailiopoulos (2018) build on
quadratic growth, a property we use as well in Proposition 4.
However, all the other results in this paper, including show-

ing that quadratic growth holds for regularized MDPs, and
deriving bounds for Bayesian RL, are novel.

Finally, there is recent interest in PAC-Bayes theory for
meta learning (Amit and Meir 2018; Rothfuss et al. 2021;
Farid and Majumdar 2021). To our knowledge, this theory
has not yet been developed for meta RL.

3 Background
We give background on BRL and algorithmic stability.

3.1 MDPs and Bayesian RL
A stationary Markov decision process (MDP, Bertsekas
2006) is defined by a tuple M = (S,A, Pinit, C, P,H),
where S and A are the state and actions spaces, Pinit is an
initial state distribution, C : S×A → [0, Cmax] is a bounded
cost function, P is the transition kernel, and H is the episode
horizon, meaning that after H steps of interaction, the state
is reset to s ∼ Pinit. We make the additional assumption that
the cost C(s, a) ∈ C, and C is a finite set.1

In the Bayesian RL setting (BRL, Ghavamzadeh et al.
2016), there is a distribution over MDPs P (M), defined over
some space of MDPs M. For simplicity, we assume that S,
A, Pinit, and H are fixed for all MDPs in M, and thus the
only varying factors between different MDPs are the costs
and transitions, denoted CM and PM .

A simulator for an MDP M is a sequential algorithm
that at time t outputs st, and, given input at, outputs
ct = C(st, at), and transitions the state according to
st+1 ∼ P (·|st, at). After every H steps of interaction,
the state is reset to s ∼ Pinit. Let the history at time t be
ht = {s0, a0, c0, s1, a1, c1 . . . , st}. A policy π is a stochas-
tic mapping from the history to a probability over actions
π(a|ht) = P (at = a|ht).

A typical MDP objective is to minimize the T -horizon ex-
pected return Eπ;M

[∑T
t=0 CM (st, at)

]
, where the expecta-

tion is with respect to the policy π and state transitions pre-
scribed by M . In BRL, the objective is an average over the
possible MDPs in the prior:

L(π) = EM∼PEπ;M

[
T∑

t=0

CM (st, at)

]
. (1)

We denote by H the space of T -length histories. Note that
by our definitions above, H is finite. Also note that T is not
necessarily equal to H .

3.2 PAC Generalization and Algorithmic Stability
Statistical learning theory (Vapnik 2013) studies the gener-
alization performance of a prediction algorithm trained on a
finite data sample. Let S = {z1, . . . , zN} denote a sample
of N ≥ 1 i.i.d. elements from some space Z with distri-
bution P (z). A learning algorithm A takes as input S and
outputs a prediction function AS . Let 0 ≤ ℓ(AS , z) ≤ B,

1This assumption is non-standard, and required to guarantee a
finite set of possible histories in the Bayesian RL setting. In prac-
tice, the reward can be discretized to satisfy the assumption.
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where z ∈ Z , denote the loss of the prediction on a sam-
ple z. The population risk is R(A, S) = Ez [ℓ(AS , z)], and
the empirical risk is R̂(A, S) = 1

N

∑N
i=1 [ℓ(AS , zi)]. Typ-

ically, algorithms are trained by minimizing the empirical
risk. Probably approximately correct (PAC) learning algo-
rithms are guaranteed to produce predictions with a popula-
tion risk that is close to the empirical risk with high prob-
ability, and thus generalize. We recite fundamental results
due to Bousquet and Elisseeff (2002) that connect algorith-
mic stability and PAC bounds.

Let S\i denote the set S with element i removed. An al-
gorithm satisfies uniform stability β if the following holds:

∀S ∈ ZN , ∀i ∈ {1, . . . , N}, ∥ℓ(AS , ·)−ℓ(AS\i , ·)∥∞ ≤ β.

An algorithm is said to satisfy pointwise hypothesis stability
β if the following holds:

∀i ∈ {1, . . . , N} ,ES [|ℓ(AS , zi)− ℓ(AS\i , zi)|] ≤ β.

Theorem 1 (Theorem 11 in Bousquet and Elisseeff 2002).
Let A be an algorithm with pointwise hypothesis stability β.
Then, for any δ ∈ (0, 1), with probability at least 1− δ over
the random draw of S,

R(A, S) ≤ R̂(A, S) +

√
B2 + 12BNβ

2Nδ
.

Theorem 2 (Theorem 12 in Bousquet and Elisseeff 2002).
Let A be an algorithm with uniform stability β. Then, for
any δ ∈ (0, 1), with probability at least 1−δ over the random
draw of S,

R(A, S) ≤ R̂(A, S) + 2β + (4Nβ +B)

√
ln(1/δ)

2N
.

The bounds in Theorems 1 and 2 are useful if one can
show that for a particular problem, β scales as o(1/

√
N).

Indeed, Bousquet and Elisseeff 2002 showed such results
for several supervised learning problems. For example, L2

regularized kernel regression has stability O(1/λN), where
λ – the regularization weight in the loss – can be chosen to
satisfy the o(1/

√
N) condition on β.

4 Problem Formulation
We next describe our learning problem. We are given a train-
ing set of N simulators for N independently sampled MDPs,
{M1, . . . ,MN}, where each Mi ∼ P (M); in the following,
we will sometimes refer to this training set as the training
data. We are allowed to interact with these simulators as we
wish for an unrestricted amount of time. From this interac-
tion, our goal is to compute a policy π that obtains a low
expected T -horizon cost for a test simulator M ∼ P (M),
i.e., we wish to minimize the population risk (1). It is well
known (e.g., Ghavamzadeh et al. 2016) that there exists a
deterministic history dependent policy that minimizes (1),
also known as the Bayes-optimal policy, and we denote it
by πBO. Our performance measure is the T -horizon average
regret,

RT (π) =EM∼P

[
Eπ;M

[ T∑
t=0

CM (st, at)

]

−EπBO;M

[ T∑
t=0

CM (st, at)

]]
= L(π)− L(πBO).

(2)

Remark 1. The BRL formulation generalizes several spe-
cial cases that were explored before in the context of gen-
eralization in RL. When T = kH , this setting is often re-
ferred to as k-shot learning, and in particular, for T = H , the
learned policy is evaluated on solving a test task in a single
shot. Another popular setting is the contextual MDP (Hal-
lak, Di Castro, and Mannor 2015), where, in addition to the
state, each task M is identified using some task identifier
idM , which is observed. By adding idM to the state space,
and modifying the dynamics such that idM does not change
throughout the episode, this setting is a special case of our
formalism. Finally, many previous studies (e.g., Tamar et al.
2016) considered the same performance objective, but lim-
ited the optimization to Markov policies (i.e., policies that
depend only on the current state and not on the full his-
tory). In this work, we specifically consider history depen-
dent policies, as it allows us to meaningfully compare the
learned policy with the optimum.

4.1 Analysis of an ERM Approach
Our goal is to study the generalization properties of learn-
ing algorithms in the BRL setting. An intuitive approach, in
the spirit of the empirical risk minimization (ERM, Vapnik
2013) principle, is to minimize the empirical risk,

L̂(π) = 1

N

N∑
i=1

Eπ;Mi

[
T∑

t=0

CMi(st, at)

]

≡ EM∼P̂N
Eπ,M

[
T∑

t=0

CM (st, at)

]
,

(3)

where P̂N is the empirical distribution of the N sampled
MDPs. Let π̂∗ ∈ argminπ∈H L̂(π) denote the ERM policy.

Since the hypothesis space of deterministic history depen-
dent policies is finite, and the loss is bounded by CmaxT ,
a trivial generalization bound can be formulated as fol-
lows (following PAC bounds for a finite hypothesis class,
e.g., Shalev-Shwartz and Ben-David 2014).

Proposition 1. Consider the ERM policy π̂∗, and let H̄
denote the set of deterministic T -length history dependent
policies. Then with probability at least 1− δ,

RT (π̂
∗) ≤

√
2 log(2|H̄|/δ)C2

maxT
2

N
.

Note that |H̄| = |A||H| ≈ |A|(|S||A||C|)T , so log |H̄| =
O((|S||A||C|)T ). The exponential dependence on T in the
bound is not very satisfying, and one may ask whether a
more favourable upper bound can be established for the
ERM policy. To answer this, we next give a lower bound,
showing that without additional assumptions on the prob-
lem, the exponential dependence on T is necessary.

Proposition 2. For any 0 ≤ δ < 1, there is an ϵ > 0, and a
problem, such that for N = 2T , with probability larger than
δ we have RT (π̂

∗) > ϵ.

Proof. (sketch; full proof in Section E.) Let T = H ,
and consider an MDP space M of size 2H , where
the state space has 2H + 1 states that we label
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s0, s
0
1, s

1
1, . . . , s

0
t , s

1
t , . . . , s

0
H , s1H . The initial state for all

MDPs in M is s0. A cost is only obtained at the last
time step, and depends only on the last action. Each MDP
M ∈ M corresponds to a unique binary number of size H ,
denoted x, and the transitions for each MDP correspond to
the digits in its identifier x: there is a high probability to
transition to s0t from either s0t−1 or s1t−1 only if the t’s digit
of x is zero, and similarly, there is a high probability to tran-
sition to s1t from either s0t−1 or s1t−1 only if the t’s digit of x
is one. Thus, with high probability, a trajectory in the MDP
traces the digits of its identifier x. Given a finite data sample,
there is a non-negligible set of MDPs that will not appear in
the data. For any trajectory that corresponds to an x from
this set, the ERM policy at time H will not be able to cor-
rectly identify the most probable MDP, and will choose an
incorrect action with non-negligible probability.

The results above motivate us to seek alternatives to the
ERM approach, with the hope of providing more favorable
generalization bounds. In the remainder of this paper, we
focus on methods that add a regularization term to the loss.

5 Regularized MDPs
In supervised learning, a well-established method for con-
trolling generalization is to add a regularization term, such
as the L2 norm of the parameters, to the objective func-
tion that is minimized. The works of Bousquet and Elisseeff
(2002); Shalev-Shwartz et al. (2010) showed that for con-
vex loss functions, adding a strongly convex regularizer such
as the L2 norm leads to algorithmic stability, which can be
used to derive generalization bounds that are controlled by
the amount of regularization. In this work, we ask whether a
similar approach of adding regularization to the BRL objec-
tive (3) can be used to control generalization.

We focus on the following regularization scheme. For
some λ > 0, consider a regularized ERM of the form:

L̂λ(π) =
1

N

N∑
i=1

Eπ;Mi

[
T∑

t=0

CMi
(st, at) + λR(π(·|ht))

]
,

where R is some regularization function applied to the pol-
icy. In particular, we will be interested in L2 regularization,
R(π(·|ht)) = ∥π(·|ht)∥2, and in the remainder of this paper
R corresponds to this form. We also define the regularized
population risk,

Lλ(π) = EM∼PEπ;M

[
T∑

t=0

CM (st, at) + λR(π(·|ht))

]
.

In standard (non-Bayesian) RL, regularized MDPs have
been studied extensively (Neu, Jonsson, and Gómez 2017).
A popular motivation has been to use the regularization to
induce exploration (Fox, Pakman, and Tishby 2015; Schul-
man et al. 2017). Recently, Shani, Efroni, and Mannor
(2020) showed that for optimizing a policy using k itera-
tions of mirror descent (equivalent to trust region policy op-
timization Schulman et al. 2015) with L2 or entropy regu-
larization enables a fast O(1/k) convergence rate, similarly
to convergence rates for strongly convex functions, although

the MDP objective is not convex. In our work, we build on
these results to show a stability property for regularization
in the BRL setting described above. We begin by adapting
a central result in Shani, Efroni, and Mannor (2020), which
was proved for discounted MDPs, to our finite horizon and
history dependent policy setting.

The BRL objectives in Eq. (1) (similarly, Eq. (3)) can be
interpreted as follows: we first choose a history dependent
policy π(ht), and then nature draws an MDP M ∼ P (M)

(similarly, M ∼ P̂N ), and we then evaluate π(ht) on M .
The expected cost (over the draws of M ), is the BRL perfor-
mance. In the following discussion, for simplicity, the results
are given for the prior P (M), but they hold for P̂N as well.

Let P (M |ht;π) denote the posterior probability of nature
having drawn the MDP M , given that we have seen the his-
tory ht under policy π. From Bayes rule, we have that

P (M |ht;π) ∝ P (ht|M ;π)P (M).

Let us define the regularized expected cost,

Cλ(ht, at;π) = EM |ht;πCM (st, at) + λR(πt(·|ht)),

and the value function,

V π
t (ht) = Eπ;M|ht

[
T∑

t′=t

Cλ(ht′ , at′ ;π)

∣∣∣∣∣ht

]
.

The value function satisfies Bellman’s equation. Let

P (ct, st+1|ht, at) =∑
M

P (M |ht)P (ct|M, st, at)P (st+1|M, st, at)

denote the posterior probability of observing ct, st+1 at time
t. Then

V π
T (hT ) =

∑
aT

π(aT |hT )Cλ(hT , aT ;π),

and, letting ht+1 = {ht, at, ct, st+1},

V π
t (ht) =

∑
at

π(at|ht)

(
Cλ(ht, at;π)

+
∑

ct,st+1

P (ct, st+1|ht, at)V
π
t+1({ht, at, ct, st+1})

)
.

Consider two histories ht, h̄t̄ ∈ H, and let

Pπ(h̄t̄|ht)=

{∑
at
π(at|ht)P (c̄t, s̄t+1|ht, at), if t̄ = t+ 1

0, else

denote the transition probability between histories. Also, de-
fine

Cπ(ht) =
∑
at

π(at|ht)Cλ(ht, at;π).

We can write the Bellman equation in matrix form as follows

V π = Cπ +PπV π, (4)

where V π and Cπ are vectors in R|H|, and Pπ is a matrix in
R|H|×|H|.
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The uniform trust region policy optimization algorithm of
Shani, Efroni, and Mannor (2020) is a type of mirror de-
scent algorithm applied to the policy in regularized MDPs.
An adaptation of this algorithm for our setting is given in
Sec. B.4 of the supplementary material2. The next result pro-
vides a fundamental inequality that the policy updates of this
algorithm satisfy, in the spirit of an inequality that is used to
establish convergence rates for mirror descent (cf. Lemma
8.11 in Beck 2017). The proof follows Lemma 10 in Shani,
Efroni, and Mannor (2020), with technical differences due
to the finite horizon setting; it is given in Sec. B.4.
Proposition 3. Let {πk} be the sequence generated by uni-
form trust region policy optimization with step sizes {αk}
and L2 regularization. Then for every π and k ≥ 0,

αk(I −Pπ)(V πk − V π) ≤ (1− αkλ)

2
∥π − πk∥22

− 1

2
∥π − πk+1∥22 +

λαk

2
(∥πk∥22 − ∥πk+1∥22) +

α2
kL

2

2
e,

where e is a vector of ones, L = CmaxT |A|, and ∥π∥2 ∈
R|H| denotes the L2 norm of the policy element-wise, for
each history.

In the following, we shall show that Proposition 3 can
be used to derive stability bounds in the regularized BRL
setting. To simplify our presentation, we first present a key
technique that our approach builds on in a general optimiza-
tion setting, and only then come back to MDPs.

6 Stability based on the Fundamental
Inequality for Mirror Descent

Standard stability results, such as in Bousquet and Elisseeff
(2002); Shalev-Shwartz et al. (2010), depend on convexity
of the loss function, and strong convexity of the regulariz-
ing function (Bousquet and Elisseeff 2002). While our L2

regularization is strongly convex, the MDP objective is not
convex in the policy.3 In this work, we show that neverthe-
less, algorithmic stability can be established. To simplify our
presentation, we first present the essence of our technique in
a general form, without the complexity of MDPs. In the next
section, we adapt the technique to the BRL setting.

Our key insight is that the fundamental inequality of mir-
ror descent (cf. Prop. 3), actually prescribes a quadratic
growth condition. The next lemma shows this for a general
iterative algorithm, but it may be useful to think about mir-
ror descent when reading it. In the sequel, we will show that
similar conditions hold for regularized MDPs.
Lemma 1. Let f : X → R be some function that attains a
minimum f(x∗) ≤ f(x) ∀x ∈ X . Consider a sequence of
step sizes α0, α1, · · · ∈ R+ and corresponding sequence of
iterates x0, x1, · · · ∈ X . Assume that f(xk+1) ≤ f(xk) for
all k ≥ 0. Also consider a sequence of values z0, z1, · · · ∈
R+ that satisfy |zk − z0| ≤ B for all k ≥ 0. Assume that

2The supplementary material can be found in the full technical
report (Tamar, Soudry, and Zisselman 2021)

3The linear programming formulation is not suitable for estab-
lishing stability in our BRL setting, as changing the prior would
change the constraints in the linear program.

there exists λ > 0 and L ≥ 0 such that the following holds
for any step size sequence, all k ≥ 0, and any x ∈ X :

αk (f(xk)− f(x)) ≤ (1− λαk) ∥xk − x∥2 − ∥xk+1 − x∥2

+ λαk (zk − zk+1) +
α2
kL

2

2
. (5)

Then the following statements hold true.
1. For step sizes αk = 1

λ(k+2) , the sequence converges to
x∗ at rate

f(xk)− f(x∗) ≤ L2 log k

λk
.

2. Quadratic growth: λ∥x∗ − x0∥2 ≤ f(x0)− f(x∗).

Proof. The first claim is similar to Theorem 2 of Shani,
Efroni, and Mannor (2020); for completeness we give a full
proof in Sec. A of the supplementary. We prove the second
claim. Let αk = 1

λ(k+2) , and multiply (5) by λ(k + 2):

f(xk)−f(x0)≤λ(k + 1)∥xk−x0∥2−λ(k+2)∥xk+1−x0∥2

+ λ (zk − zk+1) +
L2

2λ(k + 2)
.

Summing over k, and observing the telescoping sums:
N∑

k=0

(f(xk)− f(x0))

≤ −λ(N + 2)∥xN+1 − x0∥2 + λ (z0−zN+1)+
L2

2λ

N∑
k=0

1

(k+2)

≤ −λ(N + 2)∥xN+1 − x0∥2 + λB +
L2 log(N + 2)

2λ
.

Since f(xk) is decreasing,
∑N

k=0 (f(xN )− f(x∗)) ≤∑N
k=0 (f(xk)− f(x∗)), and

N (f(xN )− f(x0)) ≤− λ(N + 2)∥xN+1 − x0∥2 + λB

+
L2 log(N + 2)

2λ
.

Dividing by N , taking N → ∞, and using the first part of
the lemma:

f(x∗)− f(x0) ≤ −λ∥x∗ − x0∥2.

Rearranging give the result.

We now present a stability result for a regularized ERM
objective. The proof resembles Shalev-Shwartz et al. (2010),
but replaces strong convexity with quadratic growth.
Proposition 4. Let z0, z1 · · · ∈ Z denote a sequence of
independent samples, and let ℓ : X × Z → R be a loss
for a predictor x ∈ X and sample z ∈ Z . Consider a
regularized ERM objective LN (x) = 1

N

∑N
i=1 ℓ(x, zi) +

λR(x), and let L
\j
N = 1

N

∑N
i=1
i̸=j

ℓ(x, zi) + λR(x). As-

sume that ℓ is β-Lipschitz: for any z ∈ Z , and any x, x′,
|ℓ(x, z)− ℓ(x′, z)| ≤ β∥x − x′∥. Assume that LN (x)

and L
\j
N (x) have unique minimizers, and denote them x∗
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and x∗,\j , respectively. Further assume quadratic growth:
λ∥x∗ − x∥2 ≤ LN (x) − LN (x∗) for any x ∈ X . Then,
we have that

∥x∗ − x∗,\j∥ ≤ β

λN
,

and ∀z ∈ Z

ℓ(x∗, z)− ℓ(x∗,\j , z) ≤ β2

λN
.

Proof. (sketch; full proof in Sec. A.) Let ∆ = LN (x∗,\j)−
LN (x∗). From quadratic growth, we have that

∆ ≥ λ∥x∗ − x∗,\j∥2.
On the other hand, by taking out the j’th element from the
loss terms LN , and observing that x∗,\j minimizes L\j

N , we
have that

∆ =
1

N

N∑
i=1
i ̸=j

ℓ(x∗,\j , zi)+λR(x∗,\j)− 1

N

N∑
i=1
i ̸=j

ℓ(x∗, zi)−λR(x∗)

+
ℓ(x∗,\j , zj)− ℓ(x∗, zj)

N

≤ ℓ(x∗,\j , zj)− ℓ(x∗, zj)

N
,

and from the Lipschitz condition, ∆ ≤ β∥x∗−x∗,\j∥
N . Com-

bining the above inequalities for ∆ gives ∥x∗ − x∗,\j∥ ≤
β
λN , and the final result is obtained by using the Lipschitz
condition one more time.

7 Stability for Regularized Bayesian RL
We are now ready to present stability bounds for the L2-
regularized Baysian RL setting. Let µ ∈ R|H| denote the
distribution over h0, the initial history (we assume that all
elements in the vector that correspond to histories of length
greater than 0 are zero). Recall the regularized ERM loss
L̂λ(π), and let π∗ denote its minimizer. Define the leave-
one-out ERM loss,

L̂λ,\j(π) =
1

N

N∑
i=1
i̸=j

Eπ;Mi

[
T∑

t=0

C(st, at) + λR(π(·|ht))

]
,

and let π\j,∗ its minimizer. Recall the definition of Pπ –
the transition probability between histories under policy π,
which depends on the prior. In the following, we use the fol-
lowing notation: Pπ refers to the empirical prior P̂N , while
Pπ

Mj
refers to a prior that has all its mass on a single MDP

Mj . The following theorem will be used to derive our stabil-
ity results. The proof is in Sec. C.

Theorem 3. Let ∆ = L̂λ(π\j,∗)− L̂λ(π∗). We have that

∆ ≥ λ

2
µ⊤(I −Pπ\j,∗

)−1∥π\j,∗ − π∗∥22,

and

∆ ≤ 1

N
CmaxT

√
|A|µ⊤(I −Pπ\j,∗

Mj
)−1

∥∥∥π\j,∗ − π∗
∥∥∥
2
.

Following the proof of Proposition 4, we would like to use
the two expressions in Theorem 3 to bound

∥∥π\j,∗ − π∗
∥∥
2
,

which would directly lead to a stability result. This is com-
plicated by the fact that different factors (I −Pπ\j,∗

)−1 and
(I − Pπ\j,∗

Mj
)−1 appear in the two expressions. Our first re-

sult assumes that these expressions cannot be too different;
a discussion of this assumption follows.
Assumption 1. For any two MDPs M,M ′ ∈ M, and any
policy π, let Pπ

M and Pπ
M ′ denote their respective history

transition probabilities. There exists some D < ∞ such that
for any x ∈ R|H|

µ⊤(I −Pπ
M )−1x ≤ Dµ⊤(I −Pπ

M ′)−1x.

Let us define the regularized loss for MDP M , Lλ
M (π) =

Eπ;M

[∑T
t=0 CM (st, at) + λR(π(·|ht))

]
. We have the fol-

lowing result.
Corollary 1. Let Assumption 1 hold, and let κ =
2D2C2

maxT
2|A|. Then, for any MDP M ′ ∈ M,

Lλ
M ′(π\j,∗)− Lλ

M ′(π∗) ≤ κ

λN
,

and with probability at least 1− δ,

RT (π̂
∗) ≤ 2λT +

2κ

λN
+

(
4κ

λ
+ 3CmaxT

)√
ln(1/δ)

2N
.

Note that each element that corresponds to history ht in
the vector µ⊤(I −Pπ

M )−1 is equivalent to P (ht|M ;π), the
probability of observing ht under policy π and MDP M (see
Sec. B.1 for formal proof). Thus, Assumption 1 essentially
states that two different MDPs under the prior cannot visit
completely different histories given the same policy. With
our regularization scheme, such an assumption is required
for uniform stability: if the test MDP can reach completely
different states than possible during training, it is impossible
to guarantee anything about the performance of the policy in
those states. Unfortunately, the constant D can be very large.
Let

q = sup
M,M ′∈M,s,s′∈S,a∈A,c∈C

PM (s′, c|s, a)
PM ′(s′, c|s, a)

,

where we assume that 0/0 = 1. Then,
P (ht|M ;π)/P (ht|M ′;π) = Πt

PM (st+1,ct|st,at)
PM′ (st+1,ct|st,at)

is at
most qT , and therefore D can be in the order of qT . One
way to guarantee that D is finite, is to add a small amount
of noise to any state transition. The following example
estimates q is such a case.
Example 1. Consider modifying each MDP M in M such
that PM (s′, c|s, a) → (1 − α)PM (s′, c|s, a) + α/|S||C|,
where α ∈ (0, 1). In this case, q ≤ (1−α)|S||C|

α .
Let us now compare Corollary 1 with the trivial bound in

Proposition 1. First, Corollary 1 allows to control general-
ization by increasing the regularization λ. The term 2λT is
a bias, incurred by adding the regularization to the objec-
tive, and can be reduced by decreasing λ. Comparing the
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constants of the O(1/
√
N) term, the dominant terms are

D2 vs. (|S||C||A|)T . Since D does not depend on |A|, the
bound in Corollary 1 is important for problems with large
|A|. The example above shows that in the worst case, D2

can be O((|S||C|)2T ). There are, of course, more favorable
case, where the structure of M is such that D is better be-
haved.
Example 2. Consider an hypothesis set M such that all
MDPs in M differ only on a set of states that cannot be vis-
ited more than k times in an episode. In this case, D would
be in the order of qkT/H .

Another case is where the set M is finite. In this case,
we can show that the pointwise hypothesis stability does not
depend on D, and we obtain a bound that does not depend
exponentially on T , as we now show.
Corollary 2. Let M be a finite set, and let Pmin =
minM∈M P (M). Then

E
[
Lλ
Mj

(π\j,∗)− Lλ
Mj

(π∗)
]

≤ 4C2
maxT

2|A|
λNPmin

+ exp

(
−NPmin

8

)
CmaxT,

and with probability at least 1 − δ, (ignoring exponential
terms)

RT (π̂
∗) ≤ 2λT +

√
C2

maxT
2

2Nδ
+

48C3
maxT

3|A|
2δλNPmin

.

In the generalization bounds of both Corollary 1 and
Corollary 2, reducing λ and increasing N at a rate such
that the stability is o(1/

√
N) will guarantee learnability, i.e.,

convergence to πBO as N → ∞.
Example 3. Under the setting of Corollary 2, letting λ =
N−1/3 gives that, with probability at least 1 − δ, (ignoring
exponential terms)

RT (π̂
∗) ≤ 2T

N1/3
+

√
C2

maxT
2

2Nδ
+

48C3
maxT

3|A|
2δN2/3Pmin

.

For a finite N , and when there is structure the hypothe-
sis space M, as displayed for example in D, the bounds in
Corollaries 1 and 2 allow to set λ to obtain bounds that are
more optimistic than the trivial bound in Proposition 1. In
these cases, our results show that regularization allows for
improved generalization.
Example 4. Set λ = 1. Then the bound in Corollary 2 be-
comes

RT (π̂
∗) ≤ 2T +

√
C2

maxT
2

2Nδ
+

48C3
maxT

3|A|
2δNPmin

,

while the naive bound is

RT (π̂
∗) ≤

√
ln(2/δ) + (|S||A||C|)TC2

maxT
2

N
.

For a finite N that is much smaller than (|S||A||C|)T , and
for reasonable values of Pmin and δ, the naive bound can
be completely vacuous (larger than CmaxT – the maximum
regret possible), while the bound in Corollary 2 can be sig-
nificantly smaller.

8 Discussion

In this work, we analyzed generalization in Bayesian RL,
focusing on algorithmic stability and a specific form of pol-
icy regularization. The bounds we derived can be controlled
by the amount of regularization, and under some structural
assumptions on the space of possible MDPs, compare favor-
ably to a trivial bound based on the finite policy space. We
next outline several future directions.

Specialized regularization for k-shot learning: One can
view our results as somewhat pessimistic – at worst, they
require that every history has a non-zero probability of be-
ing visited, and even then, the dependence on T can be ex-
ponential. One may ask whether alternative regularization
methods could relax the dependence on T . We believe this
is true, based on the following observation. Recall the ex-
ample in the lower bound of Proposition 2. Let T = kH ,
and consider the policy that at time step t = H chooses an
action, and based on the observed cost chooses which action
to use at time steps t = 2H, t = 3H, .... Note that after ob-
serving the first cost, it is clear which action is optimal, and
therefore the policy obtains at most a k−1

k fraction of the op-
timal total cost on both training and test, regardless of the
training data. More generally, there exist deterministic poli-
cies, such as the Q-learning algorithm of Jin et al. (2018),
that achieve O

(√
H3|S||A|T

)
regret for any MDP. Thus,

we believe that in the k-shot learning setting, regularization
methods that induce efficient exploration can be devised. We
leave this as an open problem.

Continuous MDPs: Another important direction is devel-
oping PAC algorithms for continuous state, cost, and action
spaces. It is clear that without the finite hypothesis space
assumption, overfitting is a much more serious concern; in
Sec. F of the supplementary material we provide a simple
example of this, when only the costs do not belong to a fi-
nite set. We hypothesize that regularization techniques can
be important in such settings, in concordance with known
results for supervised learning. We believe that the tools for
stability analysis in MDPs that we developed in this work
may be useful for this problem, which we leave to future
work.

Implicit regularization: Finally, all the results in this
work considered optimal solutions of the regularized
Bayesian RL problem. In practice, due to the size of the state
space that scales exponentially with the horizon, computing
such policies is intractable even for medium-sized problems.
Interestingly, approximate solutions do not necessarily hurt
generalization: implicit regularization, for example as im-
plied by using stochastic gradient descent for optimization,
is known to improve generalization, at least in supervised
learning (Hardt, Recht, and Singer 2016; Zou et al. 2021).
We hypothesize that stability results similar to Hardt, Recht,
and Singer (2016) may be developed for Bayesian RL as
well, using the quadratic growth property established here.
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Neu, G.; Jonsson, A.; and Gómez, V. 2017. A unified view
of entropy-regularized markov decision processes. arXiv
preprint arXiv:1705.07798.
Rivlin, O.; Hazan, T.; and Karpas, E. 2020. Generalized
planning with deep reinforcement learning. arXiv preprint
arXiv:2005.02305.
Rothfuss, J.; Fortuin, V.; Josifoski, M.; and Krause, A.
2021. PACOH: Bayes-optimal meta-learning with PAC-
guarantees. In International Conference on Machine Learn-
ing, 9116–9126. PMLR.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015. Trust region policy optimization. In International
conference on machine learning, 1889–1897. PMLR.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Shalev-Shwartz, S.; and Ben-David, S. 2014. Understanding
machine learning: From theory to algorithms. Cambridge
university press.
Shalev-Shwartz, S.; Shamir, O.; Srebro, N.; and Sridharan,
K. 2010. Learnability, stability and uniform convergence.
The Journal of Machine Learning Research, 11: 2635–2670.
Shani, L.; Efroni, Y.; and Mannor, S. 2020. Adaptive trust
region policy optimization: Global convergence and faster
rates for regularized mdps. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, 5668–5675.
Strehl, A. L.; Li, L.; Wiewiora, E.; Langford, J.; and
Littman, M. L. 2006. PAC model-free reinforcement learn-
ing. In Proceedings of the 23rd international conference on
Machine learning, 881–888.

8430



Tamar, A.; Soudry, D.; and Zisselman, E. 2021. Regular-
ization Guarantees Generalization in Bayesian Reinforce-
ment Learning through Algorithmic Stability. arXiv preprint
arXiv:2109.11792.
Tamar, A.; Wu, Y.; Thomas, G.; Levine, S.; and Abbeel, P.
2016. Value iteration networks. In Advances in Neural In-
formation Processing Systems, 2154–2162.
Vapnik, V. 2013. The nature of statistical learning theory.
Springer science & business media.
Yao, H.; Zhang, L.; and Finn, C. 2021. Meta-Learning
with Fewer Tasks through Task Interpolation. arXiv preprint
arXiv:2106.02695.
Zhang, Y. 2015. Multi-task learning and algorithmic stabil-
ity. In Twenty-Ninth AAAI Conference on Artificial Intelli-
gence.
Zintgraf, L.; Shiarlis, K.; Igl, M.; Schulze, S.; Gal, Y.; Hof-
mann, K.; and Whiteson, S. 2020. VariBAD: A Very Good
Method for Bayes-Adaptive Deep RL via Meta-Learning.
In International Conference on Learning Representation
(ICLR).
Zou, D.; Wu, J.; Braverman, V.; Gu, Q.; Foster, D. P.; and
Kakade, S. M. 2021. The Benefits of Implicit Regulariza-
tion from SGD in Least Squares Problems. arXiv preprint
arXiv:2108.04552.

8431


