
Explainable and Local Correction of Classification Models Using Decision Trees

Hirofumi Suzuki,1 Hiroaki Iwashita,1 Takuya Takagi,1
Keisuke Goto,1 Yuta Fujishige,1 Satoshi Hara 2

1 Fujitsu Limited,
2 Osaka University

{suzuki-hirofumi, iwashita.hiroak, takagi.takuya, goto.keisuke, fujishige.yuta}@fujitsu.com,
satohara@ar.sanken.osaka-u.ac.jp

Abstract

In practical machine learning, models are frequently updated,
or corrected, to adapt to new datasets. In this study, we pose
two challenges to model correction. First, the effects of cor-
rections to the end-users need to be described explicitly, sim-
ilar to standard software where the corrections are described
as release notes. Second, the amount of corrections need to
be small so that the corrected models perform similarly to the
old models. In this study, we propose the first model correc-
tion method for classification models that resolves these two
challenges. Our idea is to use an additional decision tree to
correct the output of the old models. Thanks to the explain-
ability of decision trees, the corrections are describable to the
end-users, which resolves the first challenge. We resolve the
second challenge by incorporating the amount of corrections
when training the additional decision tree so that the effects
of corrections to be small. Experiments on real data confirm
the effectiveness of the proposed method compared to exist-
ing correction methods.

Introduction
When the domain of test data changes over time, the pre-
diction accuracy of machine learning models gets worse. In
such a case, it is necessary to update, or correct, the mod-
els to adapt to new datasets. The standard model correc-
tion scenario is as follows. We have a classification model
trained on old data. After the training, we obtain a new ad-
ditional dataset. The model correction task is to correct the
old model to make accurate predictions on this additional
data. There are several approaches for model correction in
the literature, such as model retraining, transfer learning,
and domain adaptation. The majority of these methods as-
sume that we can access the old training data. However, this
assumption is sometimes unrealistic because of privacy and
security reasons. For example, the General Data Protection
Regulation (GDPR) requires that personal data may not be
retained longer than is necessary to achieve the prescribed
purpose (Voigt and Bussche 2017). In this paper, we con-
sider the more restricted and practical problem setting for
model correction where we have the old model but have no
access to the old data.
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When correcting the model to adapt to new data, some
forms of consistency are expected between the models be-
fore and after the correction. Suppose a machine learning
model is a part of a complex system or software, and there
are several processes that depend on the prediction results.
A drastic correction of the model will change the operation
of the entire system significantly. Such a drastic update of
the system is not favorable; We do not want to release a
completely different system from the previous version in or-
der not to lose the user’s experience and trust in the system.
Therefore, we want to make as few corrections as possible
for machine learning models embedded in complex systems.
In this study, to avoid drastic updates of the entire system,
we consider two requirements for model correction:

1. The specification of the correction should be explicit.
2. The number of samples to which the correction applies

should be as small as possible.

The first requirement is that the user can check the changes
in the model and its specifications. In other words, we would
like it to be clear how the predictions are corrected so that
the corrections to be explainable to the users. Explainability
of correction is required, e.g., if the developer has to explain
to users that the correction of the model is not intended to
cause, for example, the encouragement of discrimination.
The second requirement is necessary to maintain consis-
tency between the model before and after the correction.
In the analogy of a software update, this requirement cor-
responds to applying the minimum number of patches. The
corrected model satisfying this requirement will not lead to
drastic updates of the entire system.

In this paper, we propose Local Correction Tree (LCT),
a decision tree-based model correction method that satisfies
the two requirements above so that the correction is to be
explainable and to be small. The concept of LCT is shown
in Figure 1. LCT is a decision tree that outputs the amount
of prediction corrections to be added to the output of the
old model for the given input. With LCT, the old model is
corrected by adding the correction score written in the leaves
to the predicted score of the model.

LCT has two notable properties. First, the decision tree
itself can be regarded as a specification of the correction be-
cause each root-to-leaf path indicates a rule of how the sam-
ples will be corrected. Hence, LCT fulfills the first require-
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(a) Old model scores (b) Corrections of model scores with decision tree (c) Corrected model scores

Figure 1: Concept of the proposed Local Correction Tree (LCT). (a) Old model scores for samples with two class labels, black
circle and red diamond, where the score for one class is a sign-reversed version of the score for the other class. The blue
horizontal line indicates the decision boundary, and there are some misclassified samples marked with boundary in the input
space age < 20 and 30 ≤ age < 40. (b) LCT is a decision tree whose leaves have the amount of score corrections for samples
reaching the leaf. LCT corrects only local samples because some leaves have zero corrections. (c) Corrected model scores,
which is the summation of the old model scores and the amount of corrections determined by LCT. If a sample is in age < 20
or 30 ≤ age < 40, its old model score is corrected by +0.2 or −0.3, respectively, otherwise unchanged.

ment for model correction. Second, LCT is designed so that
the majority of samples belong to leaves whose correction is
zero. This property of LCT ensures the second requirement
for model correction.

Our Contributions. We propose the first model correc-
tion method LCT that satisfies the two requirements. Using
LCT, we can correct models in such a way that the speci-
fication of correction is explainable and the amount of cor-
rection to be small. Moreover, LCT is generic and easy to
implement, as shown below. Specifically:

1. LCT is model agnostic, i.e., it can be applied to any clas-
sification model.

2. LCT can be implemented with a simple modification of
existing decision tree construction algorithms.

3. The user can control the amount of correction in an ad-
hoc manner, e.g., by adjusting the depth of the tree or by
trimming branches.

Our experimental results on real data confirm the effective-
ness of LCT compared to existing model correction methods
in terms of its explainability and the amount of correction.

Related Work
Various methods have been proposed to correct models, such
as domain adaptation and transfer learning. Domain adap-
tation and transfer learning aim to adapt to new tasks by
transferring knowledge from models that have already been
trained on another task (Pan and Yang 2010; Parisi et al.
2019; Zhuang et al. 2021). Most of these correction meth-
ods, such as density ratio estimation (Sugiyama, Suzuki,
and Kanamori 2012), kernel mapping functions (Daumé III
2007), and TrAdaBoost (Dai et al. 2007), require source
data that used to train the old model. Therefore, these meth-
ods cannot be used in the restricted setting where only the
trained model is given but not the old data.

Fine-tuning, such as incremental learning for decision
tree (Utgoff 1988; Chao and Wong 2009), random for-
est (Ristin et al. 2016), and gradient boosting method (Zhang
et al. 2019), is one of the transfer learning methods that
does not require old data. These methods allow old mod-
els to be adapted to new data. However, this may lead to a
correction of the entire old model. Hence, all the samples
can be affected by the correction, which conflicts with our
second requirement. In addition, learning to stabilize model
updates has been proposed for ranking learning using neural
networks (Li et al. 2020b). However, it is not applicable to
arbitrary models or tasks other than ranking.

Another line of work related to LCT is interpretable com-
panion models that combine black-box models and white-
box models (Wang 2019; Pan, Wang, and Hara 2020; Li et al.
2020a; Rafique et al. 2020). Interpretable companion models
are designed to improve the interpretability of predictions by
passing some of the inputs to a white-box model, and pro-
cessing only remaining inputs by the black-box model. LCT
is similar to interpretable companion models in the sense
that it is designed to cooperate with the existing (possibly
black-box) models. However, LCT and interpretable com-
panion models differ in their objective: LCT aims at im-
proving the accuracy of the corrected model, while inter-
pretable companion models aim at improving interpretabil-
ity at a cost of sacrificing accuracy.

Preliminaries
Notation. For a positive integer n ∈ N , we write [n] :=
{1, 2, . . . , n}. In this study, we focus on classification prob-
lem: let X = (x1, x2, . . . , xn) ∈ Rn×d be an input of n
samples and d features and y ∈ [c]n be an output of class
categories for each sample where c is the number of classes.

Decision Tree. A decision tree is a binary tree T = (V,E)
with a node set V , a root node r ∈ V , and a directed edge
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set E. Each internal node v ∈ V has a splitter j(v) ∈ [d],
a cut point p(v) ∈ R, and two child nodes vL and vR, i.e.,
(v, vL), (v, vR) ∈ E. Given x ∈ Rd, we start on descending
T from r. We descend from v to vL if xj(v) < p(v), oth-
erwise to vR. Finally, any sample reaches a leaf node that
determines output.

Regularized Dual Averaging Method. We here introduce
the regularized dual averaging (RDA) method (Xiao 2010)
which we use for constructing LCT in the next section. RDA
is a variant of stochastic gradient descent (SGD) methods
and has an advantage over other SGD in realizing regular-
ization of the following optimization problem:

minimize
w∈Rc

{f(w) + Ψ(w)}, (1)

where f and Ψ are a differentiable function and a regular-
ization term, respectively.

Local Correction Tree
We propose Local Correction Tree (LCT) as a method to
correct predictions of classification models. The advantages
of LCT are (i) LCT is a model agnostic method accepting
any old classification model, and (ii) LCT is easy to imple-
ment and tune because LCT is a simple modification of the
standard decision tree.

Outline. Let X ∈ Rn×d, y ∈ [c]n be the new data we
want to adapt with. Moreover, let M be the old model and
S ∈ Rn×c be the prediction scores1: Si is computed for the
input i ∈ [n] by using M which might use different data
than X , where i is classified into arg maxk∈[c] Si,k by M .

LCT is a decision tree T that, for any sample x ∈ Rd, out-
puts correction amount T (x) ∈ Rc for prediction scores. If
x has the prediction score s ∈ Rc ofM , the corrected model
using LCT classifies x into arg maxk∈[c] {sk + T (x)k}. In
LCT, we store a correction amount w(v) ∈ Rc to each node
v ∈ V so that T (x) = w(v) to hold if x reaches a leaf v.

LCT aims to correct predictions locally, i.e., the number
of samples affected by LCT is small. To accomplish this,
LCT minimizes the following objective function g repre-
sented by the sum of the cross-entropy loss and the regu-
larization term of L2-norm:

g(T ) =
∑
i∈[n]

(− log a(Si + T (Xi))yi + λ‖T (Xi)‖2). (2)

Here, λ ∈ R+ is a regularization parameter and a is the
Softmax function: for a vector v ∈ Rc,

a(v)k =
exp(vk)∑

k′∈[c] exp(vk′)
. (3)

Thanks to the group-sparse regularization effect of the L2-
norm (Hastie, Tibshirani, and Wainwright 2015), correction
amounts in some nodes become zero. Thus, the objective
function g can control the trade-off of accuracy and the num-
ber of samples affected by LCT by tuning λ.

1In scikit-learn-like API, we can use predict proba method to
obtain prediction scores. On deep learning models, we can use out-
puts of the last layer (before applying softmax) as prediction scores.

Construction Algorithm. The proposed LCT construc-
tion algorithm starts with a root node and greedily splits
nodes to child nodes to decrease the objective value of g(T ),
similar to standard tree construction algorithms (Quinlan
1993; Breiman et al. 2017). For the greedy node splitting,
we consider the objective function ĝ on the subset of sam-
ples I ⊆ [n]:

ĝ(I, w) = −
∑
i∈I

log a(Si + w)yi + λ|I|‖w‖2 (4)

where w ∈ Rc. Let I(v) ⊆ [n] be the subset of samples
reaching a node v. Then we can write g as

g(T ) =
∑

v∈{Leaves of T}

ĝ(I(v), w(v)). (5)

When growing a leaf node v, the algorithm computes a
split (i.e., a pair of a splitter j(v) ∈ [d] and a cut point
p(v) ∈ R) such that correction amounts w(vL) and w(vR)
minimizes the sum of objective values

ĝ(I(vL), w(vL)) + ĝ(I(vR), w(vR)). (6)

For any split, we can use RDA to optimize ĝ by setting

f(w) = −
∑
i∈I

log a(Si + w)yi
and Ψ(w) = λ|I|‖w‖2.

Algorithms 1 and 2 conclude the LCT construction algo-
rithm. We here show a best-first construction using a heap
which sorts leaves in descending order of the objective value
ĝ(I(v), w(v)). We remark that we can use several stopping
criteria (e.g., maximum depth of the tree, maximum number
of leaves, and minimum number of samples in leaves) the
same way as standard tree construction algorithms.

Pruning Strategies. After the tree construction, we can
apply some pruning strategies to remove leaves with too lit-
tle or too many corrections, leaves with inaccurate correc-
tions, and redundant leaves. We show two main strategies
below.

The first pruning strategy removes leaves with too lit-
tle or too many corrections and leaves with inaccurate cor-
rections by considering the prediction changes on X , y,
and S. For any leaf node v of LCT, let Î(v) ⊆ I(v) be
the subset of samples whose predictions are changed by v;
arg maxk∈[c]Si,k 6= arg maxk∈[c]{Si,k + T (Xi)k} for any
i ∈ Î(v). Similarly, let Îci(v) ⊆ Î(v) be the subset of sam-
ples whose predictions are changed to incorrect classes by
v; arg maxk∈[c]{Si,k + T (Xi)k} 6= yi for any i ∈ Îci(v).
We then apply the following rules.

• Let nprune ∈ N determine the minimum number of sam-
ples required to prune leaves. If |I(v)| < nprune holds,
we do not prune v.

• Let ηmin, ηmax ∈ [0, 1] (ηmin < ηmax) determine the
number of samples allowed to change their prediction. If
|Î(v)| < ηmin|I(v)| or |Î(v)| > ηmax|I(v)| holds, we
set 0 to w(v).
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Algorithm 1: LCT Construction Algorithm

1: Create a decision tree T with root node r
2: I(r)← [n], w(r)← arg minw ĝ([n], w)
3: Create an empty heap H and push r to H
4: while H is not empty do
5: Pop the top element v of H
6: if v does not satisfy any stopping criterion then
7: vL, vR ← Split(v)
8: Push vL and vR to H
9: return T

Algorithm 2: Split(v)

1: Create child nodes vL, vR of v
2: omin ←∞
3: for j ∈ [d] do
4: Generate cut points P of {Xi,j | i ∈ I(v)}
5: for p ∈ P do
6: IL ← {i ∈ I(v) | Xi,j < p}
7: IR ← {i ∈ I(v) | Xi,j ≥ p}
8: wL ← arg minw ĝ(IL, w)
9: wR ← arg minw ĝ(IR, w)

10: o← ĝ(IL, wL) + ĝ(IR, wR)
11: if omin > o then
12: j(v), p(v)← j, p
13: I(vL), I(vR)← IL, IR
14: w(vL), w(vR)← wL, wR

15: omin ← o
16: return vL, vR

• Let ηfail ∈ [0, 1] determine the number of samples al-
lowed to change their prediction to incorrect classes. If
|Îci(v)| > ηfail|Î(v)| holds, we set 0 to w(v).

The second pruning strategy removes redundant leaves. If
a node v has children such that w(vL) = 0 and w(vR) = 0
holds, we can delete vL and vR, and then we set 0 to w(v),
because this operation does not change the output of T . By
repeating this process as much as possible, we can obtain a
less redundant and more readable LCT.

Experiments
We demonstrate the performance of LCT, in comparison to
other correction methods, in the restricted setting with no
access to old data. All the codes were implemented by us-
ing Python 3 and ran on Ubuntu 18.04.5 LTS with Intel(R)
Xeon(R) CPU E5-2630 v3 @ 2.40GHz and 128GB RAM.

Scenarios. We assumed the following two scenarios.
1. In the first scenario, we obtain new data of different dis-
tributions from old data. We then aim to create a new model
that adapts to new data by correcting the old model.

2. In the second scenario, we obtain tabular data from the
new domain (e.g., new side information) that was not pre-
viously available. We then aim to create a new model that
incorporates the information from the new domain by cor-
recting the old model (while also using the inputs from the
original domain such as image).

Datasets. We used four datasets: Adult2, Bank Marketing3

(Bank in short), Cardiotocography4 (CTG in short) from the
UCI Machine Learning repository for the first scenario, and
7-point5 (Kawahara et al. 2019) for the second scenario.
Here, we split each dataset into old data to train old mod-
els and new data to train and test new models.
• Adult This dataset contains only tabular data consist-
ing of census data. The task is to classify each individual
whether the individual’s income exceeds $50K/year. We pre-
processed categorical features by one-hot encoding and ig-
nored entries with missing values. The resulting number of
samples and features are 48,842 and 105, respectively. Fi-
nally, we split the data into old data (24,421 samples includ-
ing 5,202 positive samples) and new data (24,421 samples
including 6,485 positive samples) with a bias towards a fea-
ture “age”: we sampled the old data with probability propor-
tional to 1

age . Thus, the old data and the new data contain
many young and middle-aged individuals, respectively. The
objective of model correction is to adapt to changes in the
distribution affected by ages.
• Bank This dataset contains only tabular data of client’s
personal information. The task is to predict if the client will
subscribe to a term deposit. We preprocessed categorical
features by one-hot encoding and ignored the feature “dura-
tion”, which is obtained after the correct label has been de-
termined in the actual setting. The resulting number of sam-
ples and features are 41,188 and 63, respectively. Finally,
we split the data into old data (20,594 samples including
2,350 positive samples) and new data (20,594 samples in-
cluding 2,290 positive samples) with a bias towards a feature
“age”: we sampled the old data with probability proportional
to 1

age2 . Thus, the old data and the new data contain many
young and old-aged individuals, respectively. The objective
of model correction is to adapt to changes in the distribution
affected by ages.
• CTG This dataset contains only tabular data of diagnos-
tic numerical features measured from fetal cardiotocogram.
The task is to predict whether the fetal state is normal, suspi-
cious, or pathological. The number of samples and features
are 2,126 and 22, respectively. For each class, there are 1,655
normal samples, 295 suspicious samples, and 176 patho-
logical samples. We split the data evenly into old data and
new data with a bias towards a feature “LB” which means
“beats per minute”. We sampled the old data with probabil-
ity proportional as follows: the weight of each sample is 1
if “LB′′ < 120 or “LB′′ > 150 (they are a minority, but
not outlier) and 5 otherwise. Thus, most minority samples
do not appear in the old data. Here, the bias of the correct
labels changed only slightly between old and new data. The
objective of model correction is to adapt to newly obtained
minority samples.
• 7-point This dataset contains image data of skin lesions

2https://archive.ics.uci.edu/ml/datasets/adult
3https://archive.ics.uci.edu/ml/datasets/bank+marketing (bank-

additional-full.csv)
4https://archive.ics.uci.edu/ml/datasets/cardiotocography
5https://derm.cs.sfu.ca/Welcome.html
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and a tabular data of clinical checklist called 7-point check-
list (Mackie and Doherty 1991). Each sample has two im-
ages, a clinical image and a dermoscopy color image. The
task is the multi-class classification of skin lesion malig-
nancies. We preprocessed the tabular data by encoding cat-
egorical features to one-hot except for level-of-diagnostic-
difficulty. We converted level-of-diagnostic-difficulty into
0 if it is low, 0.5 if it is medium, and 1.0 if it is high.
The resulting number of samples and the number of fea-
tures are 1,011 and 44, respectively. The original class labels
are BCC (42 samples), NEV (575 samples), MEL (252 sam-
ples), MISK (97 samples), and SK (45 samples). We com-
bined BCC, MISK, and SK into one class OTHERS (184
samples) because their sample sizes were too small. Then we
obtained the three-class (NEV, MEL, and OTHERS) classi-
fication task. Finally, we split the data into old data (505
samples) and new data (506 samples) by the stratified split-
ting. Here, we consider the scenario where the old model
was trained using the image data only, and we obtained the
new tabular data in addition to the images afterward. The
objective of model correction is to improve the prediction
power of the model by incorporating the newly obtained tab-
ular data for prediction.

Old Models. We trained LightGBM (Ke et al. 2017) for
Adult, Bank, and CTG dataset and deep neural network
(DNN) for 7-point dataset as old models.
• LightGBM for Adult, Bank, and CTG We used
LGBMClassifier6 as the old model. We tuned learn-
ing rate, min split gain, reg alpha, and reg lambda
within the range [1e-8, 1] on the old data by using
Optuna7 (Akiba et al. 2019) with 100 trials. We set
class weight to balanced and used default values for the
remaining parameters. We used the averaged F1 score of
cross-validation on the old data for the optimization crite-
ria to deal with data imbalance. Note that, only for CTG
dataset, F1 score is computed with macro average on three
class labels. The fold numbers in cross-validation are 3 for
Adult and Bank dataset, and 5 for CTG dataset.
• DNN for 7-point We used ResNet50 (He et al. 2016) pre-
trained on ImageNet (Deng et al. 2009) via PyTorch (Paszke
et al. 2019). We fed each of the two images (a clinical image
and a dermoscopy color image) to ResNet50 and extracted
a 2048 dimensional feature vector from the layer before the
last fully connected layer. We then concatenated the feature
vectors into a 4096 dimensional feature vector and input
them to the dropout of 50% and the new fully connected
layer that outputs a score for each of the three classes. We
trained the new fully connected layer using SGD of batch
size 64, learning rate 0.001, momentum 0.9, and 50 epoch
over cross-entropy loss with balanced class weight. More-
over, we augmented image data by randomly applying flip-
ping, affine transformation, and color jittering. Here, we split
the old data to training data of 80% and validation data of
20% by the stratified splitting. We tried ten times random
data splitting and selected the model of maximum macro av-

6https://lightgbm.readthedocs.io/en/latest/index.html.
7https://optuna.readthedocs.io/en/stable/.

eraged recall on validation data as the old model to deal with
data imbalance in the multi-class classification task.

Competitors. We compared our LCT, some basic classi-
fiers, and some standard correction methods using scikit-
learn (Pedregosa et al. 2011) (logistic regression, decision
tree, and random forest) and LightGBM (gradient boosting
decision tree). The methods except for our LCT use the pre-
diction scores of the old model as new features.

We here split the new data into training data and test data
in the manner of 5-fold cross-validation. For Adult and Bank
dataset, we used the total F1 score of 3-fold cross-validation
on training data for tuning hyperparameters to deal with
data imbalance in the binary classification task. For CTG
dataset, we used the total macro-averaged F1 score of 5-fold
cross-validation on training data for tuning hyperparameters
to deal with data imbalance in the multi-class classification
task. For 7-point dataset, we used the total macro averaged
recall of 5-fold cross-validation on training data to deal with
data imbalance in the multi-class classification task. The de-
tails of competitors and the hyperparameter tuning proce-
dures are listed as follows:

• Ours. We trained LCT by tuning the parameter λ ∈
{0.05, 0.1, . . . , 0.5} for Adult, Bank, and TCG dataset, and
λ ∈ {0.01, 0.02, . . . , 0.1} for 7-point dataset. Here, to avoid
the risk of significant changes from the old models, the can-
didates of λ are selected from the range where the amount
of correction is small enough. We fixed the other parameters
nprune, ηmin, ηmax, ηfail, and some scikit-learn-like stopping
criteria max depth and min samples leaf. For any dataset,
nprune = 1, ηmin = 0.01, ηfail = 0.499, and max depth =
5. For Adult and Bank dataset, min samples leaf = 64 and
ηmax = 0.5. For CTG dataset, min samples leaf = 8 and
ηmax = 1.0. For 7-point dataset, min samples leaf = 16
and ηmax = 0.5. In addition, for Adult, Bank, and TCG
dataset, because there are many cut point candidates incur-
ring much computation time for LCT construction, we com-
puted restricted candidates in every call of Algorithm 2 by
using quantile cut of 10 bins for any non-binary features.
• L1-LR, L2-LR, DT, RF, and LGBM. As the naive
baselines, we trained some basic classifiers of scikit-
learn and LightGBM using the new data only. (i) L1-
LR and L2-LR are logistic regression trained via Lo-
gisticRegressionCV with L1- and L2-regularization, re-
spectively. (ii) DT is decision tree with hyperparame-
ters optimized by Optuna with 100 trials: we forced
the parameter class weight to balanced, and opti-
mized the four parameters max depth ∈ {5, 6, . . . , 10},
min samples leaf ∈ [0.0001, 0.1], max features ∈
[0.1, 1.0], and min impurity decrease ∈ [1e-8, 1.0]. (iii)
RF is random forest optimized similarly to DT except we
set class weight to balanced subsample. (iv) LGBM is
LGBMClassifier optimized in the same way as the old
model for Adult, Bank, and CTG dataset.
• L1-LR+, L2-LR+, DT+, RF+, and LGBM+. As simple
examples of model correction, we trained some basic classi-
fiers using the prediction scores of the old models: we con-
catenated the prediction scores to the input vector as new
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features. We used the same classifiers and hyperparameter
optimization procedures as above.
• LGBM+C. For Adult, Bank, and CTG dataset, we incre-
mentally trained the old LightGBM model by using the new
data. Note that we here did NOT use additional features such
as prediction scores. We used the same hyperparameter op-
timization procedures as above.
• LGBM+D. For 7-point dataset, we additionally trained
LightGBM using intermediate features and prediction scores
of the old DNN model. We extracted 4096 intermediate fea-
tures of ResNet50 from the layer before the last fully con-
nected layer. We then concatenated the intermediate fea-
tures as well as the prediction scores to the input vector as
new features. We used the same hyperparameter optimiza-
tion procedures as above.

Evaluation Criteria. We first evaluated the prediction
powers of each method: the test accuracy, precision, recall,
and F1 scores of 5-fold evaluation with stratified-splitting.
For CTG and 7-point dataset, note that precision, recall, and
F1 scores were computed with macro average of multiple
class labels. We then analyzed the trends of corrections: the
number of samples whose predictions changed in terms of
correct, incorrect, and distribution over prediction score of
the old model. Finally, we scanned the constructed LCT and
observed some interesting correction rules.

Result: Prediction Powers. We conclude the results for
prediction powers in Figure 2: (a)–(d), (e)–(h), (i)–(l), and
(m)–(p) show the results on Adult, Bank, CTG, and 7-point
dataset, respectively.

On Adult dataset, except for LGBM, basic classifiers did
not improve any metric. This indicates that using prediction
scores of the old model is useful for adapting to the new
data. As an important trend, all the new models decreased
the recall from the old model. This is because the old model
tended to predict too many samples to be positive on the
new data, while the new models tended to suppress these
optimistic predictions. Focusing on our LCT, it achieved the
highest accuracy and precision, lowest recall, and compara-
ble F1 score. Thus, our LCT tended to strongly suppress the
optimistic predictions of the old model on the new data.

On Bank dataset, all the correction methods except LR-
based ones succeeded to correct the old model in terms of
F1 score. This indicates that it is difficult to directly predict
the errors of prediction scores in Bank dataset. Here, the old
model tends to be the same as that of Adult dataset, i.e. the
model makes many optimistic predictions. Thus, tree-based
methods suppressed the optimistic predictions of the old
model on the new data more accurately than LR-based meth-
ods. Especially, looking at the results of tree-based methods
in detail, our LCT achieved higher accuracy and F1 score the
same as RF+, although our LCT is clearly better than RF+
in terms of simplicity of the model.

On CTG dataset, only our LCT improved F1 score clearly
and made a negligible change in recall score. Moreover, our
LCT achieved the highest accuracy and precision score. This
suggests that only our LCT has succeeded to adapt the newly
obtained minority data.

On 7-point dataset, although most of the new models im-
proved the prediction power, using prediction scores of the
old model contributed further improvements. Our LCT im-
proved accuracy, precision, F1 score comparable or supe-
rior to the other methods. This result is favorable because (i)
LCT has a more simple structure than RF+, LGBM+, and
LGBM+D, (ii) LCT can output readable rules and concrete
amount of corrections for prediction changes compared to
L1-LR+, L2-LR+, and DT+. Although our LCT scored rel-
atively low recall, it was still better than the old model and
was comparable to L1-LR and L2-LR.

Result: Trends of Corrections. We conclude the results
for trends of corrections in Figure 3. Figures 3 (a)–(b), (c)–
(d), (e)–(f), and (g)–(h) show the results on Adult, Bank,
CTG, and 7-point dataset, respectively. Note that the sizes
of test data are 4884, 4119, 213, and 101 on Adult, Bank,
CTG, and 7-point dataset, respectively.

On Adult dataset, from Figure 3 (a), while both of our
LCT and RF+ achieved better ratio of correct changes and
incorrect changes, our LCT had more correction than RF+.
Here, note that our trade-off is only between the accuracy
and the number of corrections, not between the ratio and
the number of corrections. In addition, all the new models
achieved small enough prediction changes (within 10% of
total) from the old model. Thus, since LCT achieved higher
accuracy rather than RF+, our LCT could correct the old
model better than any other methods with small prediction
changes on Adult dataset.

On Bank dataset, from Figure 3 (c), tree-based and LR-
based methods (except for DT+) made small (within 5% of
total) and large (over 10% of total) prediction changes, re-
spectively. In terms of the ratio of correct changes and in-
correct changes, our LCT and RF+ were better than other
tree-based methods. However, from Figure 3 (d), our LCT
corrects more samples in middle prediction scores [0.6, 0.7]
than RF+. This is an advantage of our LCT to adapt to the
new data with a broader view.

On CTG dataset, from Figure 3 (e), only our LCT
achieved the high ratio of correct changes and incorrect
changes. Looking at Figure 3 (f), almost all the methods ex-
cept for our LCT made the many prediction changes, which
might be incorrect, in high prediction scores [0.9, 1.0]. This
indicates an advantage of our regularization method that
suppresses the prediction change in high prediction scores.

On 7-point dataset, from Figure 3 (g), while our LCT
changed about 15% predictions from the old model, the
other new models changed more than 25% predictions. This
result indicates that our LCT is superior to the other new
models in the sense that it induced only small changes in
predictions. Moreover, our LCT achieved the highest ratio
of correct changes and incorrect changes. Thus, our LCT
could correct the old models better than any other methods
with small prediction changes on 7-point dataset.

As another interesting result, from Figure 3 (b), while
LGBM+C changed many predictions of samples with high
old scores (high confidence on the old model), our LCT
changed only predictions of samples with low or middle old
scores (low or middle confidence on the old model). Simi-
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(a) Accuracy (Adult) (b) Precision (Adult) (c) Recall (Adult) (d) F1 (Adult)

(e) Accuracy (Bank) (f) Precision (Bank) (g) Recall (Bank) (h) F1 (Bank)

(i) Accuracy (CTG) (j) Precision (CTG) (k) Recall (CTG) (l) F1 (CTG)

(m) Accuracy (7-point) (n) Precision (7-point) (o) Recall (7-point) (p) F1 (7-point)

Figure 2: Test accuracy, precision, recall, and F1 scores of each model. Note that, for CTG and 7-point dataset, we used the
macro averaged precision, recall, and F1 scores for multiple class labels. “Black” dotted vertical lines indicate the mean values
on the old models. “Red” vertical lines indicate the mean values on our LCT. Some of the boxes are very small and are covered
by the red vertical line as in (e), (f), (g), and (m).
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(a) The number of prediction changes (Adult) (b) Distribution of prediction changes (Adult)

(c) The number of prediction changes (Bank) (d) Distribution of prediction changes (Bank)

(e) The number of prediction changes (CTG) (f) Distribution of prediction changes (CTG)

(g) The number of prediction changes (7-point) (h) Distribution of prediction changes (7-point)

Figure 3: (a), (c), (e), and (g): The horizontal axis indicates the number of samples whose predictions changed from correct to
incorrect. The vertical axis indicates the number of samples whose predictions changed from incorrect to correct. (b), (d), (f),
and (h): The number of samples, per prediction score of the old model, whose predictions changed.
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(a) A rule on Adult dataset

(b) A rule on Bank dataset

(c) A rule on CTG dataset

(d) A rule on 7-point dataset

Figure 4: Examples of interesting rules found on our LCT.

larly, from Figure 3 (h), while the other new models changed
many predictions of samples with high old scores, our LCT
mainly changed predictions of samples with low or middle
old scores. We consider that this result is due to the effect of
our regularization not allowing large amount of correction.
Moreover, we consider this is one of the reasons why the
corrections of our LCT performed better.

Result: Concrete Examples of Interesting Rules on LCT.
We show four concrete examples of interesting rules found
in our LCT in Figure 4. Figures 4 (a), (b), (c), and (d) show
the found rules for Adult, Bank, CTG, and 7-point dataset,
respectively.

On Adult dataset, we found an interesting rule includ-
ing the conditions marital-status=Married-civ-spouse,
education-num≥9.5, and occupation=Other-service. In
this dataset, individuals with a spouse or enough education
number tend to have over $50K/year income. However, the
found rule indicates that individuals in the service industry
tend to deviate from such a trend more than the old model

predicts. We consider this rule is difficult to obtain from the
old data consisting of many young individuals with a high
likelihood of not having a spouse. Our LCT could success-
fully find this useful trend missed by the old model.

On Bank dataset, we found an interesting rule including
the conditions poutcome6=failure and housing=yes. The
condition poutcome6=failure means that the individual has
applied for previous campaigns or never had the opportunity
to campaign before. Thus, there is a good chance that the in-
dividuals will subscribe to the current campaign. However,
the found rule indicates that they may be negative individu-
als if they have housing loan. Because the condition hous-
ing=yes tends to be found in old-aged individuals, we con-
sider it is difficult to predict the negative individuals with
housing loan on the old model trained on many young-aged
individuals. Our LCT could also successfully find such use-
ful trends missed by the old model on another dataset.

On CTG dataset, we found an interesting rule in-
cluding the conditions MSTV≥0.669, Mode≥151.6, and
Nmax≥7. The condition MSTV≥0.669 means that the fe-
tus has moderate short term variability. Although such fe-
tuses tend to be normal, the rule indicates that the fetuses
may be suspicious if Mode≥151.6 and Nmax≥7. Here
Nmax≥7 means that the fetus will often have maximum
beats per minute for them. We consider Nmax≥7 is a suspi-
cious sign for fetuses tending to have high beats per minute.
Since the old model had little information of such minor-
ity fetuses, our LCT could successfully find a minority trend
missed by the old model.

On 7-point dataset, we found an interesting rule including
the conditions seven-point-score≥2.5 (i.e., high seven-
point-score) and level-of-diagnostic-difficulty≥0.75 (i.e.,
too difficult to diagnose). Here, a high seven-point-score in-
dicates that such patients are likely to be classified as MEL
based on clinical knowledge. The found rule provides an
insight for the information that the old model was missing
for the high-stake patients with high diagnostic difficulty:
the rule indicates that the state of elevation may be some-
thing important that is missed by the old model. If eleva-
tion=palpable, the patient could be classified into NEV, and
MEL otherwise. We consider the state of elevation was dif-
ficult to distinguish for the old model that uses image data
only. Our LCT could successfully identify the information
missed by the old model, and incorporated that information
from the new data appropriately for model correction.

Conclusion
We proposed the model correction method LCT that can be
applied to any classification model without access to old
training data. LCT provides the following advantages: (i) be-
cause LCT is a variety of decision trees, the specification of
the correction is explicit, and (ii) thanks to the regulariza-
tion effect, the number of samples to which the correction
applies is small.

Experiments showed that LCT could correct the old mod-
els better than other standard methods with small prediction
changes. Moreover, in constructed LCTs, we observed some
interesting rules which seem to be missed by the old models.
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