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Abstract
Out-of-Distribution (OOD) detection is essential in real-
world applications, which has attracted increasing attention
in recent years. However, most existing OOD detection meth-
ods require many labeled In-Distribution (ID) data, causing a
heavy labeling cost. In this paper, we focus on the more real-
istic scenario, where limited labeled data and abundant unla-
beled data are available, and these unlabeled data are mixed
with ID and OOD samples. We propose the Adaptive In-Out-
aware Learning (AIOL) method, in which we employ the ap-
propriate temperature to adaptively select potential ID and
OOD samples from the mixed unlabeled data and consider
the entropy over them for OOD detection. Moreover, since the
test data in realistic applications may contain OOD samples
whose classes are not in the mixed unlabeled data (we call
them unseen OOD classes), data augmentation techniques
are brought into the method to further improve the perfor-
mance. The experiments are conducted on various benchmark
datasets, which demonstrate the superiority of our method.

Introduction
Deep neural networks (DNNs) have achieved great success
in various applications, but the success heavily relies on the
assumption that the training and test data are drawn from the
same distribution. In realistic scenarios, however, some Out-
of-Distribution (OOD) samples may lead DNNs to make
completely incorrect predictions, which is essentially harm-
ful in many real-world applications, e.g., autonomous driv-
ing or medical diagnosis. Therefore, it is demanded that the
trained model can at least correctly detect these OOD sam-
ples during the inference process, and then human interven-
tion can be involved to deal with them.

Recently, Hendrycks and Gimpel (2017) considered the
OOD detection problem and proposed a baseline method
with the output confidence, i.e., the maximum softmax prob-
ability. The method is based on the observation that In-
Distribution (ID) samples tend to have higher output con-
fidence than OOD samples. Some other methods (Liang, Li,
and Srikant 2018; Lee et al. 2018; Sastry and Oore 2020;
Hsu et al. 2020) made further improvements with some post-
hoc techniques. However, these methods need many labeled
ID data for training, causing a heavy labeling cost.

*Corresponding author.
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Figure 1: OOD detection with labeled and mixed unlabeled
data. Unlabeled data are mixed with samples of ID classes
(cat and dog) and seen OOD classes (tree and flower). Test
data contain samples of ID classes (cat and dog), seen OOD
classes (tree and flower) and unseen OOD classes (kettle and
cup which are not in the mixed unlabeled data).

To mitigate the labeling overload, the advanced works
tried to utilize abundant unlabeled data. Some methods
(Hendrycks et al. 2019; Tack et al. 2020; Sehwag, Chi-
ang, and Mittal 2021) employed self-supervised learning
on the pure unlabeled ID data, while some other methods
(Hendrycks, Mazeika, and Dietterich 2019; Liu et al. 2020)
were proposed to exploit the pure unlabeled OOD data.
However, these methods require that the unlabeled data must
be pure ID or OOD, which is hardly met in realistic appli-
cations. Recently, a few works (Chen et al. 2020b; Yu et al.
2020; Guo et al. 2020) attempted to utilize unlabeled data
that consist of ID and OOD samples. But these works were
not developed for OOD detection, and there was no OOD
sample in the test data during the inference process.

For the OOD detection problem, the unlabeled data can be
mixed with ID and OOD samples. During the inference pro-
cess, the test data may contain OOD samples whose classes
are in the mixed unlabeled data (we call them seen OOD
classes), as well as OOD samples whose classes are not
in the mixed unlabeled data (we call them unseen OOD
classes). The goal is to train a model which can classify ID
samples and detect all OOD samples. This OOD detection
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problem for the image recognition task is summarized in
Figure 1. A similar task exists in the medical diagnosis of
lung diseases, where a model is trained with Computerized
Tomography (CT) images of the lung. Due to the heavy la-
beling cost, only limited labeled images (three ID classes
include normal, pneumonia, and asthma) and abundant un-
labeled ones are available for the diagnosis of lung diseases.
The images of other diseases, e.g., lung cancer, can also be
collected as unlabeled data. During the diagnosis process,
the trained model should not only detect samples of seen
OOD classes, e.g., lung cancer, but also detect samples of
unseen OOD classes, e.g., emerging disease COVID-19. It
is desirable to develop new methods for this realistic OOD
detection problem.

In this paper, we focus on the problem discussed above
and propose the Adaptive In-Out-aware Learning (AIOL)
method, which can utilize limited labeled data and abundant
mixed unlabeled data for OOD detection. Specifically, we
employ the appropriate temperature and learn the mixture
probabilistic model to adaptively select the ID and OOD
samples from the mixed unlabeled data. Then, the entropy
over the selected samples is considered to make them more
distinguishable. Moreover, since the test data may contain
samples of unseen OOD classes, data augmentation tech-
niques are brought into the method to enhance the model’s
generalization capability. We verify the effectiveness of our
method on various benchmark datasets, and the results show
that our method outperforms the compared methods.

Related Works
Out-of-Distribution (OOD) detection aims to detect OOD
samples during the inference process. A baseline method
(Hendrycks and Gimpel 2017) was proposed for detecting
OOD samples with the output confidence. Later, some meth-
ods (Liang, Li, and Srikant 2018; Lee et al. 2018; Sastry and
Oore 2020; Hsu et al. 2020) built the advanced detectors
in a post-hoc manner. For instance, Liang, Li, and Srikant
(2018) combined temperature scaling and input preprocess-
ing to achieve better detection performance. Instead of using
the output confidence, Lee et al. (2018) utilized the Maha-
lanobis distance between the test samples’ feature represen-
tations and the train samples’. However, these methods re-
quire many labeled ID samples for training.

There were some methods that focused on how to exploit
unlabeled data for OOD detection. Hendrycks, Mazeika, and
Dietterich (2019) enforced the model to produce the low-
confidence output on the pure unlabeled OOD data. Some
other works (Golan and El-Yaniv 2018; Hendrycks et al.
2019; Winkens et al. 2020; Tack et al. 2020; Sehwag, Chi-
ang, and Mittal 2021) found that self-supervised learning on
the pure unlabeled ID data could improve the detection per-
formance. For instance, Sehwag, Chiang, and Mittal (2021)
combined contrastive learning (Chen et al. 2020a) and Ma-
halanobis distance for OOD detection. There was also a line
of works (Nalisnick et al. 2019; Huang et al. 2019; Serrà
et al. 2019) which employed deep generative models on the
pure unlabeled ID data. However, all these methods require
that the unlabeled data must be pure ID or OOD, which is
hardly met in realistic applications.

Recently, some methods (Chen et al. 2020b; Yu et al.
2020; Guo et al. 2020) considered the class distribution mis-
match between labeled and unlabeled data. The mismatched
samples in the unlabeled data can be regarded as OOD sam-
ples. Chen et al. (2020b) filtered out OOD samples in the
unlabeled data with a confidence threshold and trained the
model on the remaining data only. Yu et al. (2020) proposed
a joint optimization framework to classify ID samples and
filter out OOD samples concurrently. Guo et al. (2020) em-
ployed the bi-level optimization to weaken the weights of
OOD samples. But these methods were developed for ID
classification and there was no OOD sample during the in-
ference process. Another work (Yu and Aizawa 2019) tried
to utilize mixed unlabeled data for OOD detection. It en-
couraged two classifiers to maximally disagree on the mixed
unlabeled data. However, each unlabeled sample was treated
equally, hence the model still needed many labeled samples
to distinguish between ID and OOD samples.

Semi-Supervised Learning (SSL) methods (Grandvalet
and Bengio 2004; Lee 2013; Berthelot et al. 2019; Xie et al.
2019; Sohn et al. 2020) were also developed for utilizing
limited labeled data and abundant unlabeled data. These
methods focused on the classification performance and usu-
ally ignored the existence of OOD samples.

Method
In this paper, we consider OOD detection with labeled and
unlabeled data. Let L =

{
(x1, y1), · · · , (xn, yn)

}
be la-

beled data, and U = {x1, · · · ,xm} be unlabeled data.
Here, x ∈ X ⊆ Rd, y ∈ Y = {1, · · · ,K}, d is the
number of the input dimension, K is the number of classes
in the labeled data, and m ≫ n. For the OOD detection
problem, the true class of the sample in U may not belong
to Y = {1, · · · ,K}. This kind of sample is called OOD
sample and is generally denoted as xout, while the sam-
ple whose true class belongs to Y = {1, · · · ,K} is de-
noted as xin. In this way, the labeled data can be rewrit-
ten as L =

{
(xin

1 , y1), · · · , (xin
n , yn)

}
. Let the ID part of

U be U in = {xin
1 , · · · ,xin

m1
}, and the OOD part of U be

Uout = {xout
1 , · · · ,xout

m2
}, hence U = U in ∪ Uout. The

goal of OOD detection is to learn a model f∗ with L and U ,
i.e., f∗(xin) = y (y ∈ Y is the true class of xin) for xin in
the test data, while f∗(xout) = ⊥ (⊥ means the true class
of xout does not belong to Y) for xout in the test data. In
realistic applications, the true class of xout in the test data
may not be included in the mixed unlabeled data U , which
is referred to as the unseen OOD class shown in Figure 1.

We try to learn a deep neural network fθ with parameters
θ for OOD detection. Intuitively, we could utilize the labeled
data L and the mixed unlabeled data U to obtain a basic
model. For the labeled data L, we use the supervised cross-
entropy loss (denoted as CE):

LS =
1

|L|
∑

(x,y)∈L

CE
(
y ∥ qθ(x)

)
, (1)

where y is the K-dimensional one-hot label constructed
with y, and qθ(x) ∈ [0, 1]K is the output probability dis-
tribution after the softmax layer for x. As for the unlabeled
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data, consistency regularization (Xie et al. 2019; Sohn et al.
2020) over U = U in ∪ Uout can be formulated as:

LCR =
1

|U |
∑
x∈U

CE
(
qθ
(
A(x), T

)
∥ qθ

(
A′(x)

))
, (2)

where A(·) and A′(·) are different data augmentations. The
soft target in Eq (2) is usually scaled with temperature T :

q
(i)
θ (x, T ) =

exp (zi/T )∑K
j=1 exp (zj/T )

, (3)

where zi is the output logit of class i for x. For the OOD
samples in Uout, T < 1 will sharpen the output probabil-
ity distribution, leading to a high probability of identifying
OOD samples as ID samples, while T > 1 will soften the
output probability distribution, leading to a low probability
of identifying OOD samples as ID samples. Therefore, tem-
perature T should be larger than 1 in order to exploit the
OOD samples in Uout. As for the ID samples in U in, al-
though T < 1 was used in previous works (Xie et al. 2019;
Sohn et al. 2020) to encourage the high-confidence output,
we still set T > 1 in Eq (2) since exploiting the OOD sam-
ples in U plays an important role in OOD detection. Actu-
ally, we can provide the following Theorem 1 to show that
T > 1 will push the output confidence of ID and OOD sam-
ples further apart from each other.

Theorem 1. Let Cθ(x, T ) = q
(ŷ)
θ (x, T ) be the output con-

fidence of the sample x with temperature T , where ŷ is the
predicted class on x. Under K = 2, for the samples xin and
xout that satisfy Cθ(x

in, 1) > Cθ(x
out, 1):

if c > T1 > T2 ≥ 1, we have

Cθ(x
in, T1)−Cθ(x

out, T1) > Cθ(x
in, T2)−Cθ(x

out, T2); (4)

if 0 < T1 < T2 ≤ 1, we have

Cθ(x
in, T1)−Cθ(x

out, T1) < Cθ(x
in, T2)−Cθ(x

out, T2). (5)

Here, the constant c depends on Cθ(x
in, 1) and Cθ(x

out, 1).
Remark. Previous works (Hendrycks and Gimpel 2017;
Liang, Li, and Srikant 2018; Hsu et al. 2020) have shown
that ID samples tend to have higher output confidence than
OOD samples, i.e., Cθ(x

in, 1) > Cθ(x
out, 1) holds for

most ID and OOD samples. For these ID and OOD samples,
Theorem 1 tells that the output confidence gap between them
relates to temperature T , and T > 1 will make the gap larger.
Due to space constraints, we postpone the omitted proof of
Theorem 1 to Appendix A in the supplementary material.

For K ≥ 3, it is difficult to analyze the case since
Cθ(x, T ) depends on the exponential functions. Intuitively,
similar results to Theorem 1 can be got for K ≥ 3. For a
sample x, the output probability distribution of the trained
neural network is denoted as p = (p1, · · · , pK), where
pi = exp (zi)∑K

j=1 exp (zj)
. In deep learning, neural networks are

trained on the data with one-hot labels. Because of the ex-
pressive power of neural networks, the output p is usually
close to a one-hot vector. Let p̃ = (p̃1, · · · , p̃K) be the de-
creasingly sorted version of p, where p̃1 > · · · > p̃K . Since
p is close to a one-hot vector, it is reasonable to assume that

p̃1 ≫ p̃i for 2 ≤ i ≤ K. Here, we consider a weaker as-
sumption that p̃1 ≫ p̃j for 3 ≤ j ≤ K, which can be met
in realistic applications (we will verify this assumption with
experiments in Appendix C in the supplementary material).
For the trained neural network fθ, we have

Cθ(x, T ) = 1/
(
1 +

∑
i̸=ŷ

exp (zi/T − zŷ/T )
)

= 1/
(
1 +

K∑
j=2

(p̃j/p̃1)
1/T

)
. (6)

For 3 ≤ j ≤ K, p̃j/p̃1 ≈ 0 since p̃1 ≫ p̃j , so we have
Cθ(x, T ) ≈ 1/

(
1+(p̃2/p̃1)

1/T
)
. With similar proof of The-

orem 1, we can obtain Eq (4) and Eq (5) under K ≥ 3.
However, T > 1 will soften the output probability distri-

bution of the ID samples in U in. In order to guarantee the
performance of ID classification, we employ the calibration
technique (Guo et al. 2017) to set the value of T adaptively.
Specifically, T is optimized with respect to the negative log
likelihood loss on the ID validation set V in epoch t:

Tt = argmin
T

−
∑

(x,y)∈V

log
(
q
(y)
θ (x, T )

)
. (7)

The temperature Tt will push the output confidence of the
ID and OOD samples in U further apart from each other,
which motivates us to select these samples from U with the
output confidence. A straightforward way is to employ the
constant confidence thresholds τ in and τout, i.e., the sam-
ple x is determined as ID if Cθ(x, T ) > τ in or OOD if
Cθ(x, T ) < τout. However, since the output confidence
distribution of the samples in U varies during the training
process, we should choose the thresholds τ in and τout dy-
namically. We fit a two-component Gaussian Mixture Model
(GMM) on the output confidence of the samples in U with
the Expectation-Maximization algorithm in each epoch and
calculate the average confidence of the samples in each com-
ponent as the confidence threshold. This process is summa-
rized in Procedure 1, and the selected ID and OOD samples

Procedure 1 Obtaining the thresholds τ int and τoutt

Input: Unlabeled data U , epoch t, neural network fθ.
Parameter: Components g1 (for ID) and g2 (for OOD) of
Gaussian Mixture Model (GMM).

1: Fit g1 and g2 on
{
Cθ(x, Tt) | x ∈ U

}
with EM;

2: Separate U with g1 and g2 by the posterior probability:
Ug1
t ←

{
x | p

(
g1|Cθ(x, Tt)

)
> p

(
g2|Cθ(x, Tt)

)
∧

x ∈ U
}

;
Ug2
t ←

{
x | p

(
g1|Cθ(x, Tt)

)
≤ p

(
g2|Cθ(x, Tt)

)
∧

x ∈ U
}

;
3: Calculate the thresholds:

τ int ← 1
|Ug1

t |
∑

x∈U
g1
t

Cθ(x, Tt);

τoutt ← 1
|Ug2

t |
∑

x∈U
g2
t

Cθ(x, Tt).

Output: τ int and τoutt .
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in epoch t can be written as:
U in
t =

{
x | x ∈ U ∧ Cθ(x, Tt) > τ int

}
, (8)

Uout
t =

{
x | x ∈ U ∧ Cθ(x, Tt) < τoutt

}
. (9)

There may be samples of unseen OOD classes in the test
data during the inference process (shown in Figure 1), so
it is important to enhance the model’s generalization capa-
bility to deal with them. One reasonable way is to increase
the diversity of data with augmentation techniques. Here
we employ RandAugment (Cubuk et al. 2020) and mixup
(Zhang et al. 2018). RandAugment can produce heavily dis-
torted versions of a given image, and mixup aims to generate
new samples and targets by linear combination. We mod-
ify the vanilla mixup since there are OOD samples in U .
Specifically, we first choose λ from Beta(α, α), where α is
a hyperparameter of the Beta distribution. Then, for a pair
(x,x′), we obtain the new sample x̂ = λ′x + (1 − λ′)x′,
where x,x′ ∈ U . λ′ = max(λ, 1−λ) leads x̂ closer to x to
preserve the semantic information in the original image x.
We combine these two augmentation techniques to further
improve the richness of data, which can be formulated as:

x̃ =M
(
R(x),R(x′)

)
= λ′R(x) + (1− λ′)R(x′), (10)

whereR(·) denotes RandAugment for a given sample.
In order to make the model distinguish between ID and

OOD samples better with the output confidence, we employ
entropy minimization and maximization on the augmented
samples in U in

t and Uout
t respectively. The learning objec-

tives can be written as:

LEmin =
1

|U |
∑

x∈Uin
t

CE
(
q̂θ(x) ∥ qθ(x̃)

)
, (11)

LEmax = − 1

|U |
∑

x∈Uout
t

H
(
qθ(x̃)

)
. (12)

In Eq (11), q̂θ(x) is the K-dimensional one-hot pseudo la-
bel for x, in which the ith element q̂(i)θ (x) = 1 if and only if
i = ŷ (ŷ is the predicted class on x). It enforces the model
to produce the low-entropy (high-confidence) output on ID
samples. In Eq (12), H(·) calculates the entropy of a given
distribution and enforces the model to produce the high-
entropy (low-confidence) output on OOD samples. Similar
to Sohn et al. (2020), we normalize these losses with |U | to
take the capacity of the selected sets into consideration.

In this way, the overall loss can be formulated as:
L = LS + ωLCR + βLEmin + γLEmax, (13)

where ω, β, and γ are hyperparameters to balance each loss.
We first obtain a basic model with L and U , and use ω = 1
and β = γ = 0 at the first stage of the training process.
After getting the basic model, we select the ID and OOD
samples in U with the output confidence and use ω = 0 and
β = γ = 1. This intuition is similar to curriculum learning
(Bengio et al. 2009), which starts with an easier learning
objective and then faces a more difficult one. The overall
training process of Adaptive In-Out-aware Learning (AIOL)
is shown in Algorithm 1, and the output confidence is used
as the detection score during the inference process.

Algorithm 1 Adaptive In-Out-aware Learning (AIOL)
Input: Labeled data L, Unlabeled data U .
Parameter: Neural network fθ.

1: for t = 1 to max epoch do
2: Obtain the temperature Tt with Eq (7);
3: Obtain the thresholds τ int and τoutt with Procedure 1;
4: for k = 1 to max iteration do
5: Draw a batch of labeled data BL from L, and draw

a batch of unlabeled data BU from U ;
6: Compute LS with Eq (1) on BL;
7: Compute LCR, LEmin, and LEmax with Eq (2),

Eq (11), and Eq (12) respectively on BU ;
8: Update neural network parameters θ with Eq (13).
9: end for

10: end for
Output: Trained neural network fθ.

Experiments
Datasets
The training set of CIFAR10 (CIFAR100) is used as ID
training data, and we split them into labeled and unlabeled
data. For the labeled data, the number of each class is set
as 100, which results in 1000 (10000) labeled data for CI-
FAR10 (CIFAR100). The remaining data is used as the un-
labeled ID data U in. As for Uout, the unlabeled OOD data
are drawn from the following datasets:

• ImageNet. The test set of ImageNet, i.e., 50000 images
with 1000 classes, are drawn to construct Uout.

• SVHN. The test set of SVHN, i.e., 26032 images with 10
classes, are drawn to construct Uout.

• CIFAR10 & CIFAR100. If CIFAR10 is considered as
the ID dataset, the test set of CIFAR100, i.e., 10000 im-
ages with 100 classes, will be drawn to construct Uout;
if CIFAR100 is considered as the ID dataset, the test set
of CIFAR10, i.e., 10000 images with 10 classes, will be
drawn to construct Uout.

• Split. Except for the mixtures of two different datasets,
we also consider the splits of one single dataset. Specif-
ically, we split CIFAR10 into animal group as ID and
non-animal group as OOD, i.e., 6 classes and 4 classes.
Similarly, we split CIFAR100 into living group as ID and
non-living group as OOD, i.e., 65 classes and 35 classes.
Details of the splits are given in Appendix B in the sup-
plementary material. We also keep 100 labeled data per
class for the ID group and use the remaining data of the
training set as the mixed unlabeled data U because they
naturally include the ID and OOD groups.

The test set of CIFAR10 (CIFAR100) is used to evaluate
the performance. Following that in Yu and Aizawa (2019)
and Sastry and Oore (2020), we split 10% of the test set as
the ID validation data and use the rest as the ID test data.
As for the OOD test data, samples of seen and unseen OOD
classes are drawn as follows:

• Seen. If U in and Uout are from two different datasets,
samples of seen OOD classes will be drawn from the
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U in CIFAR10 CIFAR100

Uout ImageNet SVHN CIFAR100 Split ImageNet SVHN CIFAR10 Split

OOD type Seen / Unseen Seen / Unseen

Baseline 66.2 / 65.1 54.2 / 66.4 63.9 / 65.3 66.4 / 61.4 70.3 / 64.3 70.2 / 64.2 68.1 / 64.7 75.5 / 74.3
OE 69.6 / 70.7 82.9 / 62.3 63.9 / 59.3 65.3 / 59.2 86.5 / 82.5 98.7 / 66.8 70.3 / 67.9 76.1 / 74.6
MCD 98.4 / 83.7 97.3 / 57.7 59.0 / 51.6 73.5 / 57.8 96.1 / 84.4 99.3 / 69.3 79.8 / 70.0 92.2 / 82.3
SSD 73.7 / 86.9 33.3 / 94.8 81.6 / 93.3 39.1 / 94.5 49.3 / 67.8 29.9 / 71.5 47.4 / 79.7 44.9 / 75.4
FixMatch 44.6 / 85.4 40.2 / 93.2 76.8 / 90.7 39.4 / 91.4 47.3 / 72.6 25.0 / 77.1 60.4 / 78.0 39.1 / 73.2
UASD 86.0 / 85.7 88.4 / 84.7 80.0 / 86.0 80.4 / 82.1 74.6 / 72.9 77.1 / 71.3 71.3 / 72.2 74.6 / 73.6

Ours 99.9 / 96.9 100. / 93.4 94.7 / 95.0 93.8 / 94.6 99.7 / 90.0 100. / 77.4 80.0 / 80.9 97.7 / 88.9

Table 1: OOD detection results with percentage of AUROC.

training set of the dataset for Uout. For example, when
U in is from CIFAR10 and Uout is from CIFAR100, sam-
ples of seen OOD classes are drawn from the training
set of CIFAR100; if U in and Uout are from the splits of
one single dataset, samples of seen OOD classes will be
drawn from the OOD group in the test set. For example,
when U in and Uout are from the splits of CIFAR10, sam-
ples of seen OOD classes are drawn from the non-animal
group in the test set of CIFAR10.

• Unseen. Samples of unseen OOD classes are drawn
from various benchmark datasets: CIFAR10, CIFAR100,
SVHN, ImageNet, Blobs, Texture, iSUN, LSUN, and
Places365. The dataset will not be used to construct the
unseen OOD data if it is considered for training. Follow-
ing that in Hendrycks and Gimpel (2017), each bench-
mark dataset is used to evaluate the detection perfor-
mance respectively, and the average result is reported.

More details of the used datasets are given in Appendix B
in the supplementary material.

Setup
Following that in Sohn et al. (2020), the augmentation A(·)
is implemented with the standard data augmentations (ran-
dom flip and crop), and the augmentation A′(·) is imple-
mented with RandAugment. In the experiments, we use the
standard Wide ResNet (Zagoruyko and Komodakis 2016),
i.e., WRN-28-2, as the base network and use SGD optimizer
for training. The experiments are run for 256 epochs with
512 iterations per epoch. We set ω = 1 and β = γ = 0 at
the beginning, and set ω = 0 and β = γ = 1 after 80%
of the training epochs. We set α = 0.2 for mixup. We em-
ploy EMA model (Tarvainen and Valpola 2017), and limit
τ int ≤ 0.95 and τoutt ≥ 1/K + 0.05 for stability. Other hy-
perparameters are the same as that of Sohn et al. (2020) for a
fair comparison. We evaluate the detection performance with
three metrics: AUROC, AUPR, and FPR95. Due to space
constraints, we present results with AUROC (the area un-
der the ROC curve) in this section. More results with other
metrics are in Appendix C in the supplementary material.

Compared Methods
We compare our method with various related methods,
including: Baseline (Hendrycks and Gimpel 2017); OE

(Hendrycks, Mazeika, and Dietterich 2019); MCD (Yu and
Aizawa 2019); SSD (Sehwag, Chiang, and Mittal 2021);
FixMatch (Sohn et al. 2020); UASD (Chen et al. 2020b).
The Baseline method only uses labeled data for training, but
the others consider unlabeled data. Note that the first four
methods are developed for OOD detection, while the last
two methods are barely SSL methods. The OOD detector
based on the output confidence is built for the last two meth-
ods, which is the same as ours. For a fair comparison, the
experiments are also conducted for 256 epochs with 512 it-
erations per epoch on WRN28-2 for all the compared meth-
ods except for SSD. For SSD, it is a self-supervised learning
method and needs more training resources, so we follow the
original paper and run it on ResNet-18 (He et al. 2016) for
500 epochs. The hyperparameters are set according to the
original paper for all the compared methods.

Results
Since the test data contain samples of seen and unseen OOD
classes, we evaluate the detection performance on them re-
spectively, and the results are shown in Table 1.

Performance of seen OOD detection. The results for de-
tecting samples of seen OOD classes are summarized on the
left of the slash in Table 1, which indicates that our method
outperforms the compared methods on seen OOD detection.
The MCD method performs worse than ours since it treats
each unlabeled sample equally. The SSD method and the
FixMatch method are developed for the pure unlabeled ID
data, while the OE method is developed for the pure unla-
beled OOD data. These three methods all produce poor and
unstable results since they are confused with the mixed ID
and OOD samples in U . The UASD method produces more
stable results since it eliminates the effect of OOD samples
in U , but it still performs worse than ours since we can learn
from OOD samples in U rather than ignoring them.

Performance of unseen OOD detection. The results for
detecting samples of unseen OOD classes are summarized
on the right of the slash in Table 1. Except when U in is from
CIFAR10 and Uout is from SVHN, our method outperforms
the compared methods because the augmentation techniques
enhance the model’s generalization capability on unseen
OOD detection. When U in is from CIFAR10 and Uout is
from SVHN, our method performs slightly worse than the
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|L| 250 1000 4000

OOD type Seen / Unseen

Baseline 53.3 / 52.5 66.2 / 65.1 76.7 / 76.8
FixMatch 42.1 / 84.6 44.6 / 85.4 68.2 / 88.5
UASD 70.4 / 70.0 86.0 / 85.7 90.5 / 91.1

Ours 99.8 / 96.1 99.9 / 96.9 99.3 / 97.0

Table 2: Results with different numbers of labeled samples.

0 1k 2k 5k 10k 25k 50k
Number of OOD Samples

40

50

60

70

80

90

100

AU
RO

C

Seen

FixMatch
UASD
Ours

0 1k 2k 5k 10k 25k 50k
Number of OOD Samples

84
86
88
90
92
94
96
98

AU
RO

C
Unseen

FixMatch
UASD
Ours

Figure 2: Results with various numbers of OOD samples.

SSD method. The reason is that the samples in SVHN are
images of house numbers, and it is hard to get more diverse
information from these plain images. Furthermore, the SSD
method requires more computational resources, which is run
for 500 epochs on ResNet-18.

Since our method is developed for OOD detection with
the labeled data L and the mixed unlabeled data U , num-
ber of labeled samples and number of OOD samples in U
are parameters of the experiments. We set that U in is from
CIFAR10 and Uout is from ImageNet, and provide further
results to investigate the effectiveness of the two parameters:

Number of labeled samples. We conduct the experi-
ments with different numbers of labeled samples (250, 1000,
and 4000), and the results are shown in Table 2. It can be
found that our method performs better than the other meth-
ods with different numbers of labeled samples and is not sen-
sitive to this parameter. Moreover, our method can achieve
superior performance even with very few labeled samples,
i.e., 250. The reason lies in that our method can make full
use of the mixed unlabeled data.

Number of OOD samples in U . We conduct the experi-
ments with various numbers of OOD samples in U (|Uout|
varies from 0 to 50000), and the results are shown in Fig-
ure 2. We set γ = 0 when there is no OOD sample in U .
Figure 2 shows that our method outperforms the other meth-
ods with various numbers of OOD samples in U except for
|Uout| = 0. When |Uout| = 0, our method is slightly worse
than the FixMatch method, which is developed for the pure
unlabeled ID data (|Uout| = 0). But our method is appro-
priate for the mixed unlabeled data (|Uout| > 0) and can
produce better results with more OOD samples in U .

Ablation Study
We set that U in and Uout are from the splits of CIFAR100
and run the experiments to study the details of our method
and provide additional insight into what makes it successful.

Ablation Seen / Unseen

Supervised loss
(
Eq(1)

)
75.5 / 74.3

+ Consistency regularization
(
Eq (2)

)
with T = 1

59.2 / 80.4

+ Adaptive temperature Tt 89.7 / 84.3
+ Emin and Emax

(
Eq (11) and Eq (12)

)
without augmentation 96.6 / 83.6

+ RandAugment 94.0 / 85.6
+ Modified mixup 97.7 / 88.9

Table 3: Ablation study on the used modules.
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Figure 3: Ablation study on the modified mixup.

The effectiveness of the used modules. There are several
modules in our method: supervised loss

(
Eq (1)

)
; consis-

tency regularization
(
Eq (2)

)
with T = 1; adaptive tempera-

ture Tt; Emin and Emax
(
Eq (11) and Eq (12)

)
without aug-

mentation; two augmentation techniques. The ablation study
on these modules is summarized in Table 3. We can see that
the method with supervised loss and consistency regular-
ization (T = 1) performs badly, but after using the adap-
tive temperature Tt, the method performs much better. Com-
bined with Eq (11) and Eq (12) over U in

t and Uout
t , which

are selected according to the adaptive temperature Tt and
the dynamic thresholds τ int and τoutt , the method achieves
significantly better results on seen OOD detection. Further
combined with the two augmentation techniques, i.e., Ran-
dAugment and the modified mixup, the model’s generaliza-
tion capability on unseen OOD detection is improved.

The effectiveness of the modified mixup. The results for
the mixup with different parameters are shown in Figure 3.
On the one hand, the method with the vanilla mixup (with-
out the maximum operation λ′ = max(λ, 1 − λ)) performs
worse than that with no mixup since the vanilla mixup di-
rectly confuses the ID and OOD samples. On the other hand,
our method with the modified mixup performs better since
λ′ is close to 1 and can produce diverse data points around
the original one, which can protect the semantic information.
As for the hyperparameter α, the smaller one can achieve
better results since smaller α leads λ closer to 1 and bigger
α leads λ closer to 0.5.

The effectiveness of the adaptive temperature Tt. After
80% of the training epochs, we depict the output confidence
of the samples in U with the adaptive temperature Tt in the
upper part of Figure 4(a). As a comparison, we use T = 1
and depict the output confidence of the samples in U in the
lower part of Figure 4(a). It can be found that the adaptive
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Figure 4: Ablation study on the adaptive temperature Tt. (a): Empirical p.d.f. of the output confidence of the samples in U with
Tt (upper part) and T = 1 (lower part). (b): The values of Tt during training. (c) Detection results on U with different T .
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Figure 5: Precision (P), Recall (R) and F-score (F) of the
selection for ID samples (left part) and OOD samples (right
part) with our dynamic thresholds (τ int and τoutt ) and the
fixed thresholds (τ in and τout). (a): τ in = 0.9 and τout =
0.3. (b): τ in = 0.7 and τout = 0.5.

temperature Tt pushes the output confidence of the ID and
OOD samples further apart from each other. The values of
the adaptive temperature Tt during the training process are
shown in Figure 4(b) (we use T = 1 before epoch 40 for
warming up), which indicates that Tt is always larger than
1. It rapidly increases at 80% of the training epochs, i.e.,
epoch 205, because the large temperature is required to cal-
ibrate the output confidence of ID samples for Eq (11). For
comparison, we also run the experiments with the fixed tem-
perature T , and the detection performance on U is shown in
Figure 4(c). It demonstrates that the adaptive temperature Tt

can consistently outperform the fixed ones.
The effectiveness of the thresholds τ int and τoutt . For

obtaining U in
t in Eq (8) and Uout

t in Eq (9) from U , we
choose the dynamic thresholds τ int and τoutt based on the

Uout ImageNet SVHN CIFAR Split

U in CIFAR10 / CIFAR100

Baseline 58.1 / 57.1 58.1 / 57.1 58.1 / 57.1 51.6 / 53.3
FixMatch 93.3 / 67.9 94.4 / 69.3 93.9 / 70.4 93.6 / 67.1
UASD 84.7 / 64.9 85.1 / 65.3 85.8 / 65.8 82.5 / 62.7

Ours 92.6 / 68.4 93.3 / 67.7 93.0 / 67.8 93.8 / 66.0

Table 4: Classification results with percentage of accuracy.

two GMM components g1 and g2. For comparison, we also
run the experiments with the fixed thresholds (τ in = 0.9 and
τout = 0.3, or τ in = 0.7 and τout = 0.5), and report the
Precision, Recall, and F-score of the selection on U in Fig-
ure 5(a) and Figure 5(b). F-score, i.e., the harmonic mean of
Precision and Recall, is a metric that can generally evaluate
the selection quality. From Figure 5(a) and Figure 5(b), we
can see that the F-score of our dynamic thresholds is always
higher than that of the fixed thresholds. Detailed results for
more fixed thresholds are given in Appendix C in the sup-
plementary material.

Performance of ID classification. The results of ID clas-
sification are reported in Table 4. Our method performs
slightly worse than the FixMatch method, perhaps because
we use temperature T > 1 for the samples of U in in Eq (2).
But our method is developed for detecting OOD samples and
performs much better than the FixMatch method in OOD de-
tection, which is shown in Table 1.

Conclusion
In this paper, we focus on the more realistic OOD detection
scenario, where limited labeled data and abundant mixed un-
labeled data are available for training. During the inference
process, the trained model should not only detect samples of
seen OOD classes but also detect samples of unseen OOD
classes. We propose the Adaptive In-Out-aware Learning
(AIOL) method, in which we adaptively select potential ID
and OOD samples from the mixed unlabeled data and op-
timize the entropy over them. Moreover, data augmentation
techniques are brought into the method to further improve
the performance of unseen OOD detection. The experimen-
tal results show that our method outperforms the compared
methods on various benchmark datasets.
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