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Abstract

Sample efficiency is crucial for imitation learning methods
to be applicable in real-world applications. Many studies im-
prove sample efficiency by extending adversarial imitation to
be off-policy regardless of the fact that these off-policy ex-
tensions could either change the original objective or involve
complicated optimization. We revisit the foundation of ad-
versarial imitation and propose an off-policy sample efficient
approach that requires no adversarial training or min-max op-
timization. Our formulation capitalizes on two key insights:
(1) the similarity between the Bellman equation and the sta-
tionary state-action distribution equation allows us to derive a
novel temporal difference (TD) learning approach; and (2) the
use of a deterministic policy simplifies the TD learning. Com-
bined, these insights yield a practical algorithm, Determinis-
tic and Discriminative Imitation (D2-Imitation), which oper-
ates by first partitioning samples into two replay buffers and
then learning a deterministic policy via off-policy reinforce-
ment learning. Our empirical results show that D2-Imitation
is effective in achieving good sample efficiency, outperform-
ing several off-policy extension approaches of adversarial im-
itation on many control tasks.

Introduction
We consider a specific imitation learning task: given a lim-
ited number of expert demonstrations, learn an optimal pol-
icy in a simulator without any access to the expert policy
or reinforcement signals of any kind. One of the impor-
tant approaches for this problem setting, a.k.a Apprentice-
ship Learning (Abbeel and Ng 2004), is adversarial imita-
tion, which learns a policy by minimizing the divergence
between the stationary state-action distribution induced by
the policy and the expert distribution given in the demon-
strations (Ho and Ermon 2016; Kostrikov et al. 2018; Ke
et al. 2019; Ghasemipour, Zemel, and Gu 2020). As the two
distributions are given in the form of empirical samples, ad-
versarial imitation has to roll out the policy to collect on-
policy samples and then estimates the empirical divergence
by training a discriminator (Ho and Ermon 2016). Those on-
policy samples are then discarded immediately after each
policy update. The resulting sample inefficiency is a crucial
limitation, ruling out many real-world applications, where
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Figure 1: Overview of the D2-Imitation learning1.

collecting interactions is often slow (e.g., physical robotics)
or expensive (e.g., autonomous driving).

Some methods improve sample efficiency by relaxing
the on-policy requirement in adversarial imitation, e.g., us-
ing off-policy samples to train the discriminator and pol-
icy (Kostrikov et al. 2018; Sasaki, Yohira, and Kawaguchi
2018). Doing so, however, changes the original diver-
gence minimization objective, hence providing no guar-
antee that the learned policy recovers the expert distribu-
tion (Kostrikov, Nachum, and Tompson 2019; Sun et al.
2021). Furthermore, the non-stationary rewards generated
by the discriminator make actor-critic algorithms converge
slowly (or even diverge) (Sutton and Barto 2018) and could
demand significantly more samples to learn a good pol-
icy (Schulman et al. 2015; Fujimoto, van Hoof, and Meger
2018). Other methods translate the on-policy distribution
matching problem into an off-policy optimization, which
also circumvents the need to learn rewards (Kostrikov,
Nachum, and Tompson 2019; Sun et al. 2021). This type
of approach involves a non-convex min-max optimization
procedure that requires well-tuned regularization (Gulrajani
et al. 2017), limiting its practical application.

In this paper, we revisit the foundation of adversarial imi-
tation and propose an off-policy learning approach, Deter-
ministic and Discriminative Imitation (D2-Imitation), that
involves no adversarial training or non-convex min-max op-
timization. D2-Imitation capitalizes on two key insights: (1)
the similarity between the Bellman equation and the sta-
tionarity equation of the state-action distribution from the

1Code repository: https://github.com/mingfeisun/d2-imitation.
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formulation of adversarial imitation, and (2) the benefit of
using a deterministic policy in the stationarity equation. In
particular, instead of defining the divergence for distribution
matching as in Ho and Ermon (2016); Ghasemipour, Zemel,
and Gu (2020), we derive a temporal difference (TD) learn-
ing approach from the stationarity equation, which directly
learns a proxy for the expert state-action distribution. Fur-
thermore, we show that the use of a deterministic policy sim-
plifies TD learning and yields a practical imitation learning
algorithm, which operates by first partitioning samples into
two replay buffers via a discriminator, and then learning a
deterministic policy via off-policy RL, as presented in Fig-
ure 1. More specifically, D2-Imitation first trains a discrim-
inator Dφ with state-action pairs from demonstrations (i.e.,
positive samples) and randomly generated samples. When-
ever a sample is collected by rolling out the policy in sim-
ulation, the discriminator determines which buffer, B+ or
B0, the sample should be put in. D2-Imitation then uni-
formly samples from the two replay buffers, assigns posi-
tive rewards to the samples from B+ and zero to those from
B0, and uses those samples to update the proxy estimate
of state-action distribution via an off-policy RL algorithm.
We show that the notion of partitioning samples into two
groups and assigning constant rewards follows theoretically
from the use of a deterministic policy. Our empirical results
show that D2-Imitation is effective in achieving good sam-
ple efficiency, outperforming many adversarial imitation ap-
proaches on different benchmark tasks with demonstrations
from either deterministic or stochastic policies.

Background
Preliminaries We consider an infinite-horizon Markov
decision process (MDP) with a finite state space S , a finite
action spaceA, a transition kernel p : S×A×S → (0, 1], a
reward function r : S×A → R, a discount factor γ ∈ [0, 1),
and an initial state distribution p0 from which s0 is sampled.
An agent then interacts with its environment in discrete time
steps as follows: at each time step t the agent observes envi-
ronment state st ∈ S , takes an action at ∈ A and transitions
to a successor state st+1 ∈ S , also denoted as s′ if the sub-
script is omitted. The agent’s behavior is defined by a policy
π, which maps states to a probability distribution over the
action: π : S → P(A). A policy is deterministic if the prob-
ability distribution degenerates to a probability mass point.
We use µ to denote a deterministic policy and µ(s) to de-
note the action for s. The return from a state is defined as the
sum of discounted future rewardRt =

∑∞
i=t γ

(i−t)r(si, ai).
The return depends on the actions chosen, and therefore on
policy π. A policy is optimal if it maximizes the expected
return from the start distribution J(π) = Es0∼p0,πt [R0]. In
imitation learning, the agent needs to learn an optimal policy
from expert samples (sE , aE) that are generated by an opti-
mal policy πE , assuming the reward function r is unknown
and no reinforcement signals of any kind are available.

Deterministic policy gradients For a parametrized pol-
icy πθ, its parameters θ can be updated in the direction of
the performance gradient ∇θJ(πθ). When the policy is de-
terministic, the parameters can be updated through the de-

terministic policy gradient (Silver et al. 2014),

∇θJ(πθ) = Es∼dπ
[
∇aQπ(s, a)|a=π(s)∇θπθ(s)

]
, (1)

where dπ is the state distribution induced by π (the formal
definition is given in the next section), and Qπ(s, a), also
called the action value function, is the expected return after
taking at in state st and thereafter following π:Qπ(st, at) =
Eri≥t,si≥t∼p,ai≥t∼π

[
Rt|st, at

]
, To learn Qπ(s, a), one can

update the critic recursively based on the Bellman equa-
tion (Sutton and Barto 2018):

Qπ(s, a) = Er,s′∼p
[
r(s, a) + γEa′∼π[Qπ(s′, a′)]

]
. (2)

For a large state space, the value function can be estimated
with a differentiable neural network Qφ(s, a), with parame-
ters φ. To stabilize the training, in deep Q-learning (Mnih
et al. 2015), the network is updated by temporal differ-
ence learning with a target network Qφ′(s, a) to main-
tain a fixed objective y over multiple updates: y = r +
γQφ′(s

′, a′), a′ ∼ πθ′(s
′), where the actions are selected

from a target actor network πθ′ .

Analysis of Stationary Distribution
We first revisit adversarial imitation and analyze the pivotal
idea that underpins this family of approaches: the station-
arity equation for state-action distributions. We show the
similarity between the stationarity equation and the Bell-
man equation, and propose a temporal difference learning
approach to learn a proxy for the state-action distribution.
Finally, we consider a practical algorithm that learns a de-
terministic policy in an off-policy manner.

Distribution Matching in Adversarial Imitation
Adversarial imitation capitalizes on the idea that the sta-
tionary distribution induced by the learned policy should
match the empirical state-action distribution presented in
the demonstrations (Ho and Ermon 2016). To characterize
such idea, we first describe the duality between a policy and
its stationary state-action distribution. For a policy π ∈ Π,
define its stationary state-action distribution as d(s, a) =
(1 − γ)

∑∞
t=0 γ

tdt(s, a), where dt(s, a) = P
(
st = s, at =

a|s0 ∼ p0, ai ∼ π(·|si), si+1 ∼ p(·|si, ai), ∀i < t
)
. A basic

result from Puterman (2014) is that the set of valid state-
action distributions Ω , {dπ : π ∈ Π} can be characterized
by a feasible set of affine constraints, if p0(s) is the starting
state distribution (p0(s) > 0 ∀s ∈ S), then

Ω =
{
d :
∑
a′

d(s′, a′) = (1− γ)p0(s′)+

γ
∑
s,a

p(s′|s, a)d(s, a) d(s, a) ≥ 0 ∀(s′, a′)
}
. (3)

Furthermore, there is a one-to-one mapping for Π, Ω:

Proposition 1. (Syed and Schapire 2007) If d(s, a) is fea-
sible by Equation (3), then d is the state-action distribution
for π , d(s, a)/

∑
a d(s, a), and π is the only policy whose

state-action distribution is d.
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This proposition also holds for deterministic policies. In
particular, a solution d is a basic feasible solution (BFS)
of affine constraints if it cannot be expressed as a nontriv-
ial convex combination of any other feasible solutions. If
d(s, a) is a BFS of Equation (3), then π is deterministic and
vice versa. Thus, for a BFS d(s, a) and its corresponding de-
terministic policy µ, we always have d(s, a) = 0 if a 6= µ(s)
and d(s, µ(s)) > 0 (Puterman 2014).

Proposition 1 forms the foundation of distribution match-
ing approaches for adversarial imitation. Specifically, since
the stationary state-action distribution uniquely describes a
policy, one can learn a policy π by minimizing the differ-
ence between two distributions: the state-action distribution
dπ(s, a) induced by the policy π and the state-action dis-
tribution dE(s, a) in the demonstrations (Ho and Ermon
2016; Kostrikov et al. 2018; Ke et al. 2019; Ghasemipour,
Zemel, and Gu 2020). In adversarial imitation, the distribu-
tion difference is estimated via a discriminator, which re-
quires rolling out the policy (i.e., generator) to simulate an
MDP process and to collect on-policy samples from dπ(s, a)
whenever the policy is updated in training (Ho and Er-
mon 2016). Those on-policy samples are discarded imme-
diately after each iteration (Kostrikov et al. 2018; Kostrikov,
Nachum, and Tompson 2019). We take a different perspec-
tive by formulating a novel learning method from Equa-
tion (3), without resorting to any divergence minimization
or repeatedly requiring on-policy samples.

Distribution Matching by TD Learning
At first glance, the stationarity equation (3) resembles the
Bellman equation for action-value functions. Specifically,
multiplying by π(a′|s′) on both sides of (3), we have

d(s′, a′) = (1− γ)p0(s′)π(a′|s′)+

γ
∑
s,a

π(a′|s′)p(s′|s, a)d(s, a), (4)

which holds for d ≥ 0, ∀(s′, a′) ∈ S × A. With this new
formulation, d(s, a) can be reinterpreted as the action-value
function and (1 − γ)p0(s′)π(a′|s′) as the expected reward
over the state s (denote r(s, a) = (1− γ)p0(s)π(a|s)). The
Bellman equation (2) bootstraps the estimate of the current
action value Q(s, a) on the next ones (s′, a′), i.e., lever-
aging successor samples. By contrast, the stationary equa-
tion (4) operates backwards by bootstrapping the current
value d(s′, a′) on the previous ones (s, a), i.e., leveraging
predecessor samples. In practice, it is difficult to directly ob-
tain predecessor samples in model-free learning (Liu et al.
2018). We thus consider an alternative equation as follows,

d̃(s, a) = (1− γ)p0(s)π(a|s)+

γ
∑
s′,a′

π(a′|s′)p(s′|s, a)d̃(s′, a′), (5)

which modifies the original stationarity equation by consid-
ering successor samples, rather than predecessor ones. We
use d̃(s, a) to note that d̃(s, a) defined by this equation is
not strictly a stationary state-action distribution for any π.

However, we show below that the BFSs of Equation (5) are
the same as that of Equation (4). Denote state-action distri-
bution as d ∈ R|S|×|A|, initial state-action distribution as
d0 ∈ R|S|×|A|, where d0(s, a) = p0(s)π(a|s), and state-
action transition probability as Pπ ∈ R(|S|×|A|)×(|S|×|A|),
where Pπ

(
(s, a), (s′, a′)

)
= π(a′|s′)p(s′|s, a). We make

the following assumption:

Assumption 1. The Markov chain induced by π is ergodic
and (I− γP>π )−1 exists.

The first part of this assumption can be easily fulfilled in
the real world as long as the problem to be considered has a
recurring structure (Levin and Peres 2017). The second part
is to ensure that d̃(s, a) is well-defined (Yu 2015). We then
have the following,

Theorem 1. For any strictly positive function p0(s), the
affine constraints defined in Equations (4) and (5) have the
same set of BFSs.

Proof. Denote BFS as dB(s, a) and its corresponding policy
as µ. Since dB is a BFS, we have dB(s, a) = 0 if a 6= µ(s)
following from Proposition 1. We only need to show that
dB(s, a) remains feasible for any strictly positive p0(s).

The affine constraints given in Equations (4) and (5) can
be represented in the matrix form d = γP>π d + (1 − γ)d0

and d̃ = γPπd̃+(1−γ)d0. Thus we have d = (1−γ)(I−
γP>π )−1d0 and d̃ = (1− γ)(I− γPπ)−1d0. Note that (I−
γPπ)−1 also exists given that (I− γP>π )−1 exists. Thus for
both affine constraints, the BFSs are determined as follows:
dB = (I − γP>π )−1p0, and d̃B = (I − γPπ)−1p0. For
strictly positive function p0(s), we have p0 > 0. Also, since
γ ∈ [0, 1) and the Markov chain induced by π is ergodic
(also iperiodic), we have ∀s,

[
(I − γP>π )−1p0

](
s,µ(s)

) >
0, and

[
(I − γPπ)−1p0

](
s,µ(s)

) > 0. Thus dB
(
s, µ(s)

)
is feasible for both affine constraints. Therefore, the set of
BFSs for these two affine constraints are the same.

Furthermore, as Equation (5) relies on the successor sam-
ples, we can thus construct the following temporal difference
(TD) update rule to learn d̃(s, a),

d̃(st, at)← d̃(st, at)+

αt
[
r(st, at) + γd̃(st+1, at+1)− d̃(st, at)

]
, (6)

where r(st, at) = (1 − γ)p0(st)π(at|st) and {αt} is a de-
terministic positive non-increasing sequence satisfying the
Robbins-Monro condition (Robbins and Monro 1951), i.e.,∑
t αt = ∞ and

∑
t α

2
t < ∞. The convergence analysis of

such TD learning is the same as that for the Bellman opera-
tor (Yu 2015) and is thus omitted here.

D2-Imitation
Theorem 1 and the TD update in Equation (6) suggest a TD
approach to imitation learning: if the reward r(s, a) is set
as (1 − γ)p0(s)µE(a|s), where µE(a|s) is the determinis-
tic expert policy, one can recover the BFSs of Equation (4)
for the expert policy µE via the TD update rule defined
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in Equation (6). However, in Apprenticeship Learning, we
have access only to state-action samples, i.e., {(s, a) : a ∼
πE(·|s)}. Thus, the reward r(s, a) = (1 − γ)p0(s)µE(a|s)
in Equation (6) is generally unknown. In the following, we
show that the reward configuration can be simplified for a
deterministic policy, which yields a practical algorithm.

For a deterministic policy µE , the reward r(s, a) in Equa-
tion (6) can be further simplified. Specifically, we have
r(s, a) = (1 − γ)p0(s)µE(a|s) = 0 if a 6= µE(s), and
r(s, a) = (1 − γ)p0(s) if a = µE(s). According to The-
orem 1, the set of BFSs, corresponding to the deterministic
policy, does not rely on p0(s) as long as it is strictly positive
for all states. We can thus redefine r(s, a) as: rd(s, a) = 1
for a = µE(s), and rd(s, a) = 0 for a 6= µE(s). Namely,
we can partition all state-action pairs into two groups (corre-
sponding to two replay buffers) based on µE(s): a positive
buffer B+, which contains all (s, a) such that a = µE(s),
and a nil buffer B0, which contains all (s, a) such that a 6=
µE(s). As we have no access to the expert policy µE and no
further queries can be made, we have to learn a discriminator
that can tell whether a = µE(s) or a 6= µE(s) for a given
(s, a). Since the demonstrations are given as a finite set of
samples {(sE , aE) : aE ∼ π(·|sE)}, we can train such a
discriminator as follows: for each sE ∈ {(sE , aE) : aE ∼
πE(·|s)}, generate some random actions arnd to form sam-
ples (sE , arnd), assign negative labels to the random samples
and positive labels to the expert samples, and train a discrim-
inator via supervised learning with those labeled samples.

Furthermore, following from Theorem 1, we can learn
BFSs for µE via TD learning by updating d̃(s, a) with sam-
ples that are uniformly sampled from two replay buffers. For
continuous action spaces, an expert policy µE parametrized
with θµ could be directly learned via deep deterministic pol-
icy gradients (Lillicrap et al. 2015), as follows:

∇θµJ(µθ) = Es∼dβ(s)
a=µ(s)

[
∇ad̃(s, a|θd̃)∇θµµ(s|θµ)

]
, (7)

where θd̃ is the parameters of d̃ and d̃(s, a|θd̃) is updated
based on Equation (6). To stabilize the policy training, we
also create copies θ′µ and θ′

d̃
for the actor networks θµ and

the critic networks θd̃. For exploration, we can construct an
exploration policy µ′ by adding Gaussian noise to the tar-
get policy µ, i.e., µ′(st) = µ(st|θµ) + N , where N can
be chosen to suit the environment, e.g., based on domain
knowledge of the environment.

Based on the theoretical and conceptual insights devel-
oped above, we now present Deterministic and Discrimina-
tive Imitation (D2-Imitation), an off-policy imitation learn-
ing method that trains a deterministic policy with a discrim-
inator. During training, the algorithm proceeds as follows: It
first populates B+ with all demonstration state-action pairs
(sE , aE), and then generates random actions arnd for each
state sE in B+. In the next step, it trains the discriminator
parametrized with ψ, Dψ , with positive samples from B+
and random samples (sE , arnd). In the policy training, when-
ever a sample (s, a) is generated by rolling out the policy in
simulation, the discriminator then determines which buffer
the sample should be put in. We set a probability threshold

Algorithm 1: D2-Imitation

1: Initialize B0 to be empty, B+ with {(sE , aE)}.
2: Generate random actions arnd for state sE ∈ B+.
3: Train Dψ with samples from B+ and {(sE , arnd)}.
4: for t = 1 to T do
5: Collect samples (s, a) by policy µθ.
6: Predict probability p of (s, a) being positive withDψ .
7: if p ≥ Pth then
8: Store transition (s, a) in B+.
9: else

10: Store transition (s, a) in B0.
11: end if
12: Sample {(s+i , a

+
i )} from B+, {(s0i , a0i )} from B0.

13: Assign reward 1 to {(s+i , a
+
i )} and zero to {(s0i , a0i )}.

14: Update θd̃, θµ based on Equation (6), (7) respectively.
15: if t mod d then
16: Update target networks.
17: end if
18: end for

Pth such that (s, a) is put into B+ only when the probabil-
ity given by Dψ exceeds Pth. Otherwise, the sample (s, a)
is put into B0. In the following steps, D2-Imitation assigns
a constant positive reward 1 to all samples in B+, and zero
reward to those in B0, and updates the distribution proxy θd̃
and the policy θµ based on Equation (6) and Equation (7)
respectively. D2-Imitation is detailed in Algorithm 1.

Compared to adversarial imitation approaches, D2 differs
in the following perspectives: First, D2 does not assume the
expert demonstrations are from a stationary state-action dis-
tribution. In other words, D2 only requires the samples to
be from a conditional distribution πE(a|s) rather than from
dE(s, a). Consequently, D2 learns a discriminator which
conditions on the state, whereas adversarial imitation ap-
proaches train a discriminator for joint state-action pairs.
Second, D2 leverages TD learning to directly approximate
a proxy to the BFSs, while adversarial imitation approaches
rely on density ratio estimation, which involves variational
estimate of a divergence (Nguyen, Wainwright, and Jordan
2010) that generates non-stationary rewards in training.

The above analysis for D2-Imitation assumes that the ex-
pert policy is deterministic such that BFSs are the same
for Equations (4) and (5). If the expert policy is stochas-
tic, the notion of learning a deterministic policy in effect
considers the setting that only one feasible action should be
learned. For apprenticeship learning in large or continuous
state spaces, e.g., continuous control tasks, it is exceedingly
unlikely to have the exact same state twice in the demonstra-
tions. Thus, learning deterministic policies in apprenticeship
learning effectively amounts to distilling one-one mappings
from demonstrations. In the next section, we show that D2-
Imitation still works well empirically even when the given
demonstrations are generated by stochastic policies.

Experiments
We evaluate D2-Imitation on several popular benchmarks
for continuous control. We first use four physics-based con-
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trol tasks: Swimmer, Hopper, Walker2d and HalfCheetah,
ranging from low-dimensional control tasks to difficult high-
dimensional ones. Each task comes with a true cost func-
tion (Brockman et al. 2016). We first generate expert demon-
strations by running state-of-the-art RL algorithms, includ-
ing Soft Actor Critic (SAC) (Haarnoja et al. 2018), Prox-
imal Policy Optimization (PPO) (Schulman et al. 2017),
Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.
2015), and Twin-Delayed DDPG (TD3) (Fujimoto, van
Hoof, and Meger 2018), on the true cost functions. We train
five different policies using independent seeds for three mil-
lion time steps. To collect demonstrations, we roll out each
expert policy to gather 20 trajectories and for each environ-
ment we have 100 trajectories altogether. Then, to evalu-
ate imitation performance, we sample a certain number (5,
10, 15, or 20) of trajectories as demonstrations. This pro-
cedure repeats for other domains, including classic controls
and Box2D simulation. For the critic and actor networks,
we use a two layer MLP with ReLu activations (tanh acti-
vation for the last layer in the actor network) and two hidden
units (256+256). For the discriminator we use the same ar-
chitecture as Ho and Ermon (2016): a two layer MLP with
100 hidden units and tanh activations. These design choices
have been empirically shown to be best suited to control
tasks. We train all networks with Adam (Kingma and Ba
2014) with a learning rate of 10−3. The discriminator is pre-
trained for 1000 iterations with batch size 256. We set the
probability threshold heuristically to 0.8 (after a sweep from
0.7 to 0.95) as it empirically works well across all domains.
In positive buffer B+, we force the off-policy samples to ac-
count for only a small portion ( 25%), and the majority is
still from demonstrations. The implementation of off-policy
TD follows that of TD3 (Fujimoto, van Hoof, and Meger
2018), with a double Q-net.

Comparing to Adversarial Imitation Methods
We first compare our algorithm to two extensions of adver-
sarial imitation: discriminator-actor-critic (DAC) (Kostrikov
et al. 2018), and Random Expert Distillation (RED) (Wang
et al. 2019), Particularly, DAC addresses sample efficiency
by reusing past experiences through a replay buffer, while
RED does so by stabilizing RL training with a fixed reward
function, rather than the non-stationary one in GAIL. We
use the original implementation of DAC and RED.2 DAC
also adopts the following practice to improve sample effi-
ciency: a replay buffer and the deterministic policy updated
via TD3 algorithm. We also compare the proposed algorithm
with a variant of GAIL in which the policy is pre-trained
with behavior cloning (BC) to reduce the sample complex-
ity, as used by Ho and Ermon (2016). We tune the number of
pre-training iterations for different environments to achieve
stable performance. We also found that too many iterations
hinder learning of GAIL as the behavioral cloning may over-
fit to the demonstration data. We perform evaluation using
10 random seeds. For each seed, we log average episodic re-
turns from the simulation environment in training. Like Ho

2DAC: https://github.com/google-research/google-research/
tree/master/dac; RED: https://github.com/RuohanW/RED.
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Figure 2: Algorithm comparison using 20 SAC trajectories;
y-axis: normalized returns (1.0 for expert: the dark dashed
line; BC performance: the gray dotted line).

and Ermon (2016) and Kostrikov et al. (2018), we plot re-
turns normalized by expert performance. We compute means
over all seeds and visualize standard deviations.

Figure 2 shows that D2 is much more sample efficient
than the pre-trained GAIL and RED in all tested environ-
ments with SAC demonstrations. GAIL’s performance is
worse than reported in (Ho and Ermon 2016) as the origi-
nal GAIL was trained for ≥2M timesteps for Hopper and
Swimmer, and ≥25M for HalfCheetah, while the figure
presents results for training with only 100K timesteps. Fur-
thermore, D2 achieves expert performance with fewer sam-
ples than DAC and recovers the expert policy on environ-
ment Walker2d and Swimmer. D2 also performs slightly
better on Hopper and trains more stably than DAC. On
HalfCheetah, D2 does not outperform DAC but both algo-
rithms converge slowly with the given demonstrations. Af-
ter comparing HalfCheetah demonstrations with the ones for
other tasks, we found action values demonstrated by SAC
policies in HalfCheetah task are mostly near 1.0 or −1.0
(torque limits), which could make it difficult for a policy
network with tanh as the output activation to approximate.

We also vary the number of demonstration trajectories, as
shown in Figure 3. The average performance is reported for
each algorithm (10 repeats) after training with only 100K
environment interactions. D2 consistently outperforms all
other methods in Walker2d, Swimmer and Hopper with dif-
ferent numbers of demonstration trajectories, with statistical
significance on Walker2d, Swimmer and Hopper.

We further evaluate D2 and DAC with 20 trajectories on
two more domains, classic controls and Box2D. Results are
presented in Table 1. D2 significantly outperforms DAC af-
ter training only for 50K time-steps, and also significantly
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Figure 3: Performance comparisons using different numbers of demonstration trajectories (5, 10, 15, and 20); y-axis: normalized
episodic returns after training for 100K environment interactions (1.0 indicates the returns of an expert policy).
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(a) DDPG demonstrations
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(b) SAC demonstrations
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(c) TD3 demonstrations
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(d) TRPO demonstrations

Figure 4: Comparison with ValueDICE using demonstra-
tions generated from different algorithms. The expert per-
formance is also indicated by the black dashed line.

faster than DAC in wall clock time (as D2 requires no train-
ing of any reward function).

Comparing With Off-policy Distribution Matching
Second, we compare D2 with ValueDICE (Kostrikov,
Nachum, and Tompson 2019), the state-of-the-art off-policy
distribution matching approach for imitation learning. Val-
ueDICE leverages the change of variable trick to turn the
on-policy distribution matching problem into an off-policy
optimization problem. However, as pointed out by Sun et al.
(2021), such change of variable implicitly assumes that the
on-policy samples should be strictly sampled from a station-
ary state-action distribution. Otherwise, the off-policy op-
timization objective would be biased in practice. We thus
evaluate D2-Imitation and ValueDICE on demonstrations

generated by different RL algorithms. Specifically, in addi-
tion to the expert trajectories generated in previous evalua-
tion, we further use 20 trajectories by policies trained via
TRPO, DDPG and TD3. Policies in TRPO and SAC are
stochastic while those in DDPG and TD3 are deterministic.
We then evaluate D2 and ValueDICE on these four types of
demonstrations. Figure 4 presents the training performance
of two algorithms on the HalfCheetah environment (we pick
HalfCheetah as it was reported that learning the expert pol-
icy could take more than 20 million timesteps for imita-
tion learning methods (Kostrikov et al. 2018)). Although
ValueDICE achieves good sample efficiency with demon-
strations given by TRPO (stochastic policies), its perfor-
mance becomes worse when demonstrations change. Em-
pirically, ValueDICE is sensitive to demonstrations, and can
fail to learn the expert policy. For example, ValueDICE ini-
tially progresses on DDPG demonstrations, then plateaus af-
ter 50K time-steps and never reaches expert performance.
Furthermore, we found that even with demonstrations that
are generated by stochastic policies, e.g., SAC, D2 still out-
performs ValueDICE. Intuitively, this could be because a
stochastic policy can always be turned into deterministic by
picking the best or mean action, the discriminator in D2 is
trained to predict that action for each state, and off-policy
TD learns a deterministic policy that distills such action in-
formation from replay buffers. Overall, compared with Val-
ueDICE, the performance of D2 imitation is more consistent
across different types of demonstrations.

Ablation Studies
The discriminator is crucial for D2-Imitation to work prop-
erly and guarantees convergence to expert performance. We
perform ablations on the discriminator and compare the
training performance of D2-Imitation with one variant: one
without any discriminator (denoted without-discriminator),
which just puts on-policy samples to B0, assigns 0 re-
ward to them and gives +1 reward to demonstration sam-
ples in B+, an idea adopted in Soft-Q Imitation Learning
(SQIL) (Reddy, Dragan, and Levine 2019). Figure 5 shows
that training quickly plateaus or even collapses if no discrim-
inator is applied. Furthermore, this plateauing effect hap-
pens more quickly when fewer demonstration trajectories
are used. This phenomenon has also been reported in SQIL.
To avoid such training collapse, SQIL requires early stop-
ping of the training process by judging whether the squared
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IP MCC BW LLC

Returns for 50K training timesteps
Expert PPO 1000.0 -0.050 302.49 181.21

BC 134.2 -0.159 -106.30 -75.62

DAC 1000.0 -0.085 297.58 -73.49

D2 1000.0 -0.045** 308.32 -34.63**

Wall clock time for 50K timesteps (s)
DAC 2755.0 2937.4 2458.8 2708.4

D2 1526.9** 1540.9** 1720.2** 1586.2**

Table 1: D2 vs DAC on InvertedPendulum (IP), Moun-
tainCarContinuous (MCC), BipedalWalker (BW) and Lu-
narLanderContinuous (LLC); ∗∗ for significance (t-test).
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Figure 5: Effect of the discriminator on the training perfor-
mance with 20 and 10 SAC demonstration trajectories.

soft Bellman error converges to a minimum, which we ar-
gue can be challenging as this early stopping also relates to
the number of trajectories used in training. Moreover, even
with perfect early stopping (say 100K interactions as in the
given figure in which the true reward function is known), the
policy still fails to achieve the expert performance.

Related Work
Adversarial imitation casts imitation learning as a distribu-
tion matching problem (Ho and Ermon 2016) and leverages
GANs (Goodfellow et al. 2014) to minimize the Jensen-
Shannon divergence between distributions induced by the
expert and the learning policy. This approach avoids the dif-
ficulty of learning reward functions directly from demon-
strations but is generally sample intensive. To improve
sample efficiency, many methods extend adversarial imi-
tation to be off-policy. For instance, Discriminator-actor-
critic (DAC) (Kostrikov et al. 2018; Sasaki, Yohira, and
Kawaguchi 2018) improves sample efficiency by reusing
previous samples stored in a relay buffer. However, this ap-
proach still relies on non-stationary reward signals gener-
ated by the discriminator, which can make the critic esti-
mation hard and training unstable. Recent work proposes
to train a fixed reward function by estimating the support
of demonstrations and training critics with the fixed re-
ward (Wang et al. 2019). This support estimation itself could

be hard given that only a limited number of empirical sam-
ples are available from the considered distributions. Another
line of off-policy distribution matching approaches focuses
on estimating the critics directly without learning any re-
inforcement signals (Sasaki, Yohira, and Kawaguchi 2018;
Kostrikov, Nachum, and Tompson 2019). The state-of-the-
art along this line is ValueDICE (Kostrikov, Nachum, and
Tompson 2019), which casts distribution matching as off-
policy density ratio estimation and updates the policy di-
rectly via a max-min optimization. However, as we show in
the analysis and experiments, these methods can be ill-posed
when the demonstrations are generated from deterministic
policies, and their performance can also be sensitive to the
demonstrations used in training.

Recently, some non-adversarial imitation learning ap-
proaches have been proposed. For example, offline non-
adversarial imitation learning (Arenz and Neumann 2020)
reduces the min-max in ValueDICE to policy iteration,
which however still requires estimating density ratios and
can potentially inherit the same issues from ValueDICE. By
contrast, D2-Imitation avoids density ratio estimation and is
more robust to different demonstrations. Primal Wasserstein
imitation learning (Dadashi et al. 2020) avoids adversar-
ial training by introducing an off-line cost function, which,
however, requires a domain-specific metric and can be chal-
lenging to properly specify for different environments. D2-
Imitation does not need such domain knowledge and can
be applied in many different settings. Our reward design
for D2-Imitation looks superficially similar to that of Soft
Q Imitation Learning (SQIL), which assigns +1 reward to
demonstration and zero for all interaction samples (Reddy,
Dragan, and Levine 2019). However, D2-Imitation is funda-
mentally different in that the reward assignment is theoreti-
cally consistent with the use of deterministic policies.

Conclusion
In this paper, we revisited the foundations of adversarial im-
itation. We leveraged the similarity between the Bellman
equation and the stationarity equation to derive a TD learn-
ing approach, which directly learns a special proxy, i.e., ba-
sic feasible solutions, for the expert state-action distribution.
Moreover, we showed that the use of deterministic policies
simplifies TD learning and yields a practical learning al-
gorithm, D2-Imitation, which operates by first partitioning
samples into two replay buffers and then learning a deter-
ministic policy via off-policy deterministic policy gradients.
Finally, the notion of partitioning samples into two groups
theoretically follows from the use of a deterministic policy.
Our empirical results demonstrated that D2-Imitation is ef-
fective in achieving good sample efficiency, and outperforms
many adversarial imitation approaches on different control
benchmark tasks with demonstrations generated by either
deterministic or stochastic policies. Also, D2-Imitation con-
sistently outperforms the state-of-the-art off-policy distribu-
tion matching method when training with various different
types of demonstrations. In conclusion, D2-Imitation, as a
direct result of leveraging two novel insights in the distri-
bution matching formulation, is a simple yet very effective
sample-efficient imitation learning approach.
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