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Abstract

Reward-Weighted Regression (RWR) belongs to a family of
widely known iterative Reinforcement Learning algorithms
based on the Expectation-Maximization framework. In this
family, learning at each iteration consists of sampling a batch
of trajectories using the current policy and fitting a new pol-
icy to maximize a return-weighted log-likelihood of actions.
Although RWR is known to yield monotonic improvement
of the policy under certain circumstances, whether and un-
der which conditions RWR converges to the optimal policy
have remained open questions. In this paper, we provide for
the first time a proof that RWR converges to a global opti-
mum when no function approximation is used, in a general
compact setting. Furthermore, for the simpler case with finite
state and action spaces we prove R-linear convergence of the
state-value function to the optimum.

1 Introduction

Reinforcement learning (RL) is a branch of artificial intelli-
gence that considers learning agents interacting with an en-
vironment (Sutton and Barto 2018). RL has enjoyed several
notable successes in recent years. These include both suc-
cesses of special prominence within the artificial intelligence
community—such as achieving the first superhuman perfor-
mance in the ancient game of Go (Silver et al. 2016)—and
successes of immediate real-world value—such as providing
autonomous navigation of stratospheric balloons to provide
internet access to remote locations (Bellemare et al. 2020).
One prominent family of algorithms that tackle the RL
problem is the Reward-Weighted Regression (RWR) fam-
ily (Peters and Schaal 2007). The RWR family is notable
in that it naturally extends to continuous state and action
spaces. The lack of this functionality in many methods
serves as a strong limitation. This prevents them from tack-
ling some of the more practically relevant RL problems—
such as many robotics tasks (Plappert et al. 2018). Re-
cently, RWR variants were able to learn high-dimensional
continuous control tasks (Peng et al. 2019). RWR works by
transforming the RL problem into a form solvable by well-
studied expectation-maximization (EM) methods (Demp-
ster, Laird, and Rubin 1977). EM methods are, in general,
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guaranteed to converge to a point whose gradient is zero with
respect to the parameters. However, these points could be
both local minima or saddle points (Wu 1983). These ben-
efits and limitations transfer to the RL setting, where it has
been shown that an EM-based return maximizer is guaran-
teed to yield monotonic improvements in the expected re-
turn (Dayan and Hinton 1997). However, it has been chal-
lenging to assess under which conditions—if any—RWR
is guaranteed to converge to the optimal policy. This paper
presents a breakthrough in this challenge.

The EM probabilistic framework requires that the reward
obtained by the RL agent is strictly positive, such that it can
be considered as an improper probability distribution. Sev-
eral reward transformations have been proposed, e.g., Peters
and Schaal (2007, 2008); Peng et al. (2019); Abdolmaleki
et al. (2018b), frequently involving exponential transforma-
tions. In the past, it has been claimed that a positive, strictly
increasing transformation u, (s) with [ u-(r) dr = const
would not alter the optimal solution for the MDP (Peters
and Schaal 2007). Unfortunately, as we demonstrate in Ap-
pendix A, this is not the case. We must, as a consequence,
consider only linear transformation of the reward if we want
prove convergence. A possible disadvantage of relying on
linear transformations is that it is necessary to know a lower
bound on the reward to construct such a transformation.

In this work, we provide the first proof of RWR’s global
convergence in a setting without function approximation or
reward transformations'. The paper is structured as follows:
Section 2 introduces the MDP setting and other prelimi-
nary material; Section 3 presents a closed-form update for
RWR based on the state and action-value functions and Sec-
tion 4 shows that the update induces monotonic improve-
ment related to the variance of the action-value function
with respect to the action sampled by the policy; Section 5
proves global convergence of the algorithm in the general
compact setting and convergence rates in the finite set-
ting; Section 6 illustrates experimentally that—for a simple
MDP—the presented update scheme converges to the opti-
mal policy; Section 7 discusses related work; and Section 8§
concludes. The extended version of this paper is available at
https://arxiv.org/abs/2107.09088.

"Without loss of generality we do assume that a linear reward
transformation is already provided, such that the reward is positive.



2 Background

Here we consider a Markov Decision Process
(MDP) (Stratonovich 1960; Puterman 2014) M
(S, A, pr, R,v, 110). We assume that the state and action
spaces S C R"s, A C R™ are compact sub-spaces >
(equipped with subspace topology), with measurable struc-
ture given by measure spaces (S, B(S), us), (A, B(A), pa)
where B(-) denotes the Borel c-algebra, and reference
measures (g, (4 are assumed to be finite and strictly
positive on S, A respectively. The distributions of state
(action) random variables (except in Section 5 where greedy
policies are used) are assumed to be dominated by g (p1a),
thus having a density with respect to pg (144). Therefore,
we reserve symbols ds,da in integral expression not to
integration with respect to Lebesgue measure, as usual, but
to integration with respect to pug and @4 respectively, e.g.
Js()ds == [s(-)dus(s). Let (22, F, 1) be a measure space
and f : © — RT a F measurable function (density). We
denote by f - u the measure which assigns to every set
B € Fameasure f - u(B) := [, fdp.

In the MDP framework at each step, an agent observes a
state s € S, chooses an action a € A, and subsequently tran-
sitions into state s’ with probability density pr(s’|s,a) to
receive a deterministic reward R(s, a). The transition proba-
bility kernel is assumed to be continuous in total variation in
(s,a) € 8 x A (the product topology is assumed on S x A),
and thus the density pr(s’|s, a) is continuous (in ||-||; norm).
R(s, a) is assumed to be a continuous function on S x A

The agent starts from an initial state (chosen under a prob-
ability density 1o(s)) and is represented by a stochastic pol-
icy 7: a probability kernel which provides the conditional
probability distribution of performing action a in state s.?
The policy is deterministic if, for each state s, there exists
an action a such that w({a}|s) = 1. The return R; is de-
fined as the cumulative discounted reward from time step t:
Ry = Y 0 o V" R(St4k+1,at4k+1) where v € (0,1) is a
discount factor. We discuss the undiscounted case (v = 1)
in Appendix B, which covers the scenario with absorbing
states.

The agent’s performance is measured by the cumulative
discounted expected reward (i.e., the expected return), de-
fined as J(m) = E.[Rp]. The state-value function V™ (s) =
E,[R:|st = s] of apolicy  is defined as the expected return
for being in a state s while following 7. The maximization of
the expected cumulative reward can be expressed in terms of
the state value function by integrating it over the state space
S: J(m) = [suo(s)V™(s)ds. The action-value function
Q" (s a)—deﬁned as the expected return for performing ac-
tion a in state s and following a policy m—is Q™ (s, a)

E.[R:|st = s,a: = a]. State and action value functions
are related by V7r = [, 4 T(als)Q™ (s, a) da. We define as
d™(s') the dlscounted welghtlng of states encountered start-
ing at s9 ~ po(s) and following the policy m: d™(s') =
fs Py Y o (8)Ps, 1507 (8]8) ds, where pg, |5, = (8[s) is

2This allows for state and action vectors that have discrete, con-
tinuous, or mixed components.

3In Sections 3 and 4, a policy is given through its conditional
density with respect to 4. We also refer to this density as a policy.
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the probability density of transitioning to s’ after t time
steps, starting from s and following policy 7. We assume
that the reward function R(s, a) is strictly positive*, so that
state and action value functions are also bounded V™ (s) <
7= IBllc = Bv < +oco. We define the operator’ W :
LOO(S) —> C(S x A) as W(V)](s,a) := R(s,a) +
v [s V(s )pr(s'|s,a)ds’ and the Bellman’s optimality op-
erator T Loo(§ x A) = C(S x A) as [T(Q)](s,a) =
R(s,a) + ’yfs maxy Q(s',a’)pr(s’|s,a)ds’. An action-
value function Q™ is optimal if it is the unique fixed point
for T'. If Q™ is optimal, then 7 is an optimal policy.

3 Reward-Weighted Regression

Reward-Weighted Regression (RWR, see (Dayan and Hin-
ton 1997),(Peters and Schaal 2007),(Peng et al. 2019)) is an
iterative algorithm which consists of two main steps. First,
a batch of episodes is generated using the current policy 7,
(all policies in this section are given as conditional densities
with respect to 114). Then, a new policy is fitted to (using
supervised learning under maximum likelihood criterion) a
sample representation of the conditional distribution of an
action given a state, weighted by the return. The RWR opti-
mization problem is:

Tp4+1 = argmax

mell  s~d™n(-),avmn(¢]s)

[Rilogm(als)] ], (1)

Rt~P('|5t:«97Gt:a77"n)
where II is the set of all conditional probability densities
(meant with respect to j1.4)°. Notice that 7r,, ;1 is defined cor-
rectly as its expression does not depend on ¢. This is equiva-
lent to the following:

E Q " 87 a lO mals .
s~d 7L(')711N7Tn(-|s) [ ( ) g ( ‘ )]

We start by deriving a closed form solution to the optimiza-
tion problem:

Tp41 = argmax
mell

Theorem 3.1. Let 7wy be an initial policy and let Vs €
S,Ya € A R(s,a) > 0. At each iteration n. > 0, the so-
lution of the RWR optimization problem is:

Q™ (5, ) (als)

3
Vo (s) 3)

Proof.

7rn+1(a| )
Tpal = arg max

/d”"(s)
well S
></ﬂ'n(a\s)Q”"(s,a)logﬂ(ab)dads.
A

“It is enough to assume that the reward is bounded, so it can be
linearly mapped to a positive value.

>W maps to continuous functions since R(s,a) is continuous
and continuity of the integral follows from continuity of pr in ||-||1
norm and boundedness of V.

®We can restrict to talk about probability kernels dominated by
1t instead of all probability kernels thanks to Lebesgue decompo-
sition.



Define f(s,a) := d™ (s)m,(a|s)Q™ (s,a). f(s,a) can be
normalized such that it becomes a density that we fit by
Thn41:

(Saa)
Is [ 4 f(s,a)dad
dm (s ) n(a | )Q™ (s, a)
fs fAd“n mn(als)Q™ (s,a) dads’

For the function to be maximized we have:

/s/A f(s,a)log(als)dads =
= 16 [ st
< [0 [ stal

where the last inequality holds for any policy 7, since
Vs e S we have that [, f(als)logm(als)da <
J 4 f(als)log f(als) da, as f(als) is the maximum likeli-
hood ﬁt Note that for all states s € S such that d™ (s) = 0,
we have that f(s, a) = 0. Therefore, for such states, the pol-
icy will not contribute to the objective and can be defined
arbitrarily. Now, assume d™ (s) > 0. The objective function
achieves a maximum when the two distributions are equal:

f(s,a) =

)log w(a|s)dads

)log f(als) dads,

— als) = f(s,a) _ f(s,a) _
maals) = flals) = £ = e
_ d™ (s)mn(als)Q™" (s, a)
fS fA dﬂ-n( )7771 (a| )Q’T"(S,a) dads

. fs fAdﬂn s)mn(als)Q™ (s, a) dads

S d™ (s)mn(als)Q™ (s,a) da

mn(als)Q™ (s, a) Qﬂ"(s,a)ﬂn(ab)
~ [amu(als)Q@m (s, a)da Vee(s)

We can now set 7,41 (als) = also for all

V7 (s)
s such that d™ (s) = 0, which completes the proof. Note

that V™ (s) is positive thanks to the assumption of positive
rewards. Similarly, the denominator [ [, f(s,a)dads =
Jsd™ (s)V™ (s)ds > 0 is positive. O

When function approximation is used for policy m, the
term f(s) weighs the mismatch between 7 (a|s) and f(als).
Indeed, we have f(s) o« d™(s)V7(s), suggesting that
the error occurring with function approximation would be
weighted more for states visited often and with a bigger
value. In our setting, however, the two terms are equal since
no function approximation is used.

Theorem 3.1 provides us with an interpretation on how the
RWR update rule works: at each iteration, given a state s,
the probability over an action a produced by policy 7, will
be weighted by the expected return obtained from state s,
choosing action a and following m,,. This result will be then
normalized by V™ (s), providing a new policy 7, 11. Alter-
natively, we can interpret this new policy as the fraction of

8363

return obtained by policy ,, from state s, after choosing ac-
tion a with probability 7, (-|s). Intuitively, assigning more
weight to actions which lead to better return should improve
the policy. We prove this in the next section.

4 Monotonic Improvement Theorem

Here we prove that the update defined in Theorem 3.1 leads
to monotonic improvement.”

Theorem 4.1. Fix n > 0 and let 719 € 1I be a pol-
icy’. Assume ¥s € S,VYa € A, R(s,a) > 0. Define

the operator B : 11 — 1I such that B(r) Q‘?;f

for m € IL Thus mpy1 = B(my), ie. Vs € S,Va €

A maga(als) = (Bmp)(als) = % Then
Vs € §,VYa € A we have that V™+1(s) > V7™ (s) and
Q™+1(s,a) > Q™ (s,a). Moreover, if for some s € S
holds Varg.r, (a)5) Q™ (5,a)] > O then the first inequality

above is strict, i.e. V™+1(s) > V7 (s).

Proof. We start by defining a function V7n+1™(g) as
the expected return for using policy m,4; in state
s and then following policy m,: V7™+1:7n(s)
J 4 mny1(als)Q™ (s,a) da. By showing that Vs
Vnttn(g) > V7 (s), we get that Vs € S, Vn+1
Ve (s).?

Now, let s be fixed:

Vﬂn+1;7rn (8) Vﬂ'n ( )

@/ i1 (als

e
(

.‘97
s) >

/ n(als)Q™ (s, a)da

<:’/ = ng / s a)da
@/ 2da > / $)Q™ (s, a) da)2

aw”(a‘s)[Q”" (s,0)] > LN CA a)]?
<:>Vara~7rn(a|s) [Qﬂn (‘97 a)] >0,

which always holds. Finally, Vs € S, Va € A:
Q™ (5,0) =
= R(s,a) + *y/ pr(s']s,a)V™+1(s") ds’
s

> R(s,a) + ’y/ pr(s']s,a)V™ (s')ds’
s

=Q™ (Sa a)'
O

Theorem 4.1 provides a relationship between the im-
provement in the state-value function and the variance of

"The case where the MDP has non-negative rewards and the
undiscounted case are more complex and treated in Appendix B.

8 Also in this section all policies are given as conditional densi-
ties with respect to (4.

The argument is the same as given in (Puterman 2014), see
section on Monotonic Policy Improvement.



the action-value function with respect to the actions sam-
pled. Note that if at a certain point the policy becomes
deterministic—or it becomes the greedy policy of its action-
value function (i.e. the optimal policy)—, then the operator
B will map the policy to itself and there will be no improve-
ment.

S Convergence Results
Weak Convergence in Topological Factor

It is worth discussing what type of convergence we can
achieve by iterating the B-operator 7,, := B(m,_1), where
T, are probability densities with respect to a fixed reference
measure 4.

Consider first the classic “continuous” variable case,
where p 4 is the Lebesgue measure and fix s € .S. Optimal
policies are known to be greedy on the optimal action-value
function Q*(s,a). That is, they concentrate all mass on
arg max, Q*(s,a). If argmax, Q*(s, a) consists of just a
single point {a*}, then the optimal policy (measure), 7*(+|s)
for s, concentrates all its mass in {a*}. This means that
the optimal policy does not have a density with respect to
the Lebesgue measure. Furthermore (7, (+|s) - pa)({a*}) =
f{a*} mn(als)dpa(a) = 0, while 7*({a*}|s) = 1. How-
ever, we still want to show that the measures 7, (-|s) - 4 get
concentrated in the neighbourhood of a* and that this neigh-
bourhood gets tinier as n increases. We will use the concept
of weak convergence to prove this.

Another problem arises when considering the above:
since argmax, Q@*(s,a) can consist of multiple points,
the set of optimal policies is P (arg max, @*(s,a)), where
P(F) :={u : pis a probability measure on B(A), u(F) =
1} for a F € B(A). We want to prove convergence
even when the sequence of policies m, oscillates near
P(argmax, Q* (s, a)). A way of coping with this is to make
arg max, Q*(s,a) a single point through topological fac-
torisation, to obtain the limit by working in a quotient space.
The notion of convergence we will be using is described in
the following definition.

Definition 1. (Weak convergence of measures in metric
space relative to a compact set) Let (X, d) be a metric space,
F C X acompact subset, B(X) its Borel c-algebra. Denote
(X ,d) a metric space resulting as a topological quotient
with respect to F' and v the quotient map v : X — X (see
Lemma C.2 for details). A sequence of probability measures
P, is said to converge weakly relative to F' to a measure P
denoted
P, v p

if and only if the image measures of P, under v converge
weakly to the image measure of P under v:

vP, =" vP.

Note that the limit is meant to be unique just in quotient
space, thus if P is a weak limit (relative to F') of a sequence
(P,,), then also all measures P’ for which vP’ = vP are
relatively weak limits, i.e. P’|g(x)nre = P|p(x)npe. Thus,
they can differ on B(X)NF. While the total mass assigned to
F must be the same for P and P’, the distribution of masses
inside F' may differ.
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Main Results

Consider for all n > 0 the sequence generated by 7, =
B(7y,—1). For convenience, for all n > 0, we define Q,, :=
®x,, Vn = Vg, .First we note that, since the reward is
bounded, the monotonic sequences of value functions con-
verge point-wise to a limit:

(Vs €8):V,(s) MVi(s) < By < 400
(VseS,ae A): Qn(s,a) 1 Qr(s,a) < By < 400,

where By = 2= || R|oc. Further ¥n Q,, is continuous since
Qn = W (V,,) and W maps all bounded functions to contin-
uous functions.

The convergence proof proceeds in four steps:

1. First we show in Lemma 5.1 that ), can be expressed in
terms of V7, through W operator. This helps when show-
ing that Q,, converges uniformly to Q.

. Then we demonstrate in Lemma 5.2 that Vs € S the se-
quence of policy measures 7, (-|s) - .4 converges weakly
relative to the set M(s) := argmax,Qr(s,a) to a
measure that assigns all probability mass to greedy ac-
tions of QL (-, 5), i.e. m,(-|s) - pa —*ME) 1 (|s) €
P(M(s)). However we are interested just in those
7w, which are kernels, ie. m;, € Il {m}
7, is a probability kernel from (S, B(S)) to (A, B(A)),
Vs € S, ni(.|s) € P(M(s))} — the set of all greedy
policies on Q..

. At this point we do not know yet if )1, and V7, are the
value functions of 7. We prove this in Lemma 5.3 (to-
gether with previous Lemmas) by showing that they are
fixed points of the Bellman operator.

. Finally, we state the main results in Theorem 5.1. Since
V1, and @, are value functions for 7, and 7, is greedy
with respect to Q,, then @, is the unique fixed point of
the Bellman’s optimality operator:

QL(S,G) = [T(Q)](S,CL) =

= R(s,a) —l—fy/ max Q(s',a")pr(s'|s,a)ds’.
s

Therefore @), and V7, are optimal value functions and 7y,
is an optimal policy for the MDP.

Lemma 5.1. The following holds:
1. Q=W (VL)

2. Qy, is continuous,

3. Q,, converges to Q, uniformly.

Proof. 1. Fix (s,a) € S x A. We aim to show Qr(s,a) —
[W(VL)](s,a) = 0. Since Q,, = W (V,,), we can write:
Qr(s,a) = [W(VL)](s,a) =
=Qr(s,a) — Qn(s,a)
— [W(VL)l(s,a) + W (Va)l(s, a)
< |QL(87 a) - Qn(sa a)'
W VL)l(s,a) = [W(Va)](s, a)l.

The first part can be made arbitrarily small as @, (s,a) —
Q1 (s,a). Consider the second part and fix ¢ > 0. Since



V, — Vi point-wise, from Severini-Egorov’s theorem (Sev-
erini 1910) there exists S, C S with (pr(-|s,a) - us)(SC) <
e such that |V,, — Vi |loc — 0 on S.. Thus there exists ng
such that ||V, — VL ||co < €foralln > ng. Now let us rewrite
the second part for n > ng:

(W (VL)](s,a) = [W(Va)l(s, )

< /S VL) — Vi ()lpr(s']s, a)dus ()
- /S V(') = Va(s) pr(')s, a)dps(s)
+ [ ) =Vl (s, s ()

< IV = Voo + By / pr(s']s, @)dus(s')

S¢
S €+ BVEa

which can be made arbitrarily small.

2. ()1, is continuous because W maps all bounded measur-
able functions to continuous functions.

3. Since @), and @)1, are continuous functions in a compact
space and (Q,, is a monotonically increasing sequence that
converges point-wise to (Jz,, we can apply Dini’s theorem
(see Th. 7.13 on page 150 in (Rudin 1976)) which ensures
uniform convergence of @, to Qr.. O

Lemma 5.2. Let m, be a sequence generated by m, :
B(mp—1). Let wo be continuous in actions andV's € S, Va €
A, mo(als) > 0. Define M(s) := argmax Qr(-|s). Then
Vrp € U # 0, Vs € S, we have m,(+|s) - pa —2 (M)
T (|s)(€ P(M(s))).

Proof. First notice that the set IT;, is nonempty'?. Fix 7, €
I}, and s € S. In order to prove that m, (-|$) - 14 —w(M(s))
71 (+|s), we will use a characterization of relative weak con-
vergence that follows from an adaptation of the Portmanteau
Lemma (Billingsley 2013) (see Appendix C.3). In particu-
lar, it is enough to show that for all open sets U C A such
that U N M(s) = () or such that M (s) C U, we have that
liminf,, (7, (:|s) - pa)U > 7r(-|s)U.

The case U N M (s) = ( is trivial since 71, (-|s)(U) = 0.
For the remaining case M (s) C U itholds 71 (-|s)(U) = 1.
Thus we have to prove liminf,, (m,(:|s) - ua)U = 1. If
we are able to construct an open set D C U such that
(mn(+]8) - pa)(D) — 1 for n — oo, then we will get that
liminf,, (m,(:|s)-ua)U > 1, satisfying the condition for rel-
ative weak convergence of 7, (+|s) - ppa =) 71 (-]s).

The remainder of the proof will focus on constructing
such a set. Fix a* € M(s) and 0 < ¢ < 1/3. Define a

'"The argument goes as follows: H := Uses{s} x M(s) is
a closed set, then f(s) sup M (s) is upper semi-continuous
and therefore measurable. Then graph of f is measurable so we
can define a probability kernel 7 (B|s) := 1(f(s)) for all B
measurable.
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continuous map X : A — R and closed sets A, and B:

N0 = Gy
Aci={a € AJA(a) <1 —2¢},
B :={a € AlA\(a) > 1 —¢€},

where continuity of the map stems from Qr(a*) > 0 and
continuity of ), (Lemma 5.1). We will prove that the can-
didate set is D = A¢. In particular, we must prove that
A¢ C U and that (7, (+]s) - pa)(Ac) — 0. Using Lemma
C.1 (Appendix) on function A\, we can choose ¢ > 0 such
that A C U, satistying the first condition. We are left to
prove that (m,,(-|s) - pa)(Ae) — 0.

Assume A, # () (otherwise the condition is proven): for
alla € A. and b € B, it holds:

Qr(a)

Qu(@) _ Quay . Qula)
Qrd) Ll = Qr(a*)(1—e¢)
Qr(a*)
1— 2 €
< =1- =: .
ST 1 1< a < 1

For Lemma 5.1 @,, converges uniformly to ). Therefore
we can fix ng > 0 such that ||Q, — QLllcc < € for all
n > ng, where we define €’ := 0.1 xQr(a*)(1—¢€)(1—ay).
Now we can proceed by bounding @, ratio from above. For
alln > ng,a € Acand b € B,:

Qula) _ Qula) Qu(a)
Q) = Qub)—¢ = Qua)(1 - —¢
_ Qr(a)
Qr(a*)(1—€)(1-01(1—-aq))
Qaq .
= 091010 o=t

Finally, we can bound the policy ratio. For all n > ng, a €
A, b€ B

malals) _ molals) 7y Qi(s.a) _
mabls) = mols) 1L e =)
where
cla,b) :==a " mo(als) 11 Qi(s,a)

mo(bls) Pl Qi(s,b)

The function ¢ A. x B. — RT is continuous as
o, (; are continuous (and denominators are non-zero due
to mo(b|s) > 0 and @Q;(s,b) > 0). Since A, x Be is a com-
pact set, there exists c,,, such that ¢ < ¢,,. Thus we have that
for all n > ng:

mn(als) < a™emmn(b]s).

Integrating with respect to a over A, and then with respect
to b over B, (using reference measure j14 in both cases) we
obtain:

(mn(-[8) - pra)(Ae) x (paBe)
< aep(mn(tls) - pa)(Be) x (pade).



Rearranging terms, we have:

(mn(-[8) - pra)(Ae)

NAAG
MABe
since the nominator in brackets is composed by finite mea-
sures of sets, thus finite numbers, while the denominator
uaB. > 0. Indeed, define the open set C' := {a €
AlX(a) > 1 — €} C Be. Then pa(Be) > pa(C) > 0
(p4 is strictly positive). To conclude, we have proven that
for arbitrarily small € > 0, the term (7, (+|s) - pa)(Ac) tends
to 0, satisfying the condition for relative weak convergence
of 7, (+]8) - ppa = ME) 71 (-]s). O

n

<«

Cm (mn(]8) - pa)Be| = 0,n — o0,

Lemma 5.3. Assume that, for each s € S, for each
7, € g, we have that 70, (-|s) - pa —ME) 71 (|s)(€
P(M(s))). Then this holds:

s):/AQL(s,a)dﬂ'L(a|s). 4

Proof Fix s € S and 7, € II;. We aim to show
Vi(s) — [, Qr(s,a)dmr(als) 0. Since V,(s) —

fAQn (s,a)mn(als) dua(a) = 0, we have:

/ Qr(s,a) d7TL(CL|S)‘
A

‘VL(S)—
= [Va(s) — Vals) - /AQL(s,a) drp(als)
+ / Qu(s,a) (al3) dua (o)

SCh

/QL s,a)dmp(als)
- / Qu (s, @)ma(als) dyua(a)|
A

The first part can be made arbitrarily small due to V,,(s) —
V(). For the second part:

/ Qr(s,a)dmp(als) / Qn(s,a)mp(als) duala )‘

/QLsadﬂLa| /QLsawn(\)duA()

+ [ Qusam(als)dnata)
- [ Quts.apm(als) dua(a)

‘/QLSCldWLa| /QLsaWn(\)dMA()

+ /A 1Q1(5,) — Qu(s, 0)\mn (al3)dpua(a),

where the first term tends to zero since w,(-|s) -
pa —ME) 11 (|s) and Q7 is continuous and constant on
M (s), satisfying the conditions of the adapted Portmanteau
Lemma (Billingsley 2013) (see Appendix C.3). The second
term can be arbitrarily small since Lemma 5.1 ensures uni-
form convergence of @,, to Q.. O
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Theorem 5.1. Let m, be a sequence generated by m, =
B(mp—1). Let mo be such that Vs € S, Va € A mo(als) >
0 and continuous in actions. Then ¥s € S m,(|s) -
pa =M 70 (1s), where 7, € 111, is an optimal policy
for the MDP. Moreover, lim,, o, V,, = Vi, lim,, oo Qpn =
Q, are the optimal state and action value functions.

Proof. Fix 7, € I (we have already shown that IT;, # ().
Due to Lemma 5.2, we know that for all s € S, m(+]s) is
the relative weak limit 7, (-|s) - pa =) 77 (-|s) and
further we know that 7, is greedy on Q, (s, a) (from defini-
tion of T17,). Moreover, thanks to Lemmas 5.3 and 5.1, V, (s)
and Qp,(s,a) are the state and action value functions of 7,
because they are fixed points of the Bellman operator. Since
7TL('|S) € P(arg max, QL(S7 CL)), VL(S) and QL(S7 CL) are
also the unique fixed points of Bellman’s optimality opera-
tor, hence V7, QQr are optimal value functions and 7, is an
optimal policy. [

This result has several implications. First, it provides a
solid theoretical ground for both previous and future works
that are based on RWR (Dayan and Hinton 1997; Peters and
Schaal 2007; Peng et al. 2019) and lends us some additional
understanding regarding the properties of similar algorithms
(e.g., (Abdolmaleki et al. 2018b)). It should also be stressed
that the results presented herein are for compact state and ac-
tion spaces: traits of some key domains such as robotic con-
trol. In addition to the above, one should also note that the
upper bound on (7, (+|$) - 1) (Ae) constructed in lemma 5.2
can be used to study convergence orders and convergence
rates of RWR. The following corollary, for example, proves
R-linear convergence for the special case of finite state and
action spaces:

Corollary 5.1. Under the assumptions of lemma 5.2, if
S and A are finite, then |V* — V,|loo O(al),
where 0 < o, < 1, a,, = and A\,

Q (s.a)
maXgses maXaEA\M(s) V*(s) *

0.94+1.1X,,°

A proof of the above is included in the appendix D. We
observe that in the finite case, ||[V* — V||« converges to
0 R-linearly (i.e., ||V* — V,, ||« is bounded by a Q-linearly
converging sequence a.y ). We provide an example of a fi-
nite MDP in lemma D.1 which exhibits linear convergence
rate, showing that the upper bound from the corollary 5.1
is asymptotically tight in regards to the convergence order.
Therefore it is not possible to achieve an order of conver-
gence better than linear. Furthermore, the example in lemma
D.2 shows that, in the continuous case, the convergence or-
der could be sub-linear. Appendix E discusses the motiva-
tion of our approach.

6 Demonstration of RWR Convergence

To illustrate that the update scheme of Theorem 3.1 con-
verges to the optimal policy, we test it on a simple environ-
ment that meets the assumptions of the Theorem. In partic-
ular, we ensure that rewards are positive and that there is no
function approximations for value functions and policies. In
order to meet these criteria, we use the modified four-room
gridworld domain (Sutton, Precup, and Singh 1999) shown



Value

RMSVE (solid line)

Return (dashed line)

0 20
Iteration

Figure 1: (Top) the value of states under the optimal pol-
icy in the four-room gridworld domain. (Bottom) the root-
mean-squared value error of reward-weighted regression in
the four-room gridworld domain—compared to the optimal
policy—and the return obtained by running the learned pol-
icy of reward-weighted regression. All lines are averages
of 100 runs under different uniform random initial policies.
Shading shows standard deviation.

on the left of Figure 1. Here the agent starts in the upper
left corner and must navigate to the bottom right corner (i.e.,
the goal state). In non-goal states actions are restricted to
moving one square at each step in any of the four cardinal
directions. If the agent tries to move into a square containing
a wall, it will remain in place. In the goal state, all actions
lead to the agent remaining in place. The agent receives a
reward of 1 when transitioning from a non-goal state to the
goal state and a reward of 0.001 otherwise. The discount-
rate is 0.9 at each step. At each iteration, we use Bellman’s
updates to obtain a reliable estimate of @,, and V,,, before
updating 7, using the operator in Theorem 3.1.

The bottom left of Figure 1 shows the root-mean-squared
value error (RMSVE) of the learned policy at each itera-
tion as compared to the optimal policy, while the bottom
right shows the return obtained by the learned policy at
each iteration. Smooth convergence can be observed under
reward-weighted regression. The source code for this exper-
iment is available at https://github.com/dylanashley/reward-
weighted-regression.

7 Related Work

The principle behind expectation-maximization was first ap-
plied to artificial neural networks by Von der Malsburg
(1973). The reward-weighted regression (RWR) algorithm,
though, originated in the work of Peters and Schaal (2007)
which sought to bring earlier work of Dayan and Hinton
(1997) to the domain of operational space control and re-
inforcement learning. However, Peters and Schaal (2007)
only considered the immediate-reward reinforcement learn-
ing (RL) setting. This was later extended to the episodic set-
ting separately by Wierstra et al. (2008a) and then by Kober
and Peters (2011). Wierstra et al. (2008a) went even fur-
ther and also extended RWR to partially observable Markov
decision processes, and Kober and Peters (2011) applied
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it to motor learning in robotics. Separately, Wierstra et al.
(2008b) extended RWR to perform fitness maximization
for evolutionary methods. Hachiya, Peters, and Sugiyama
(2009, 2011) later found a way of reusing old samples to
improve RWR’s sample complexity. Much later, Peng et al.
(2019) modified RWR to produce an algorithm for off-policy
RL, using deep neural networks as function approximators.

Other methods based on principles similar to RWR have
been proposed. Neumann and Peters (2008), for example,
proposed a more efficient version of the well-known fitted
Q-iteration algorithm (Riedmiller 2005; Ernst, Geurts, and
Wehenkel 2005; Antos, Munos, and Szepesvari 2007) by us-
ing what they refer to as advantaged-weighted regression—
which itself is based on the RWR principle. Ueno et al.
(2012) later proposed weighted likelihood policy search and
showed that their method both has guaranteed monotonic in-
creases in the expected reward. Osa and Sugiyama (2018)
subsequently proposed a hierarchical RL method called hi-
erarchical policy search via return-weighted density estima-
tion and showed that it is closely related to the episodic ver-
sion of RWR by (Kober and Peters 2011).

Notably, all of the aforementioned works, as well as a
number of other proposed similar RL methods (e.g., Peters,
Miilling, and Altun (2010), Neumann (2011), Abdolmaleki
et al. (2018b), Abdolmaleki et al. (2018a)), are based on the
expectation-maximization framework of Dempster, Laird,
and Rubin (1977) and are thus known to have monotonic
improvements of the policy in the RL setting under certain
conditions. However, it has remained an open question under
which conditions convergence to the optimal is guaranteed.

8 Conclusion and Future Work

We provided the first global convergence proof for Reward-
Weighted Regression (RWR) in absence of reward trans-
formation and function approximation. The convergence
achieved is linear when using finite state and action spaces
and can be sub-linear in the continuous case. We also high-
lighted problems that may arise under nonlinear reward
transformations, potentially resulting in changes to the op-
timal policy. In real-world problems, access to true value
functions may be unrealistic. Future work will study RWR’s
convergence under function approximation. In such a case,
the best scenario that one can expect is to achieve conver-
gence to a local optimum. One possible approach is to follow
a procedure similar to standard policy gradients (Sutton et al.
1999) and derive a class of value function approximators
that is compatible with the RWR objective. It might be pos-
sible then to prove local convergence under value function
approximation using stochastic approximation techniques
(Borkar 2008; Sutton, Maei, and Szepesvari 2009; Sutton
et al. 2009). This would require casting the value function
and policy updates in a system of equations and studying
the convergence of the corresponding ODE under specific
assumptions. Our RWR is on-policy, using only recent data
to update the current policy. Future work will also study con-
vergence in challenging off-policy settings (using all past
data), which require corrections of the mismatch between
state-distributions, typically through a mechanism like Im-
portance Sampling.
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