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Abstract

Deep Neural Networks (DNNs) generally require large-scale
datasets for training. Since manually obtaining clean labels
for large datasets is extremely expensive, unsupervised mod-
els based on domain-specific heuristics can be used to effi-
ciently infer the labels for such datasets. However, the labels
from such inferred sources are typically noisy, which could
easily mislead and lessen the generalizability of DNNs. Most
approaches proposed in the literature to address this prob-
lem assume the label noise depends only on the true class
of an instance (i.e., class-conditional noise). However, this
assumption is not realistic for the inferred labels as they are
typically inferred based on the features of the instances. The
few recent attempts to model such instance-dependent (i.e.,
feature-dependent) noise require auxiliary information about
the label noise (e.g., noise rates or clean samples). This work
proposes a theoretically motivated framework to correct label
noise in the presence of multiple labels inferred from unsu-
pervised models. The framework consists of two modules: (1)
MULTI-IDNC, a novel approach to correct label noise that
is instance-dependent yet not class-conditional; (2) MULTI-
CCNC, which extends an existing class-conditional noise-
robust approach to yield improved class-conditional noise
correction using multiple noisy label sources. We conduct
experiments using nine real-world datasets for three differ-
ent classification tasks (images, text and graph nodes). Our
results show that our approach achieves notable improve-
ments (e.g., 6.4% in accuracy) against state-of-the-art base-
lines while dealing with both instance-dependent and class-
conditional noise in inferred label sources.

Introduction
Motivation. DNNs have achieved remarkable success in
a wide range of applications. However, their performance
largely relies on the availability of large-scale labeled
datasets. Getting manual labels for large datasets is ex-
tremely expensive and time-consuming. As a solution, pre-
vious works (Niu et al. 2021; Silva et al. 2020; Yang et al.
2019; Veličković et al. 2019) propose various unsupervised
models based on domain-specific heuristics to label large
datasets in a time- and cost-effective manner. Such in-
ferred labels generated without manual effort could be sub-
sequently used to learn supervised DNNs. However, the la-
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Figure 1: Examples of 8 (first row) and 3 (second row) in
MNIST. The label noise could depend on its actual class
labels (i.e., CCN) as there are semantically similar classes
(e.g., 8 and 3). It is not the only factor to determine label
noise as label noise could depend on the features of the in-
stances (i.e., IDN) too – e.g., the last instance in each row.

bels from such unsupervised models are typically noisy. As
found by recent studies (Zhang et al. 2021; Reed et al. 2015),
DNNs can overfit the noise in such noisy labels, which sub-
stantially degrades their performance. As a result, learning
robust DNNs using noisy labels has recently become a crit-
ical problem attracting considerable research effort (Berth-
elot et al. 2019; Liu et al. 2020; Jiang et al. 2018; Lyu et al.
2020; Yu et al. 2019). Nevertheless, almost all the existing
noisy-robust learning strategies do not focus on datasets with
multiple noisy inferred labels that are produced using multi-
ple unsupervised models. The availability of multiple noisy
label sources could be useful to address several limitations
of the existing robust learning techniques based on one noisy
label source. This work aims to address this research gap by
proposing a noise-robust learning paradigm for DNNs us-
ing multiple sources of noisy inferred labels. Such a learn-
ing technique could be practically significant for ensembling
of multiple unsupervised label sources with a proper under-
standing of their noise, while alleviating the following limi-
tations in existing noise-robust learning techniques.

First, most existing works (Liu et al. 2020; Menon et al.
2020; Ma et al. 2020; Patrini et al. 2017) assume that the
noise in the labels (i.e., the probability of flipping to a differ-
ent label from actual label) are independent of input feature
given the actual class labels. However, the study in (Chen
et al. 2021) shows that noisy labels in real-world datasets do
not follow this assumption. This is because the instances of
the same class could have different label noise based on their
features as can be seen in Fig. 1. In this work, we decompose
the noise in inferred labels into two components: (1) class-
conditional noise (CCN), the noise component that is inde-
pendent from input features given the actual class labels; (2)
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Figure 2: Overview of our experimental framework and the
proposed approach for noise-robust learning, which consists
of two modules: (1) MULTI-IDNC and (2) MULTI-CCNC,
to model IDN and CCN in the labels, respectively.

instance-dependent noise (IDN) that depends on the instance
features, but not modelled under CCN. Although there are a
few previous attempts at modelling IDN (Cheng et al. 2020;
Chen et al. 2021; Zhu et al. 2021; Berthon et al. 2021; Xia
et al. 2020), they either require a small dataset with clean
labels to train their models or adopt other assumptions that
may not be realistic in all practical applications (see Related
Work). Also, almost all these previous works do not distin-
guish IDN and CCN (i.e., define IDN as the combination of
IDN and CCN noise components), which makes it difficult
to analyse these two types of noise separately. As a solu-
tion, this work proposes a novel instance-dependent noise
correcter based on multiple sources of noisy inferred la-
bels (MULTI-IDNC) that is capable of filtering out IDN
in noisy labels without affecting CCN. MULTI-IDNC is
designed such that it can be combined with any CCN cor-
rection technique to jointly model both IDN and CCN.

Second, some existing techniques on correcting CCN as-
sume that the noise rates of the label sources are known. Al-
though there are recent attempts (Liu et al. 2020) to correct
CCN in label sources without knowing their noise rates, the
unavailability of noise rates could impact different aspects
of these models (e.g., convergence rate). By selecting peer
loss (Liu et al. 2020), one of the strongest baselines in this
category, as the base model, this work proposes MULTI-
CCNC, which is capable of revealing the latent noise rates
with the help of multiple label sources and improving the
correction of CCN in noisy labels.

In addition, most existing works in this field are not tested
using a wide range of practical applications. For example,
the works in (Zhu et al. 2021; Cheng et al. 2021) are eval-
uated only using image classification tasks. To bridge this
gap, this work evaluates our approach using various down-
stream tasks such as image, node and text classification to
show the generalizability of the proposed approach for a
wide range of practical applications. Also, some works add
synthetic noise (e.g., symmetric, uniform) to ground truth
labels to generate synthetic noisy labels, which may not re-
flect the noise in inferred labels from unsupervised models,
especially instance-dependent noise (Chen et al. 2021). As a
solution, this work adopts multiple unsupervised models to
provide realistic noisy inferred labels (see Fig. 2).

Contribution. Our contributions are as follows:
• We propose two theoretical models: (1) MULTI-IDNC
and (2) MULTI-CCNC, for modelling IDN and CCN using
multiple sources of noisy labels inferred based on unsuper-
vised models. To the best of our knowledge, this is the first

attempt to explicitly model IDN and CCN in the labels from
unsupervised models.
• We evaluate our approach using three classification tasks
(i.e., images, text and nodes) to quantitatively show the po-
tential of our approach to correct realistic noisy labels. Our
results show that the proposed model outperforms state-of-
the-art methods by as much as 6.4% in accuracy.

Related Work
Learning with Noisy Labels
Our work is primarily categorized under the field of research
on learning with noisy labels. The earliest works in this
field focus on the random classification noise (RCN) model,
where observed noisy labels are flipped independently with
probability ∈ (0, 12 ] (Bylander 1994; Cesa-Bianchi et al.
1999). However, label noise typically depend on their true
labels or features. Hence, how to learn DNNs with label-
dependent and feature-dependent noisy labels has attracted
considerable attention recently.

Learning with Class-conditional Noisy Labels: Most re-
cent works on this topic are explicitly designed with the
CCN assumption, where the label noise can be determined
only using actual class labels. With this assumption, the
noise transition process can be fully specified by a matrix
T ∈ Rc×c, where c is the number of classes in the par-
ticular task. Almost all the works belonging to this sub-
category attempt to mitigate the effect of CCN by mod-
elling T either using the prior knowledge of noise rates/types
(e.g., uniform/symmetric noise (Ren et al. 2018; Arazo et al.
2019; Lukasik et al. 2020) and tri/column/block-diagonal
noise (Han et al. 2018a)) or without relying on such prior
knowledge (Xu et al. 2019; Liu et al. 2020). Although the
CCN assumption in these works simplifies the noise model,
this assumption does not always hold in practical applica-
tions and the label noise could depend on the features of
instances (Chen et al. 2021). Our model addresses this lim-
itation by modelling both IDN and CCN, which makes our
work different from the aforementioned works.

Learning with Instance-dependent Noisy Labels: To
the best of our knowledge, there are few previous works that
model IDN. Some pioneering works on learning with IDN
are restricted to binary classification (Menon et al. 2018;
Bootkrajang et al. 2020; Cheng et al. 2020), which con-
siderably restricts their applications in practice. In contrast,
our approach can be applied for any general c-class clas-
sification task. In addition, most of the works in this cate-
gory make various assumptions to simplify their IDN model.
The work in (Xia et al. 2020) assumes that IDN is parts-
dependent, where the instance-dependent transition matrix
is modelled as a weighted combination of parts-dependent
matrices. Several works assume that only the samples closer
to the decision boundary of the Bayes-optimal classifier have
strong noise or could be mislabelled (Menon et al. 2018;
Wang et al. 2021). The work in (Berthon et al. 2021) as-
sumes that the likelihood of an instance to have a correct
label is known. Some works (Cheng et al. 2021) assume that
the noise is bounded. Although such assumptions simplify
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the modelling of IDN, they may not always be realistic. Our
model differs from these works as our model does not make
such assumptions. In addition, some works (Cheng et al.
2021; Zhu et al. 2021) rely on a clean/nearly clean dataset to
learn their models, which have been sampled from the orig-
inal noisy datasets. These works may not effectively utilize
the knowledge in the whole dataset to train their models, and
thus, may not be applicable to applications with limited data.
In contrast, our model adopts the whole dataset to train the
model. In addition, almost all these previous works adopt a
single noisy label source to model IDN. Our work explores
how we can jointly exploit the knowledge available in mul-
tiple labels sources to model IDN, which is another clear
distinction between our work and the rest.

Multi-source Learning
Since our work exploits multiple noisy label sources to learn
the model, this section discusses the related literature in
multi-source learning. Most of the literature on multi-source
learning exploit multiple sources (i.e., views or modalities)
to extract features (Baltrušaitis et al. 2018; Mogadala et al.
2019; Guo et al. 2019). In contrast, our work exploits multi-
ple label sources. There are a few previous works (Raykar
et al. 2009; Yan et al. 2014; Tanno et al. 2019; Li et al.
2020) that propose strategies to learn machine learning mod-
els with multiple noisy annotations. The works in (Raykar
et al. 2009; Yan et al. 2014; Tanno et al. 2019; Li et al.
2020) propose end-to-end approaches to evaluate the reli-
ability of each noisy source and estimate actual labels from
noisy labels. Some of these works (Yan et al. 2014) require
a clean dataset to estimate the reliability of label sources.
Also, they (Raykar et al. 2009; Yan et al. 2014) mostly fail
to outperform majority voting when the number of anno-
tators (i.e., sources) are small (≤ 10). To the best of our
knowledge, none of these works are explicitly designed to
model IDN with a strong theoretical background. Also, all
of these efforts focus on aggregating annotations from mul-
tiple annotators in crowd-sourcing platforms, thus, they are
not evaluated on a wide range of applications.

Problem Statement
Consider a c-class classification problem with a dataset
D that consists of labels inferred from M different noisy
label sources inferred by unsupervised models, D =
{(x1, ỹ11 , ..., ỹM1 ), ..., (xN , ỹ

1
N , ..., ỹ

M
N )}, where xi ∈ Rd de-

notes the features of the ith data point, and ỹmi ∈ [0, 1]c is
the noisy label assigned to the ith data point by the mth

noisy label source. LetX and Ỹ m be the corresponding ran-
dom variable of xi and ỹmi . We decompose the label noise
in Ỹ m into two independent components: (1) CCN that can
be determined by only using the actual class labels Y –
P (yi − ŷmi |yi, xi) = P (yi − ŷmi |yi); (2) IDN that depends
on X , but not modelled under CCN – P (ŷmi − ỹmi |yi, xi) =
P (ŷmi − ỹmi |xi). Here, ŷmi is the label after correcting IDN
in ỹmi , and Ŷ m be the corresponding random variable of ŷmi .

This problem aims to learn the mapping function fψ :
X → Y that reveals the actual latent label yi of a given data
point i using its features xi and weak labels {ỹ1i , ..., ỹMi }.

L1
idnc,3P(Ŷ2/X)

P(Ŷ1/X)
X L1
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Figure 3: MULTI-IDNC module for a single label source,
where A and B represents the categorical encoder learned
with categorical reparameterization trick (pθ(Ŷ m|X)) and
the neural decoder to model pα(Ỹ m|Ŷ m) respectively.

Our Approach
We propose a two-step approach to solve the aforementioned
learning problem, which initially adopts MULTI-IDNC to
correct IDN and subsequently filters out CCN using MULTI-
CCNC. MULTI-IDNC learns a mapping function pθm :

X → Ŷ m for each label source such that Ŷ m satisfies the
following conditions: (a) Ŷ m only includes CCN; (b) moti-
vated by the information bottleneck principle (Tishby et al.
1999) as Ŷ m removes the superfluous information in Ỹ m to
predict Y . Consequently, MULTI-IDNC filters out IDN of
Ỹ m while retaining CCN.

In our MULTI-CCNC module, we learn fψ : X → Y
to generate the actual label of an instance from its fea-
tures. We propose a technique to improve the learning with
peer loss (Liu et al. 2020), a CCN-invariant loss function,
using multiple IDN-corrected label sources. We show that
peer loss learns poorly if we learn it using a noisy label
source with a high noise rate. Even if we jointly learn fψ
using multiple noisy sources, we show that the label sources
with high noise rates are under-exploited. To address that,
MULTI-CCNC proposes a meta-learning framework to as-
sign weights to the label sources to exploit label sources
equally, which improved the quantitative performance and
the convergence speed of MULTI-CCNC.

MULTI-IDNC
MULTI-IDNC aims to generate the IDN-corrected label Ŷ m

for a given label source m from its original noisy label Ỹ m
(Fig 3). Without loss of generality, the aforementioned ob-
jective should satisfy the following conditions:

• I(X; Ŷ m|Y ) = 0 as Ŷ m should ultimately include only
CCN – i.e., P (Ŷ m|Y,X) = P (Ŷ m|Y ); and

• I(X; Ŷ m|Ỹ m) = 0 as Ŷ m should only remove
IDN from the corresponding Ỹ m – i.e., I(X; Ŷ m) ≤
I(X; Ỹ m).

where I(.) stands for Mutual Information. Thus, we define
the loss function of MULTI-IDNC as follows:

Lidnc =
M∑
m=1

β ∗ I(X; Ŷ m|Y ) + (1− β) ∗ I(X; Ŷ m|Ỹ m)

(1)
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where β ∈ [0, 1] controls the importance assigned to each
loss term in Eq. 1. Instead of optimizing the loss in Eq. 1, we
optimize the following upper bound of Lidnc (see Fig. 3)1:

Theorem 1 [Upper bound for Lidnc]

Lidnc ≤
M∑
m=1

Lmidnc,1 +(1−β) ∗Lmidnc,2 +β ∗Lmidnc,3 (2)

where:
Lmidnc,1 = I(X; Ŷ m), Lmidnc,2 = −I(Ŷ m; Ỹ m) and

Lmidnc,3 = −I(Ŷ 0; Ŷ 1; ...; ŶM ), the negative of the inter-
action information between {Ŷ 0; Ŷ 1; ...; ŶM}.

Optimization of Lidnc. The major challenge of solving
Eq. 2 is the mutual information (or interaction information)
terms that are computationally intractable. Recently, various
variational bounds of mutual information (Poole et al. 2019)
have been proposed to deal with this problem. Using such
bounds, we jointly optimize the three terms–i.e., Lmidnc,1;
Lmidnc,2; and Lmidnc,3 in Eq. 2 as follows.

To optimize Lmidnc,1, we adopt the following upper
bound (Agakov 2004):

Lemma 1 [Upper bound for Lmidnc,1]

Lmidnc,1 ≤ EXKL(pθm(Ŷ m|X)||q(Ŷ m)) (3)

where KL(.) denotes the Kullback–Leibler divergence,
q(Ŷ m) is the approximated prior of Ŷ m, and pθm(Ŷ m|X)

is the latent posterior distribution of Ŷ m given X .

We can optimize the RHS of Eq. 3 (i.e., learning θm) us-
ing backpropagation with the reparameterization trick pro-
posed in (Kingma et al. 2013), which is commonly used to
learn variational autoencoders with continuous latent vari-
ables (Kingma et al. 2013; Rezende et al. 2014). In our case,
the latent variable Ŷ m is discrete with a categorical distri-
bution. Thus, assuming its latent posterior distribution fol-
lows a continuous distribution as in (Kingma et al. 2013) it
may not be able to preserve the discrete structure in Ŷ m.
To address this problem, we adopt the categorical reparame-
terization trick proposed in (Jang et al. 2017) with Gumbel-
Softmax that allows learning categorical distribution for the
latent posterior distribution using backpropagation.

We can optimize the second loss term Lmidnc,2 using the
following upper bound:

Lemma 2 [Upper bound for Lmidnc,2]

Lmidnc,2 ≤ HỸm(pαm(Ỹ
m|Ŷ m))

where HỸm(pαm(Ỹ
m|Ŷ m)) is the cross-entropy loss be-

tween Ỹ m and pαm(Ỹ m|Ŷ m) – i.e., the latent posterior dis-
tribution between Ỹ m given Ŷ m parameterized by αm.

1Due to space limitations, the Supplementary Material (Silva
et al. 2021) provides the proofs and more details about the imple-
mentation of the loss terms in MULTI-IDNC and MULTI-CCNC.
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Figure 4: MULTI-CCNC Module, where f is the mapping
function that yields Y from X . The meta network learns
γm of each label source. The red arrows show how the loss
functions are back-propagated to learn the parameters

The minimization of the third loss term Lmidnc,3 is anal-
ogous to the maximization of I(Ŷ 0; Ŷ 1; ...; ŶM ). Without
loss of generality, we can prove that the interaction infor-
mation between IDN corrected labels from unsupervised
models is always positive (see Lemma 3 in (Silva et al.
2021)). Thus, we can maximize I(Ŷ 0; Ŷ 1; ...; ŶM ) using
the sample-based differentiable mutual information lower
bound (i.e., Jensen-Shannon IJS) proposed in (Hjelm et al.
2019). This method requires introducing an auxiliary param-
eteric model gζ(Ŷ 0; Ŷ 1; ...; ŶM ) to approximate the mutual
information, which is jointly optimized during the training
procedure using the samples from

⋃
∀m pθm(Ŷ

m|X).
MULTI-IDNC adopts the aformentioned optimization

procedure to get IDN-free labels that include only CCN.
Hence, this module can be universally applied with any
learning approach that reveals actual labels from class-
conditional noisy labels (e.g., Peer Loss (Liu et al. 2020),
LDMI (Xu et al. 2019) and Forward/Backward Correc-
tion (Patrini et al. 2017)) to correct both IDN and CCN in the
noisy labels. In this work, we propose MULTI-CCNC with
multiple class-conditional noisy label sources, which is su-
perior compared to the existing robust learning approaches
with a single class-conditional noisy source.

MULTI-CCNC
MULTI-CCNC is motivated by a recently proposed robust
loss function called peer loss (Liu et al. 2020), which en-
ables learning from a CCN label source without knowing its
noise rates. To the best of our knowledge, this is the strongest
model at the time of writing this manuscript to learn from
CCN labels sources.

Preliminaries on Peer Loss For a given class-conditional
noisy label Ŷ m, peer loss is defined as follows:

lPL(fψ(X), Ŷ m) = l(fψ(X), Ŷ m)− l(fψ(Xn1), Ŷ
m
n2
)

where l is a surrogate loss function (e.g., cross-entropy loss)
fψ to 1−0 loss, fψ(.) with ψ parameters maps input features
X to the actual labels Y . Xn1

and Ŷ mn2
corresponding to the

peer samples from X and Ŷ m respectively.
Corollary 1 [Peer loss is invariant to class-conditional la-
bel noise (Liu et al. 2020)]

E[lPL(fψ(X), Ŷ m)] = γm ∗ E[lPL(fψ(X), Y )] (4)
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where γm ∈ (0, 1] is a constant that is monotonically de-
creasing with the class-conditional noise rates of the corre-
sponding label source m2.

Therefore, minimizing peer loss using class-conditional
noisy labels minimizes peer loss over the true clean distribu-
tion. However, there are two limitations in the peer loss func-
tion: (1) there is a weak relationship between the peer loss
terms with respect to the noisy labels and the corresponding
true labels if γm of the corresponding noisy source is low
due to high noise rates. Consequently, when jointly learn-
ing peer loss using multiple noisy sources, the label sources
with high noise rates are under-exploited – i.e., the down-
weighting issue in peer loss (See Lemma 1 in (Zhu et al.
2021)). Consequently, low γm values could also reduce the
convergence rate of peer loss; and (2) peer loss does not
guarantee to induce fψ(.) that minimizes 0-1 loss on the
clean dataset when the class distribution in the clean dataset
is imbalanced (see Theorem 3 in (Liu et al. 2020)).

Improved Peer Loss using Multiple Label Sources
MULTI-CCNC proposes a meta-learning based novel
framework to optimize peer loss using multiple noisy labels
while alleviating the aforementioned limitations of peer loss.
This module aims to minimize the following loss function:

Lccnc =
1

M

M∑
m=1

E[lPL(fψ(X), Ŷ m)]

γ̂m
+ E[l(fψ(X), Y fψ )]

such that ∀m ∈M ,
E[lPL(fψ(X), Ŷ m)]/γ̂m = E[lPL(fψ(X), Y fψ )] (5)

where Y fψ = argmax(fψ(X)) is the predicted label for
each instance from fψ and {fψ, γ̂1, γ̂2, ..., γ̂M} are trainable
parameters.

To solve the problem above, we propose a bi-level op-
timization strategy. In this approach, we learn a feed-
forward neural network followed by Sigmoid activation gω :

{l1PL, l2PL, ..., lMPL, l
fψ
PL} → {γ̂1, γ̂2, ..., γ̂M} to generate the

weighting of the peer loss terms in Eq. 5, where lmPL =

E[lPL(fψ(X), Ŷ m)] and lfψPL = E[lPL(fψ(X), Y fψ )]. gω
is learned using the following meta-learning loss function:

Lmeta =
M∑
m=1

pγ̂(m) log pγ̂(m) (6)

where pγ̂(m) =
exp(−lmPL/γ̂

m)

[
∑M
i=1 exp(−liPL/γ̂i)]+exp(−l

fψ
PL)

. Then, the

optimization procedure can be summarized as follows:

min
ω
Lmeta(ψ

∗, ω) s.t. ψ∗ = argminψLccnc(ψ, ω) (7)

We can prove that the proposed weighted peer loss in
Eq. 5 alleviates the aforementioned down-weighting issue in
peer loss – i.e., makes the relationship between the peer loss
with respect to the noisy labels and the clean labels invariant
to the noise rates in the particular source.

2For a binary classification task with a symmetric noisy source,
γm = 1− 2× noise rate. See (Liu et al. 2020) for more details.

Theorem 2 [Resolving down-weighting issue in peer loss]
If fψ and γm are learned to jointly minimize Lccnc and
Lmeta,

E[lPL(fψ(X), Ŷ m)]/γ̂m1 = E[lPL(fψ(X), Y )] (8)

Also, it can be proved that the proposed variant of peer
loss provides optimality guarantee even with unequal prior.

Theorem 3 [Optimality guarantee] If f∗ψ is induced from
Eq. 7, then f∗ψ ∈ argmin(l(fψ(X), Y )).

Optimization of Lccnc and Lmeta. We adopt the follow-
ing one-step SGD update (Shu et al. 2020) to approximate
the optimal solution for Eq. 7, from which the gradient for
the meta-parameters ω can be estimated as:

∇ωLmeta(ψ − η∇ψLccnc(ψ, ω), ω) (9)

where η is the learning rate of SGD. Since both Lccnc and
Lmeta do not require ground truth labels, we jointly opti-
mize both loss functions using the same training dataset.

After learning MULTI-IDNC (θm, αm) and MULTI-
CCNC (ψ, ω) as proposed, the noisy labels of unseen data
points can be corrected by passing them through these two
modules sequentially.

Experiments
Experimental Setup
Dataset Construction We evaluate our approach using
three general classification tasks: (1) image; (2) text; and (3)
node classification. We select three widely-used datasets for
each classification task (see Table 1). We randomly choose
75% of each dataset for training and the remaining 25% for
testing. We adopt Accuracy and Normalized Mutual Infor-
mation Score (NMI) as evaluation metrics.

To have a consistent experimental framework across dif-
ferent tasks, we adopt pretrained embedding techniques to
represent the inputs (i.e., text, image, or node) of each task
as d-dimensional vectors xi ∈ Rd. To generate multiple
weak noisy labels {y1i , y2i , ..., yMi } for each task, we adopt
the state-of-the-art unsupervised clustering techniques in the
corresponding domain. The selected embedding techniques
and noisy label sources for each task are listed in Table 1 and
the default hyper-parameters reported in the original papers
of these models are used.

Baselines In Table 2, we compare our approach with
two unsupervised ensembling techniques: (1) Majority Vot-
ing; (2) DeepCCA (Andrew et al. 2013), and six widely
used baselines on learning with noisy labels: (1) Bootstrap-
ping (Reed et al. 2015); (2) Co-teaching (Han et al. 2018b);
(3) LDMI (Xu et al. 2019); (4) Peer Loss (Liu et al. 2020);
(5) CORES (Cheng et al. 2021); (6) CAL (Zhu et al. 2021).

Parameter Settings We designed the learnable mapping
functions (pθm , pαm , fψ , gω) in our model as feed-forward
neural networks3. After performing a grid search, we set β

3Due to space limitations, we present detailed information
about the selected baselines, datasets and the mapping functions
in our model in (Silva et al. 2021).
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Task Image Classification Text Classification Node Classification
Datasets CIFAR10, CIFAR100, STL-10 Amazon MR, 20NG, SearchSnippet Cora, Citeseer, Pubmed
Encoding Method SimCLR(Chen et al. 2020) Sentence-BERT (Reimers et al. 2019) DGI (Veličković et al. 2019)
Noisy Label Source I CC (Li et al. 2021) LDA (Blei et al. 2003) DGI (Veličković et al. 2019)
Noisy Label Source II SCAN (Gansbeke et al. 2020) NVDM-GSM (Miao et al. 2017) SSGC (Zhu et al. 2020)
Noisy Label Source III SPICE (Niu et al. 2021) BATM (Wang et al. 2020) InfoClust (Costas et al. 2021)

Table 1: The selected datasets, encoding techniques, and unsupervised noisy label sources in the experimental setup.

Text Classification Image Classification Node Classification
Amazon MR 20NG SearchSnip. CIFAR10 CIFAR20 STL10 Cora Citeseer Pubmed
Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI

Label Source I 72.5 15.2 19.0 21.7 36.5 18.2 79.0 70.5 48.5 44.7 85.0 76.4 70.5 51.1 69.1 43.8 66.5 29.3
Label Source II 79.7 27.2 24.5 19.8 57.7 33.9 86.8 73.5 50.9 49.9 81.0 61.8 71.5 50.3 68.6 41.3 71.3 32.6
Label Source III 82.3 32.9 35.2 26.2 65.5 44.0 91.7 84.1 53.7 56.5 92.6 84.2 72.1 49.2 69.6 43.8 69.4 30.7
Majority Vote 80.1 28.1 36.5 29.8 62.1 38.9 90.9 83.4 53.5 56.2 91.4 82.2 71.8 52.9 70.5 45.2 71.0 35.2
DeepCCA 81.2 29.7 34.2 24.1 63.1 39.7 89.9 82.1 52.4 54.1 91.3 81.9 71.1 51.7 69.4 42.9 69.7 30.8
CVL 85.9 43.6 37.4 30.4 68.1 47.7 90.6 82.1 54.3 57.5 91.8 82.6 73.2 52.6 70.9 44.5 71.4 33.3
Bootstrapping 83.9 38.7 35.5 27.9 66.2 44.9 90.2 81.9 53.5 56.7 92.3 83.4 72.9 51.5 70.1 44.7 71.8 34.5
Co-teaching 85.3 42.7 36.8 30.2 67.3 47.1 90.7 82.3 53.9 57.2 92.0 83.0 73.9 53.2 71.0 45.8 71.5 33.1
L DMI 85.2 42.0 36.2 29.6 66.9 45.8 90.8 82.7 54.8 57.5 93.1 82.8 74.1 53.7 70.8 44.9 71.3 32.6
Peer Loss 86.4 44.9 37.3 30.6 68.5 47.6 91.2 83.6 56.4 58.1 92.2 83.7 74.6 54.3 71.2 46.1 71.9 36.5
CORES 86.3 46.8 37.3 30.9 68.8 48.2 92.1 84.7 57.7 59.3 93.6 86.1 74.8 58.1 71.4 46.5 72.0 36.3
CAL 86.7 47.1 37.6 31.1 69.2 49.6 92.3 85.7 58.9 60.3 93.2 84.1 74.4 57.6 71.6 46.8 72.4 36.7
Our Approach 89.4 49.5 38.9 33.2 73.6 53.5 92.9 86.9 60.8 61.2 94.4 87.7 76.5 61.3 72.6 48.5 73.8 37.6
Ablation Study
- MULTI-IDNC 87.4 46.9 37.6 31.5 70.3 51.2 92.3 85.6 56.4 59.7 92.7 83.6 75.4 58.8 71.7 46.9 72.4 36.8
- MULTI-CCNC 88.7 48.1 38.3 32.7 72.4 53.0 92.7 86.1 59.3 60.6 93.1 84.2 75.8 60.7 71.9 47.6 72.1 36.6

Table 2: Results for image, text, and node classification tasks

to 0.5 (see Fig. 5 (a)). We (Silva et al. 2021) found that
the performance of our model is not particularly sensitive
to other hyper-parameters. For the specific parameters of
the baselines, we use the default values mentioned in their
original papers. We adopt the Adam optimizer and set the
learning rate and batch size to 0.01 and 128 respectively.

Results
Quantitative Results for Classification Tasks As shown
in Table 2, the proposed approach yields better results for all
three tasks, outperforming the best baseline by as much as
6.4% in accuracy. The improvements are particularly signif-
icant for weak label sources. Out of the baselines, IDN cor-
rection models – i.e., CAL and CORES, generally achieve
better results compared to the other baselines, which shows
the importance of correcting IDN. In Table 2, most base-
lines (except Majority Vote, DeepCCA and our approach)
rely on a single label source. For such baselines (e.g., CAL,
CORES), we reported the results using the strongest label
source (Label Source III). However, the noise rates of the
label sources are typically unavailable. Since our approach
jointly exploits all label sources, our approach does not re-
quire such knowledge about the strongest label source. Com-
pared to the baselines that exploit multiple label sources –
i.e., Majority Vote and DeepCCA, our approach achieves up
to 16.6% improvement in accuracy.

If we compare the improvements of our approach across
different tasks, the improvements are less statistically sig-
nificant for image classification tasks. This could be be-

cause the selected label sources for this task are able to
correct noise. For example, SPICE (Label Source III in im-
age classification) model adopts a pseudo labelling approach
to generate noisy labels and these labels are subsequently
fine-tuned in this model using a confidence-based regular-
izer. Thus, the level of noise from such a source could be
small. We empirically verify this reasoning by comparing
the results for image classification tasks without Noisy La-
bel Source III, which drops the accuracy of our approach and
CAL, the strongest baseline, by 3% and 5.6% respectively.

Ablation Study Our ablation study in Table 2 shows that
without the MULTI-IDNC module ((-) MULTI-IDNC) or
MULTI-CCNC module ((-) MULTI-CCNC), the perfor-
mance of the model could be reduced by as much as 4.7%
in accuracy, which verifies the positive contributions of
these two modules in the proposed framework. Our MULTI-
IDNC module adopts a loss function with three different
loss terms – i.e., Lidncs,1, Lidncs,2 and Lidncs,3. To check
whether they are contributing towards the final performance
of our model, Fig. 5 (a) presents the sensitivity of our model
to β parameters on three datasets, which defines the relevant
importance of Lidncs,2 and Lidncs,3 with respect to Lidncs,1.
By setting β = 0 and β = 1, Lidncs,2 and Lidncs,3 terms can
be removed from our loss function. Fig. 5 (a) shows that our
model yields the best results for β values around 0.5, which
verifies the importance of the loss terms in Lidnc.

Discussion Despite achieving superior performance
across a wide range of classification tasks, the reported
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Figure 5: (a) Sensitivity analysis of β parameter; (b) Frobenius norm between the noise transition matrices of a stratified sample
(κ) and the complete dataset of DIV using BATM (Wang et al. 2020) as the label source – (1) Plot I - considering Ỹ m as the
noisy labels and (2) Plot II - considering Ŷ m as the noisy labels; (c) # epochs for convergence (∆Lpeer(fψ(X,Y )) < 0.001)
in MULTI-CCNC with and without the proposed meta-learning based loss weighting approach (DI = AmazonMR, DII =
20NG, DIII = CIFAR10, DIV = Cora, DV = Pubmed)

n λ λ̂ λ/λ̂
Label Source I 0.1 0.8 0.811 0.99
Label Source II 0.2 0.6 0.608 0.99
Label Source III 0.3 0.4 0.394 1.02

Table 3: Comparison of the theoretical λ (= 1 − 2 × n)
and the learned λ̂ using three synthetic and symmetric (with
noise rate n) noisy label sources of Amazon MR

results in Table 2 do not answer the following two questions:
(1) Can MULTI-IDNC correct feature-dependent noise?
and (2) Can MULTI-CCNC identify the class-conditional
noise rates in label sources and exploit that to improve
learning? This section attempts to answer these questions.

To answer the first research question, we adopt the follow-
ing procedure: Step 1 - for a given dataset, select a sample
κ from the dataset (the size was set to 10% of the complete
dataset) such that the class distribution of the sample is equal
to the complete dataset; Step 2 - compute the noise transition
matrices using κ (Tκ) and the complete dataset (T ); Step 3
- compute the Frobenius norm between Tκ and T ; and Step
4 - repeat Steps 1-3 for multiple iterations to compute the
distribution of the Frobenius norms. We conduct this pro-
cedure considering noisy labels as Ỹ m and Ŷ m. Figure 5
(b) shows the result for this experiment using Amazon MR
as the dataset and BATM (Wang et al. 2020) as the label
source (m). Intuitively, if the instance-dependent noise are
corrected from MULTI-IDNC, Tκ should not largely devi-
ate from T . As can be seen in Fig 5 (b), Frobenius norms of
the aforementioned experiments drop after correcting IDN
in noisy labels using MULTI-IDNC. This verifies the poten-
tial of the proposed MULTI-IDNC module to correct IDN.

For the second research question, we construct three syn-
thetic noisy label sources for the Amazon MR dataset by
adding uniform noise for each class with three noise rates
– i.e., 10%, 20%, and 30%. After correcting the noise in
these sources using MULTI-CCNC, we check the weights
γ̂m assigned for each source from the proposed weighting
approach in MULTI-CCNC. As shown in Table 3, MULTI-
CCNC reveals the latent noise rates (from λ̂s) in each source
and assigns weights to the label sources accordingly. As a re-

sult, MULTI-CCNC alleviates the down-weighting issue in
peer loss (see Section MULTI-CCNC), which helps to im-
prove the convergence speed of MULTI-CCNC as shown
in Fig. 5 (c). Our further experiments using this synthetic
dataset showed that MULTI-CCNC outperforms our full
model (MULTI-IDNC + MULTI-CCNC) by 0.8% in Ac-
curacy. Thus, our full model may not always be effective for
sources that only include CCN, though it is unrealistic to
have such inferred sources.

Overall, our experiments verify that the proposed frame-
work effectively exploits multiple noisy label sources to ro-
bustly learn deep learning models in the presence of both
IDN and CCN, which ultimately helps to achieve superior
performance for various practical applications.

Conclusion
In this work, we proposed a noise-robust learning frame-
work for deep learning models in the presence of multiple
unsupervised label sources, which consists of two individual
modules: (1) MULTI-IDNC; and (2) MULTI-CCNC, to cor-
rect instance-dependent and class-conditional noise in the
labels. The MULTI-IDNC module is motivated by informa-
tion theoretic principles, which updates noisy labels to be
feature-independent given ground truth labels. Our MULTI-
CCNC extends peer loss, a CCN-robust loss function, by
proposing a technique to identify class-conditional noise
rates of the unsupervised label sources. We extensively eval-
uated our approach using 9 datasets from 3 domains. Our
experiments show that the proposed framework outperforms
existing baselines on learning with noisy labels by as much
as 6.4% in accuracy with an improved convergence rate.

For future work, we intend to evaluate the potential of our
model to correct IDN and CCN in other noisy label sources
such as multiple non-expert annotators on crowd-sourcing
platforms. Under this setting, the type and rate of noise could
be different as they are significantly affected by the level of
expertise of the annotators. Since the proposed framework is
capable of identifying IDN and CCN in the labels separately,
it can be used in future research to deeply analyse the bias of
unsupervised machine learning models for each noise type
and the properties of each noise type in large datasets.
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