The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Constraint-Driven Explanations for Black Box ML Models

Aditya A. Shrotri*'", Nina Narodytska*?,
Alexey Ignatiev’, Kuldeep S. Meel*, Joao Marques-Silva’, Moshe Y. Vardi'
IRice University, Houston, USA 2VMware Research Inc., Palo Alto, USA 3Monash University, Melbourne, Australia *National
University of Singapore, Singapore *IRIT, CNRS, Toulouse, France

as128,vardi} @rice.edu, nnarodytska@vmware.com, alexey.ignatiev@monash.edu, meel @comp.nus.edu.sg,
128,vardi } @rice.ed dytska@ lexey.ignatiev @ h.ed 1@comp du.sg
joao.marques-silva@irit.fr

Abstract

The need to understand the inner workings of opaque Machine
Learning models has prompted researchers to devise various
types of post-hoc explanations. A large class of such explain-
ers proceed in two phases: first perturb an input instance whose
explanation is sought, and then generate an interpretable ar-
tifact to explain the prediction of the opaque model on that
instance. Recently, Deutch and Frost proposed to use an addi-
tional input from the user: a set of constraints over the input
space to guide the perturbation phase. While this approach
affords the user the ability to tailor the explanation to their
needs, striking a balance between flexibility, theoretical rigor
and computational cost has remained an open challenge.

We propose a novel constraint-driven explanation generation
approach which simultaneously addresses these issues in a
modular fashion. Our framework supports the use of expres-
sive Boolean constraints giving the user more flexibility to
specify the subspace to generate perturbations from. Leverag-
ing advances in Formal Methods, we can theoretically guaran-
tee strict adherence of the samples to the desired distribution.
This also allows us to compute fidelity in a rigorous way, while
scaling much better in practice. Our empirical study demon-
strates concrete uses of our tool CLIME in obtaining more
meaningful explanations with high fidelity.

1 Introduction

The field of eXplainable Al (XAI) has emerged out of the
need for humans to understand the complex and opaque de-
cision processes governing modern Machine Learning mod-
els. Researchers seek to develop both naturally interpretable
models (Hu, Rudin, and Seltzer 2019; Angelino et al. 2018;
Rudin 2019; Avellaneda 2020) as well as post-hoc expla-
nations for opaque models like Deep Neural Networks and
ensembles (Ribeiro, Singh, and Guestrin 2016; Lundberg and
Lee 2017). State-of-the-art learning approaches in most do-
mains, however, are uninterpretable and necessitate the latter
approach.

*These authors contributed equally.

TThis work was mostly done during internship at VMware Re-
search. Code, results and full version of the text is available at
https://gitlab.com/Shrotri/clime
Copyright (© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

8304

A number of different approaches have been proposed in
literature for generating post-hoc explanations (c.f. Adadi
and Berrada (2018a)). A broad class of techniques explain in-
dividual predictions by capturing the behavior of the opaque
model in a small neighborhood of the input instance in two
phases (Ribeiro, Singh, and Guestrin 2016; Shrikumar, Green-
side, and Kundaje 2017; Simonyan, Vedaldi, and Zisserman
2013). In the first phase, the input instance is perturbed ac-
cording to some criteria and in the second phase the behavior
of the model on the perturbed instances is captured using var-
ious interpretable artifacts such as linear classifiers (Ribeiro,
Singh, and Guestrin 2016; Lundberg and Lee 2017), gradi-
ents (Zeiler and Fergus 2014; Sundararajan, Taly, and Yan
2017), counterfactuals (Wachter, Mittelstadt, and Russell
2017), subgraphs of GNNs (Ying et al. 2019) etc.

Different choices for each phase yield different tradeoffs
between flexibility, computational cost and theoretical rigor.
For example, one of the earliest and most popular post-hoc
explainers called LIME (Ribeiro, Singh, and Guestrin 2016)
employs a fixed heuristic perturbation procedure, and uses
a simple linear classifier trained on the perturbed instances
as the interpretable artifact. The advantages are that LIME
is model-agnostic in that it can explain predictions of any
black-box model, and is reasonably fast in practice. However,
it suffers from drawbacks like lack of a strong theoretical
foundation and susceptibility to adversarial attacks (Slack
et al. 2020) among others. The explainer SHAP (Lundberg
and Lee 2017) rectified some of these issues by using Shapley
values from game theory for axiomatically deriving the coeffi-
cients of the linear model. While Shapley values are provably
‘ideal’ under some mild assumptions, they are expensive to
compute (Van den Broeck et al. 2021; Arenas et al. 2021),
and in practice we have to resort to approximations or accept
the loss of model-agnosticity. Recently, Deutch and Frost
(2019) proposed to employ user-defined constraints to gener-
ate explanations. In particular, they allow the user to supply
domain knowledge through constraints in the form of linear
inequalities over the input space. These constraints guide
the perturbation procedure for generating counterfactual ex-
planations. While constraints provide flexibility in tailoring
explanations, the modeling language (linear inequalities) is
restrictive and the proposed algorithm is not model-agnostic.
Thus, striking a balance between flexibility, rigor, and com-

putational efficiency remains a major challenge.

In this work, we take a step towards addressing this chal-
lenge via design of an efficient constraint-driven explanation
framework that provides robust theoretical guarantees. Firstly,
along with the classifier to be explained, our framework takes
constraints in the form of Boolean formulas as input. Boolean
formulas are known to be expressive enough to succinctly
encode all types of constraints on discrete spaces (Cadoli and
Schaerf 2005). This allows the user to precisely define the
distribution of perturbed samples, and gives them the flexibil-
ity to drill down into the structure of input space. Secondly,
by leveraging advances in formal methods, we can gener-
ate perturbed samples with strong theoretical guarantees on
adherence to the desired distribution, while scaling to large
formulas in practice (Soos, Gocht, and Meel 2020; Gupta
et al. 2019). This allows us to rigorously measure the fidelity
of the generated interpretable artifact to the input model i.e.,
how closely the artifact actually explains the model. Finally,
our perturbation framework is decoupled from the artifact
generation phase, and the generated samples can be used to
train any surrogate classifier that is appropriate for the task.
Following LIME, we build a linear model over the gener-
ated samples as the interpretable artifact. We experimentally
demonstrate how the resulting tool, called CLIME, can be
used for generating high quality explanations.

In summary, our contributions are as follows:

1. Framework for precisely crafting explanations for specific
subspaces of the input domain through logical constraints

A theoretical framework and an efficient algorithm for
estimating the ‘true’ fidelity up to any desired accuracy

. Empirical study showing the efficacy of constraints in

o Efficient fidelity computation with strong guarantees
e Zooming in and refining explanations guided by fidelity
e Detecting and foiling adversarial attacks

2 Preliminaries

We follow notations from (Ribeiro, Singh, and Guestrin
2016). Let D = (X, y) = {(z",4"), (2%, ¢°), ..., (=", y")}
denote the input dataset from some distribution D where
x' € R% is a vector that captures the feature values of the
ith sample, and y* € {Cy,C;} is the corresponding class
label!. We use subscripts, i.e. x;, to denote the jth feature
of the vector z. We denote by f : R — [0, 1] the opaque
classifier that takes a data point z* as input and returns the
probability of ¢ belonging to C;. We assume that an instance
x is assigned label [;(z) = Cy if f(z) > 0.5 and {f(x) = Cy
otherwise.

Surrogate linear models. The exact problem formulation
varies depending on the choice of interpretable artifact to
be generated. Following LIME, SHAP and a host of other
popular methods, we choose a simple linear model, as our
explanation artifact. Specifically, given a classifier f, the task
is to learn a linear model g such that g mimics the behav-
ior of f in the neighborhood of some given point x. The

"'We focus on binary classification; extension to multi-class clas-
sification follows by one-vs-rest approach.

8305

function ¢ is built on an ‘interpretable domain’ of inputs
rather than the original domain. To do so, the original fea-
tures (that can be continuous or categorical) are mapped to
Boolean features. While z € R? represents an instance in the
original domain, we use prime-notation, i.e. ' € {0, 1}dl
to represent an instance in the interpretable domain. Using
Boolean features is a natural choice for ‘interpretable do-
main’, as we can understand explanations in terms of a pres-
ence/absence of a feature’s value. Thus g operates in the

interpretable domain {0, 1}‘1/. Existing explainers differ in
the way the x is perturbed and g is trained. For instance,
LIME perturbs the interpretable instance =’ by randomly
changing 1s to Os in the binary representation. The generated

samples 2, 2’%,... € Z' are mapped back to the original
space as z',22,... € Z, where Z and 2’ are called the
neighborhoods of x and 2’ in the respective spaces. We high-
light that we follow the same technique for mapping between
the original domain and the interpretable domain that is used
by LIME. In case of tabular data with continuous features the
mapping is not injective, and so one of the pre-images of each
interpretable feature value is randomly selected as the cor-

. . . 2
responding original feature value. The instances z'*, 2’ .
with corresponding labels f(z!), f(22)... are used as th
training set along with a heuristic loss function for building a
linear model g using regression. In Sec. 3, we discuss the lim-
itations of this approach and show how constraint-sampling
can mitigate some of these issues.

Boolean (logical) constraints and uniform sampling.
We use notation standard in the area of Boolean Satisfi-
ability (SAT). A Boolean formula over n variables ¢ :
{0,1}™ — {0,1} assigns a truth value 0/1 or false/true
to each of the 2™ assignments to it’s variables and is con-
structed using logical operators like AND (A), OR (V), NOT
(—), XOR () etc. An assignment of truth values to variables
denoted s € {0, 1}" is said to satisfy ¢ (denoted s |=) iff
©(s) = 1. The total number of assignments that satisfy ¢
is denoted as #p = > . 13» (s). An algorithm is said
to be a (perfectly) uniform sampler if it takes as input an
arbitrary formula ¢ and returns an assignment s* such that
Vs [= ¢, we have Pr(s* = s] = z-. An almost-uniform
sampler is an algorithm that takes, along with ¢, a parameter
e > 0 as input and returns s* such that Vs |= ¢, we have
m < Pr[s* = 5] < ;—ﬁ. The tools WAPS (Gupta
et al. 2019) and UniGen3 (Soos, Gocht, and Meel 2020) are
state-of-the-art perfectly uniform and almost-uniform sam-
plers respectively.

Fidelity. The notion of fidelity aims to capture how closely
the explainer model ‘reflects’ the behavior of the opaque
model, and can be seen as a measure of the quality of the
explanation (Ribeiro, Singh, and Guestrin 2016, 2018). The
fidelity p of the explainer model g to the opaque model f is
calculated as the precision of g (Ribeiro, Singh, and Guestrin
2018), i.e. the fraction of the sampled neighbors where the
output class of f and g agree. Let Z and Z’ be the neighbor-
hoods of z and 2’ as defined above. Then,

Zz’eZ’ I[lf(z) = lg(zl)]
12|

p= ()

where 7 is the indicator function, and z is the preimage of 2’.

3 Constraint-Driven Explanations

We present our framework CLIME which belongs to a large
class of post-hoc explainers that operate in two-phases: in the
first phase, it perturbs an input instance = and in the second
phase, it generates an interpretable model g to explain the
prediction of the opaque model f on x. The new distinctive
capability of CLIME is that it lets the user specify constraints
on the input space to define the allowed perturbations of x in
a model-agnostic way. Next, we discuss our choice for the
constraint modeling language and give high-level overview
of the two-phase algorithm.

Constraint modeling language. We assume that the con-
straints are specified in propositional logic, i.e. as a Boolean
formula ¢ . Boolean constraints are powerful enough to repre-
sent log-linear family of distributions (Chavira and Darwiche
2008), yet allow fast sampling of solutions either uniformly
or with a user-provided bias (Gupta et al. 2019), thanks to the
advances in SAT technology (Marques-Silva, Lynce, and Ma-
lik 2021). Boolean constraints are also easy to use, and many
toolkits for formal analysis such as model-checkers (Clarke
et al. 2001) require their input to be specified using Boolean
logic.

As an example, assume that ¢ represents the constraint
that at least & features must be fixed for some user-defined k.
For image data this constraint enforces the requirement that
at least k superpixels must be ‘on’, while for text it forces
at least £ words from x to be present in each sample. This
blocks out very sparse data ensuring that only informative
instances are used for training the explainer model. Exam-
ple 3.1 describes more scenarios where constraints are useful.

The first phase: sampling data points. The CLIME
framework generates explanations on instances sampled
(almost-) uniformly from user-defined subspaces which
are defined through constraints. In this work, we employ
techniques for (almost) uniformly sampling solutions of
constraints for generating explanations, but we note that
the extension to biased (weighted) sampling is straightfor-
ward (Chakraborty et al. 2015).

The pseudo-code of the constrained explanation frame-
work is presented in Alg. 1. Along with the input instance
x CLIME also takes as input a Boolean formula . The
variables of ¢ are exactly the Boolean features of the inter-
pretable domain Z’, and the solutions ¢ is the user-defined
subspace UZ i.e.UZ = {s € {0,1}" | s |= o}

The samples generated from ¢ determine the neighbor-
hood Z’ (line 1 of Alg. 1). Note that UZ' is the universe
of all possible assignments from which Z’ is sampled. We
assume access to a procedure getSamples that returns N in-
dependent samples satisfying . The algorithm takes as input
a parameter ¢, which represents the tolerance to deviation
from perfectly-uniform sampling. If € = 0, then the call to
getSamples in line 1 must be to a perfectly uniform sampler
like WAPS (Gupta et al. 2019), otherwise an almost-uniform
sampler like Unigen3 (Soos, Gocht, and Meel 2020) suffices.
We highlight that CLIME is the first framework with a capa-

8306

bility to incorporate constraints to generate explanations in
model-agnostic settings, to the best of our knowledge.

The second phase: learning an explainer. We adopt
LIME’s method for training a linear explainer model for

the second (artifact generation) phase. The samples 2" are
mapped back to the original domain, and the output of f
on each 2% and the distance of each 2 to = are used for
training g in line 6, where at most K coefficients are al-
lowed to be non-zero to ensure interpretability. More for-
mally, let the complexity of an explanation g be denoted
as Q(g) (complexity of a linear model can be the number
of non-zero weights), and let 7, (z) denote the proximity
measure between inputs z and z € Z, where 7, (2) can be
defined using cosine or Ly distance. The objective function
for training g is crafted to ensure that g (1) approximates
the behavior of f accurately in the vicinity of x where the
proximity measure is high, and (2) achieves low complexity
and is thereby interpretable. The explanation is obtained as
g* = argmingeg L(my, g, f) + Q(g) where G is the set
of all linear classifiers and the loss function L is defined
as: L(f,9,m0) = > .cz[f(2) — g(2')]*ms(2). Intuitively,
the loss function captures how unfaithful ¢ is to f in the
neighborhood of z.

Example 3.1. We consider the bank dataset (Moro, Cortez,
and Rita 2014) that was also used in Deutch and Frost (2019).
The bank dataset contains bank client data that describes
client characteristics as well as their communications with a
bank. The model predicts whether a client will subscribe for
the term deposit. Four integrity constraints were proposed for
this dataset by Deutch and Frost (2019). Integrity constraints
enforce data consistency and accuracy.

o Previous contacts with a client. Two constraints were
proposed. A client has not been contacted before iff the
time since previous contact is undefined. A client has
not been not contacted before iff the previous outcome is
unknown. In terms of the features, these constraints are
expressed as (‘previous’ = 0) < (‘pdays’ = undefined) <
(‘poutcome’ = unknown).

e Features interdependencies. Two constraints were pro-
posed. If a client is a student then they are not married
and younger than 35 years old. If a client has an ‘admin’
Jjob then their education is secondary.

We can find explanations for a random sample in two sce-
narios. First, we do not supply constraints to the explainer. In
this case, we get an explanation: I = (‘duration’, ‘housing’,
‘previous’, ‘poutcome’, ‘pdays’), which consists of the 5 most
important features (by weight) that contributed to the pre-
diction of the opaque classifier on the input instance. If we
add integrity constraints then we get a different explanation
(i.e. different set of top 5 features): J = (‘duration’, ‘pdays’,
‘housing’, ‘campaign’, ‘loan’).

At this point, it is hard for the user to judge the quality of
these explanations I and J. In the next section, we present a
technique that enables users to make this judgement.

O

Algorithm 1: ExplainWithCLIME(f, ¢, ¢, N, z, 2/, 7, K)

Input: f: Model to be explained ¢: Boolean constraints
e: Tolerance IN: Number of samples
m,: Similarity kernel K Length of explanation

Output g: Interpretable linear classifier

: Z' « getSamples(p, e, N);

7 {}

for 2’ € Z' do

Z < ZU{Y, f(2),ma(2)}
end for

g < K-LASSO(Z, K)

A A

Algorithm 2: computeFidelity(f, g, ¢, d,)

Input: f: Model to be explained g¢: Explainer Model
¢: Tolerance §: Confidence +: Threshold

Output: p: Estimate of p (see Thm. 1)

1: if checkThreshold(f, g, €, §,v) == True then

2: return L > p < v — ¢; report failure

3: end if
/*Threshold check passed; compute 2-sided bound*/
p AA(04xe,04x¢,0) > See Appendix
return p

4:
5:

4 Certifying Explanation Quality

For increasing user trust, it is necessary to provide a mea-
sure of the quality of explanations generated. A fundamental
requirement from a high-quality explainer model is that it
should closely mimic the behavior of the opaque model in
the specified neighborhood. This is especially important for
explanations of user defined sub-spaces, as it may be possible
that no simple explanation exists for a large subspace, and
further refinements to the constraints may be required to get
a high-quality explanation.

The fidelity metric, as defined in Eqn. 1, aims to quan-
tify this property, in terms of the fraction of samples in the
neighborhood Z’, on which the prediction made by the ex-
plainer model matches the prediction of the opaque model.
Two parameters influence the accuracy of the fidelity score:
the number of samples in Z’ and the quality of these samples,
i.e. their uniformity in the universe /# " of all such possible
samples. Both of these parameters were chosen heuristically
in prior works (Ribeiro, Singh, and Guestrin 2016, 2018),
which raises the question, is the fidelity score, as measured by
Egn. 1 trustworthy? Intuitively, a score measured on 10 sam-
ples will not be as accurate as one measured on 10000 due to
randomness inherent in any sampling procedure. Such uncer-
tainties can be unacceptable in, for instance, safety-critical
applications of XAl such as healthcare (Amann et al. 2020).

We address this gap by first rigorously defining fidelity, and
then presenting an efficient algorithm for computing it. We
observe that the true fidelity score is the one that is calculated
on all possible instances belonging to a user-defined subspace

8307

Algorithm 3: checkThreshold(f, g, ¢, d,7)

Input: f: Model to be explained g¢: Explainer Model
¢: Tolerance §: Confidence ~: Threshold
Output: True with high probability if p < v —¢
I: v+ min(e +&2/2 — v¢/2, (e — v¢/2) /(1 +€/2))
/* compute the number of samples N based on ¢, d, y*/
N ¢+ 5.5 log(3)
Z getSampIes(go,s/Q,N
C+0
/* compute sample fidelity */
for 2’ € Z' do
/*z is the preimage of z’*/

¢ Tlly(2) = 1, ()

C+ C+c/N
end for
if C' < ~ then

/*Value below threshold; terminate early*/

return True
11: else
12: return False
: end if

2:
3:
4:

oL

of inputs UZ, i.e

Zz’euz’ Illf(2) =
u='|

ly(2)]

p= 2

The user-defined subspace UZ " consists of the solutions of
the input formula . In practice, ¢ can have hundreds of
variables and exponentially many solutions which makes
enumerating all elements of /% " in the numerator of Eqn. 2
infeasible. Thus, computing p exactly is usually intractable.
Approximating p can be faster, but requires formal guarantees
to be meaningful. We observe that the score p, as measured
by Eqn. 1, is the ‘sample mean’ of the true ‘population mean’
p, as defined by Eqn. 2. This observation allows us to com-
pute the estimate p in theoretically grounded way, so as to
statistically guarantee its closeness to p.

We use a PAC-style notion of approximation (Valiant
1984), which provides strong probabilistic guarantees on the
accuracy of the output. The goal is to find an approximation
p that is within user-defined tolerance of the true value with
high confidence. Specifically, we wish to compute p such that

Prl—c)p<p<(+e)]>(1—-6) ()

where ¢ > 0, § > 0 are user-defined tolerance and confi-
dence.

To the best of our knowledge, no existing approach is
directly applicable to finding a good approximation of p, in a
model-agnostic way. The technique presented by (Narodytska
et al. 2019), requires the opaque model to be encoded as a
Boolean formula, severely limiting both its scalability as well
as the types of models that can be explained. On the other

hand, algorithms based on Monte Carlo sampling such as
the AA algorithm by (Dagum et al. 2000), are known to be
fast when p is high, but require far too many samples when
p is low (Meel, Shrotri, and Vardi 2019). They also require
perfectly uniform samples, while it may only be feasible to
generate almost-uniform samples from the universe Uz

In this section, we propose an efficient and model-agnostic
estimation algorithm based on (Dagum et al. 2000), that is
able to work with almost-uniform samples and also termi-
nates quickly if the quantity being approximated is small.
Two key insights inform the design of our approach: we first
observe that e-almost uniform sampling can change the value
of p at most by a factor of (1 +). Secondly, in typical sce-
narios, users are interested in two-sided bounds on fidelity
(as given by Eqn. 3) only if it is high enough. If the fidelity
is lower than some threshold, say 0.1, then it doesn’t matter
if it is 0.05 or 0.01, since the explanation will be unaccept-
able in either case. In other words, below a certain threshold,
one-sided bounds suffice.

Procedure computeFidelity (Alg. 2) is used for comput-
ing p, given an opaque model f, an explainer model g and
three parameters ¢, § and ~y that control the precision of p.
computeFidelity invokes checkThreshold (Alg. 3) on line 1.
checkThreshold first computes the number of samples NV
required for the probabilistic guarantees, and then invokes
a sampler through getSamples as in Alg. 1. If p < v — ¢,
then checkThreshold returns True with probability at least
1 — 0 and computeFidelity reports failure on line 2. This
check ensures that the sample complexity remains low even
if the fidelity is very small, which is a common pitfall for
Monte Carlo algorithms. If checkThreshold returns False,
then computeFidelity makes a call to procedure AA’ (line
4), which is an adaptation of the algorithm by (Dagum et al.
2000) that provides the guarantees of Eqn. 3 with almost-
uniform samples (see Appendix in the full version). Theorem
1 captures the guarantees and the behavior of the framework.

Theorem 1. If p < v — ¢, then computeFidelity returns
L with high probability (i.e. at least 1 —). If p > v + &,
w.h.p., it returns an estimate p such that Pr[(1 —e)p < p <
(L+e)p] > (1-0).

We highlight that our certification framework is more gen-
eral than just fidelity computation. In the Appendix in the
full version, we show how Algs. 2 and 3 can be used for ac-
curately estimating the true mean of any 0/1 random variable
with almost-uniform samples and early termination.

Example 4.1. We continue with Example 3.1. Now, the user
can use the fidelity metric to compare quality of explanations.
We compute the fidelity score for both explanations I and J
that we obtained without and with constraints, respectively.
We get that fidelity(I)= 0.91 and fidelity(J)= 0.90. First, the
user notices that the fidelity scores are the same for these
explanations, so I and J can be seen as explanations of the
same quality. Second, these fidelity scores can be considered
low, hinting the user to refine the input space. In the next
section we show, through an extensive evaluation, how the
user can perform such a refinement to obtain high quality
explanations. 0

The overall schematic of CLIME is shown in Fig. 1. Blue

8308

boxes highlight CLIME’s building blocks that are different
from LIME. Namely, CLIME allows a user to specify con-
straints, performs constrained sampling and computes the
fidelity metric of a explainer.

5 Experiments
We seek to answer the following research questions through
our empirical study:

1. How scalable is the certification framework presented in

Sec. 4?7

What benefits do constraints provide for analysing ML

models?

. How susceptible are constrained explanations to adversar-
ial attacks?

2.

Efficiency of Certification

A salient benefit of leveraging the A A-algorithm of (Dagum
et al. 2000) for the fidelity computation approach of Sec.
4, is that its sample complexity is guaranteed to be close-
to-optimal. Nevertheless, the practical performance of our
approach is unknown apriori, given the added cost of generat-
ing (almost-) uniform samples from constraints. Therefore, in
this experiment, we evaluate the scalability of our framework
vs. that of the technique of (Narodytska et al. 2019).

We implemented and ran Algs. 2, 3 on 150 benchmarks
used in (Narodytska et al. 2019). The benchmarks are
CNF formulas that encode the Anchor (Ribeiro, Singh, and
Guestrin 2018) explanations of Binarized Neural Networks
trained on Adult, Recidivism and Lending datasets. The true
fidelity of an explanation can be computed from the count
of the number of solutions of the corresponding formula.
We compared the running-time of our tool to the time taken
by the approach of (Narodytska et al. 2019), which utilizes
the state-of-the-art approximate model-counting tool called
ApproxMC (Soos, Gocht, and Meel 2020). Note that both
ApproxMC and our tool provide the same probabilistic guar-
antees on the returned estimate (Soos and Meel 2019). The
results are shown as a scatter-plot in Fig. 2. The x-coordinate
of a point in blue represents the time taken by ApproxMC
on a benchmark, while the y-coordinate represents the time
taken by our approach. As all the points are far below the
diagonal dotted red line, we can infer that ApproxMC takes
significantly longer than our tool to compute the same esti-
mate. In fact, on average (geometric mean), our tool is 7.5x
faster than ApproxMC. It is clear from Fig. 2 that our al-
gorithm scales far better than the alternative, despite being
more general and model-agnostic. We also experimentally
compared the scalability of our tool to ApproxMC for differ-
ent values of input tolerance ¢ and confidence 6. We found
that our tool scales significantly better than ApproxMC for
tighter tolerance and confidence values. Thus, our experi-
ments demonstrate that our tool significantly outperforms the
state-of-the-art. We provide more details and results in the
Appendix in the full version.

Model Analysis

First, we consider the bank dataset that was proposed
in Deutch and Frost (2019) that we describe in Example 3.1.

CLIME Framework

Input Interpretable , \
domain z .
9(z) expl(x)
2 eRd , & capl(z
zeR 2’ € {0,1} input Constrained 2=} Learning =P e)((ielr;:;atlzsn
. :::1::::; interpretable P
.) _constraints i i
[Constraintsover 2’ € {0,1}% [neighborhood function g(2)
) et > ;
4™ o(z") Compute d User

Classifier to be explained f(x) P>

S \

=/

Figure 1: CLIME Schema

175 e
150 o
125 ~
100 -
75 -
50 -

25 | N
(,g:x fasad IMM Ex x
25 50 75 100 125 150
ApproxMC Estimation Time (sec)

b33
175

Algorithms 2,3 Estimation Time (sec)

Figure 2: Scalability of Algs. 2,3 vs. ApproxMC

We train 10 random forest models with different random
seeds and the same hyper-parameters as in Deutch and Frost
(2019). The average accuracy of these models is 90%. In all
experiments, we compute the average fidelity scores over 100
input explanations and 10 RF models.

Let us consider a scenario where the user needs to explain
why a client who has not been contacted in the past made
a decision to not subscribe for a term deposit. We find ex-
planations for 100 samples per model in two scenarios: (a)
without constraints and (b) with integrity constraints, as in
Example 4.1, and average the result. We get fidelity scores
0.90 and 0.89 for scenarios (a) and (b), respectively. These
result confirm scores that we obtain for a single instance in
Example 4.1. However, the obtained fidelity scores might not
be acceptable for the user. A low fidelity score can indicate ei-
ther that the constrained space needs to be refined or that the
interpretable artifact needs to be changed (ex: using decision
trees instead of linear classifiers to explain non-linear deci-
sion boundaries). We highlight that unlike Deutch and Frost
(2019), under our modular framework, it is easy to learn a dif-
ferent artifact. In this work, we focus on constraint refinement
and assume that the user intends to continue drilling down
by specifying user-defined constraints to better communicate
their focus space to an explainer.

To achieve their goal, the user can specify an additional

8309

constraint: ‘consider only clients that have not been previ-
ously contacted’. So, the user adds this constraint on top
of integrity constraints, creating a new setup: (¢) CLIME is
supplied with integrity and the user constraint. We again com-
pute the average fidelity score that is 0.98 for the scenario (c).
Clearly, adding the user-defined constraint allowed to refine
the input space to obtain high quality explanations.

Note that the user-defined constraint ‘a client has not been
contacted before’ triggers integrity constraints (see Exam-
ple 3.1 for the definition of integrity constraints) forcing that
‘the time since previous contact should be undefined’ and
‘the previous outcome should be unknown’. Hence, these fea-
tures, i.e. ‘previous’, ‘pdays’, ‘poutcome’ in the dataset, are
fixed by the user’s constraints. Therefore, these fixed features
should not appear in the explanations. Table 1 shows the top
5 features that were used in explanations for the scenarios (a)
and (c) in 100 instances. Note that three fixed features are
often chosen by CLIME without constraints (scenario (a)),
making these explanations less useful for the user. In con-
trast, CLIME with constraints (scenario (c)) never chooses
these features in its explanations demonstrating the correct
behaviour.

Second, we consider the adult dataset (Kohavi 1996), orig-
inally taken from the Census bureau. It is used for predicting
whether or not a given adult person earns more than $50K a
year depending on various attributes, e.g. race, sex, education,
hours of work, etc. We pre-processed columns with contin-
uous features, e.g. the pre-processor discretizes the capital
gain and capital loss features into categorical features, e.g.
’Unknown’, ’Low’ and "High’ (Ribeiro, Singh, and Guestrin
2018). We train 10 Random Forest models with different
random seeds and 20 trees and max depth is 7. The accu-
racy is 83% on average. We compute the average fidelity
score of 100 inputs explanations and RF models. Consider
a scenario when the user wants to find an explanation for
male individuals without a college degree. So, the user adds
a constraint (EDUCATION € [DROPOUT, HIGH-SCHOOL,
SOME-COLLEGE]) AND (SEX = MALE). Next, they find
that the average fidelity score is 0.68 for explanations in this
constrained space. This indicates a need for refining the in-
put space. For example, they can add a constraint that there
is no information available about individuals’ Capital, i.e.:
(CAPITAL GAIN = ‘UNKNOWN’) AND (CAPITAL LOSS =

Scenario Top five features (left to right) in explanations \
(a) “previous’ ‘pdays’ "duration’ “poutcome’ “housing’
() ‘age’ ’contact’ ’duration’ ’personal loan’ ’month’

Table 1: Features of Bank dataset appearing in explanations (a) without constraints, and (c) with integrity and user constraints

1.0 1
EEE Sensitive Feature (Race)
EEE 1st Unrelated Feature
0.8 s Other
o
c 0.6
M)
=}
o
L 041
[
0.2
0.0-
3 4 5
Hamming Distance
(a) Adversarial Classifier
107 s s s s w1
0.8 1
9
c 0.6
8]
S
o
@ 0.41
[
age
0.2 BN priors
H two ye
mmm Other
0.0

3 4 5 6

Hamming Distance

(b) Non-Adversarial Classifier

Figure 3: Recidivism: Top CLIME explanation distribution
vs. Hamming Distance

‘UNKNOWN’). In this more constrained space, the average
fidelity score of explanations increases to 0.98. Therefore the
user can be confident that explanations are reliable.

Detecting Adversarial Attacks

(Slack et al. 2020) presented a way to craft an adversarial
attack that seeks to hide the biased predictions made by a
biased classifier (eg: one that decides credit card applica-
tions solely on a sensitive feature like race) from detection
by post-hoc explainers like LIME, by exploiting the ad-hoc
perturbation procedure that can generate Out-of-Distribution
(OOD) samples. In this experiment we evaluate the suitability
of constraints in foiling such attacks.

Adversarial classifier setup. Given a biased classifier,
(Slack et al. 2020) construct an adversarial classifier that
‘wraps’ around the biased classifier aiming to hide its biases.
It relies on the ability to successfully train a classifier to
predict whether an input sample is in- or out-of-distribution

8310

(OOD). This classifier, called the ‘OOD detector’, is used as
a submodule in the adversarial classifier to predict whether
an input instance is OOD or not. If the input instance is OOD,
then the adversarial classifier outputs a prediction based on
an innocuous feature. If the instance is not OOD, then it
outputs the biased classifier’s prediction. When LIME is used
for explaining a prediction made by the adversarial classifier,
almost all of LIME’s perturbed samples are detected to be
OOD, resulting in the innocuous feature appearing as the top
explanation. In this way, the sensitive feature (eg. race), is
successfully hidden, when in reality it was the ground-truth
explanation. The attack crucially relies on the ability to train
an OOD detector to tell apart LIME’s perturbed samples and
instances from the original distribution with high accuracy.
Note that accurately measuring the fidelity of the explainer
model alone is not sufficient to detect such an attack as the
problem lies in the way the opaque classifier is constructed
and not in the resulting explanation.

A blind spot of the OOD detector. We hypothesized that
for discrete data, the OOD detector should have trouble dif-
ferentiating between instances from the original dataset and
instances with low Hamming distances to points in the orig-
inal dataset. We emphasize here, that LIME almost always
generates samples at a high Hamming distance from the input
instance, as it perturbs each feature independently. Conse-
quently, the penalization of high Hamming distance, either
through the loss function or through explicit filtering by re-
jection sampling, is ultimately ineffective, as the number of
samples is ad-hoc and fixed apriori. This may partly explain
LIME’s susceptibility to such attacks.

Our idea is to generate constrained samples based on their
Hamming distance h from the original input. For adversarial
classifiers, for small values of &, we hit the blind spot of the
OOD detector and our sampled instances will be marked as in-
distribution. So, sensitive features will be revealed by CLIME.
As we move away from the instance, the innocuous features
should dominate. Towards this end, we constructed a formula
" for a given Hamming distance / and a set of instances
S, such that the solutions of ¢" are exactly those instances
that are at most at a distance h from each instance in .S. We
took S to be the set of 3 nearest neighbors of the instance
being explained. If our hypothesis is correct, the adversarial
classifier should have trouble hiding the sensitive features
in the subspace th for low values of h. Thus, sensitive
features should appear in the top CLIME explanations when
h is small, and innocuous features when £ is large.

To test our hypothesis, we generated 200 CLIME explana-
tions using discretized versions of the three datasets used by
(Slack et al. 2020). We computed the relative frequency of a
feature appearing as the top explanation for different values
of h. The results for the Recidivism dataset with 1 innocuous

feature are depicted in Figure 3a (we defer results on other
datasets and an extended discussion to the Appendix in the
full version for lack of space). We plot the hamming distance
h on the X-axis and the frequency of seeing a feature as the
top explanation on the Y-axis. We see the sensitive feature
‘race’ appears as the top explanation for 60% of the instances
explained when h = 2. In contrast, the innocuous feature
(1st Unrelated Feature), appears almost exclusively as the top
explanation when i > 5. For comparison, we depict results
on CLIME explanations for a non-adversarial classifier in Fig.
3b. We see that the relative frequency with which a feature
appears as the top explanation changes very little for different
hamming distances. This confirms our hypothesis. In contrast,
for LIME explanations (not shown), the innocuous feature
appears as the top explanation for all 200 instances. We thus
conclude that CLIME can not only avoid being fooled, but
also potentially detect the adversarial natural of an opaque
classifier by observing the change in the top features with and
without Hamming distance constraints. While it may be pos-
sible to craft even more sophisticated attacks, these results
clearly demonstrate CLIME’s ability to detect adversarial
attacks that exploit OOD sampling.

6 Related Work

Model explainability is one of the most important problems
in machine learning. Therefore, there are a large number
of recent surveys on the topic, e.g. (Hoffman and Klein
2017; Hoffman, Mueller, and Klein 2017; Lipton 2018; Adadi
and Berrada 2018b; Guidotti et al. 2019; Rudin 2019). To
overview, we partition related work into categories such as
those that incorporate constraints, those that do or do not
provide theoretical guarantees on the quality of the gener-
ated explanations as well as works that analyze the quality of
explanations.

Explaining with Constraints. To the best of our knowl-
edge, the work of (Deutch and Frost 2019) is the first and
only approach to incorporate user-defined constraints into the
explanation process explicitly. Other approaches like (Fong
and Vedaldi 2017) allow some restrictions on the types of
allowed perturbations (such as rotations and deletions for im-
ages), but are much more limited compared to the expressive
power of a full-fledged formally defined constraint language.
Shih, Choi, and Darwiche (2019), on the other hand, compile
the Boolean function underlying the opaque classifier into
a tractable datastructure that supports fast querying. This is
inherently different from our approach in that it generates
global explanations, and does not allow the user to craft and
refine explanations according to their needs.

The approach of Deutch and Frost (Deutch and Frost 2019)
is the closest to CLIME, yet differs in several ways. Firstly,
they generate counterfactual explanations as the interpretable
artifact, which are defined as the smallest changes to the
input instance that make the opaque predictor label it differ-
ently. In contrast, CLIME is a feature attribution method that
directly explains the relative importance of features contribut-
ing to a prediction. Further, Deutch and Frost (2019) employ
a two-step ‘perturb and project’ method for incorporating
constraints into the counterfactual generation phase, wherein

8311

the input instance is first perturbed in the direction of the tar-
get label without constraints, and is then projected on to the
constrained space. This method is not guaranteed to converge
and also imposes restrictions on the type of models it can
explain. In contrast, CLIME directly samples perturbations
satisfying the constraints, and is completely agnostic to the
model being explained.

Explanations without theoretical guarantees. There
were a number of approaches proposed to compute
(model-agnostic) local explanations. We have overviewed
LIME (Ribeiro, Singh, and Guestrin 2016) in Section 2. An-
chor is a successor of LIME (Ribeiro, Singh, and Guestrin
2018). The main contribution of Anchor is to produce expla-
nations that hold globally, for the entire distribution of inputs.
SHAP (Lundberg and Lee 2017) is another popular model-
agnostic explainer to produce local explanations. Similar to
other explainers, SHAP does not provide any theoretical justi-
fication for the sampling procedure. However, SHAP employs
game theoretic principles to produce an explainable model.
Our work focuses on model-agnostic, local explanations,
however, we produce explanations with provable guarantees.
CXPlain proposes to train an additional ‘explanation model’
to provide explanations for a given ML model (Schwab and
Karlen 2019). Learning of the explanation model involves
an estimation of feature importance using a causal objective.
The causal objective captures how input features cause a
marginal improvement in the predictive performance of the
ML model. In our work, we do not consider each feature in-
dividually and reason about the space of features as a whole.
Moreover, our framework allows us to work with constrained
spaces. Finally, works such as (Lakkaraju et al. 2019) provide
limited capabilities for customizing global explanations by
letting the user supply a set of features that the they deem
important. Similar to (Bjorklund et al. 2019), they avoid sam-
pling a neighbourhood around a given point by using original
data points to construct an explainer. While avoiding sam-
pling helps scalability, it also undermines applicability. For
instance, dealing with user-defined constraints, as well as
unbalanced or skewed input datasets can be problematic. In
both cases, the input data may be too sparse to yield meaning-
ful explanations. Recently, (Lakkaraju, Arsov, and Bastani
2020) demonstrated that these explanations are less robust
compared to LIME, for example.

Another line of work in on gradient-based explainers,
for example, saliency maps (Zeiler and Fergus 2014),
Integrated Gradient (Sundararajan, Taly, and Yan 2017),
DeepLIFT (Shrikumar, Greenside, and Kundaje 2017).
Gradient-based methods assume full knowledge about the
ML model and, also, require these models to be differentiable.
While these methods are very efficient, they do not provide
theoretical guarantees on the produced explanations. On top
of that these approaches are not model-agnostic.

Explanations with theoretical guarantees. Recently, a
formal approach to compute explanations of ML models
was proposed. If an ML model allows a formal representation
in restricted fragment of the first order logic, then one can
(a) define a formal notion of an explanation and (b) design
an algorithm to produce these explanations (Shih, Choi, and

Darwiche 2018, 2019; Ignatiev, Narodytska, and Marques-
Silva 2019a; Darwiche and Hirth 2020; Darwiche 2020). One
of the formal approaches is built on powerful knowledge
compilation techniques, e.g. (Shih, Choi, and Darwiche 2018,
2019). The other approach employs very efficient formal rea-
soning engines, like SAT, SMT or ILP solvers, as a part of
explanation generation algorithms (Ignatiev, Narodytska, and
Marques-Silva 2019a; Narodytska et al. 2019). If the process
of ML model compilation into a tractable structure is feasible
then the first approach is very effective and allows the user to
analyse the ML model efficiently. However, the compilation
can be computationally expensive and resource demanding,
so the second approach is more efficient in some applications.
There are some limitations of these approaches. First, similar
to gradient-based methods, they require full knowledge of the
original ML model. Second, although for a number of ML
models these approaches are shown to be practically effec-
tive (Ignatiev, Narodytska, and Marques-Silva 2019b; Izza,
Ignatiev, and Marques-Silva 2020; Marques-Silva et al. 2020,
2021; Izza and Marques-Silva 2021; Ignatiev and Marques-
Silva 2021; Huang et al. 2021; Ignatiev et al. 2022; Huang
et al. 2022; Marques-Silva and Ignatiev 2022), formal ap-
proaches to XAI still face scalability issues in case of some
other ML models (Ignatiev, Narodytska, and Marques-Silva
2019a) as formal reasoning about ML models is in general
computationally expensive.

Quality of the explanations. Finally, we consider a re-
cent line of work on analysis of the quality of explanations.
(Ribeiro, Singh, and Guestrin 2018) proposed several heuris-
tic measures to evaluate quality of explanations including
fidelity and coverage, but do not provide a way to estimate
the true value of these metrics. In (Ghorbani, Abid, and Zou
2019; Alvarez-Melis and Jaakkola 2018), it was shown using
perturbation-based methods that explanations are suscepti-
ble to adversarial attacks and lack robustness property. For
example, (Zhang et al. 2019) investigated several sources of
uncertainty in LIME, like sampling variance in explaining a
sample. The authors experimentally demonstrated that LIME
often fails to capture the most important features locally.
However, the paper does not propose a solution to remedy
identified issues. Moreover, (Slack et al. 2020) showed that
it is easy to fool an explainer, like LIME and SHAP, as we
discussed in detail in Section 5. (Narodytska et al. 2019)
presented a technique for evaluation quality of explanations
based on model counting, but their approach suffers from
scalability issues (as shown in Sec. 4) and is only applicable
to BNNs. (Lakkaraju, Arsov, and Bastani 2020) proposed
to use adversarial training (Madry et al. 2018) to improve
robustness of the explanations. While the proposed approach
improves robustness to adversarial attacks it cannot be easily
extended to work in constraint environments and does not
provide theoretical guarantees on the fidelity of the expla-
nations. A related line of work on probabilistic verification
of ML models has seen a surge in interest. (Albarghouthi
et al. 2017) encoded the underlying model and fairness prop-
erties as formulas in SMT over real arithmentic, and relied
on symbolic integration techniques. However, this approach
is known not to scale, eg. it can only handle neural networks

8312

with a single hidden layer containing just three hidden units.
(Bastani, Zhang, and Solar-Lezama 2019) present an alter-
native approach that uses Monte Carlo sampling and adap-
tive concentration inequalities. However, unlike Alg. 2, their
method only returns a yes/no answer and does not provide
a quantitative estimate. Further, their algorithm may fail to
terminate on some inputs, and the sample complexity is not
proven to be close-to-optimal.

7 Conclusions and Future Work

We presented a modular model-agnostic explanation frame-
work CLIME that is able to operate on constrained subspaces
of inputs. We introduced a new estimation algorithm that
enables computation of an explanation’s quality up to any de-
sired accuracy. XAl is inherently human-centric, and in this
light, our framework empowers the user to iteratively refine
the explanation according to their needs. We demonstrated
concrete scenarios where the user can zoom in to the input
space guided by the fidelity metric.

The need for making XAI more rigorous and evidence-
based has been highlighted in the past (Doshi-Velez and Kim
2017), and we believe our framework takes a concrete step in
this direction. CLIME can also be readily extended in numer-
ous ways. Helping the user with defining relevant subspaces
by mining constraints from data is an interesting direction.
Richer constraint languages like SMT (Barrett and Tinelli
2018) can provide even more flexibility, once sampling tech-
nology matures. Construction of CLIME’s explainer model
can also potentially be extended to incorporate Shapley val-
ues as in (Lundberg and Lee 2017).

Acknowledgements

This work was supported in part by NSF grants I1S-1527668,
CCF-1704883, IIS-1830549, CNS-2016656, DoD MURI
grant N0O0014-20-1-2787, an award from the Maryland Pro-
curement Office, as well as the Al Interdisciplinary Institute
ANITI, funded by the French program “Investing for the
Future — PIA3” under Grant agreement no. ANR-19-PI3A-
0004, and by the H2020-ICT38 project COALA ”Cognitive
Assisted agile manufacturing for a Labor force supported by
trustworthy Artificial intelligence”, and by National Research
Foundation Singapore under its NRF Fellowship Programme
[NRF-NRFFAI1-2019-0004].

References

Adadi, A.; and Berrada, M. 2018a. Peeking inside the black-
box: a survey on explainable artificial intelligence (XAI).
IEEFE access, 6: 52138-52160.

Adadi, A.; and Berrada, M. 2018b. Peeking Inside the Black-
Box: A Survey on Explainable Artificial Intelligence (XAI).
IEEE Access, 6: 52138-52160.

Albarghouthi, A.; D’ Antoni, L.; Drews, S.; and Nori, A. V.
2017. FairSquare: probabilistic verification of program fair-
ness. Proceedings of the ACM on Programming Languages,
1(OOPSLA): 1-30.

Alvarez-Melis, D.; and Jaakkola, T. S. 2018. On the Robust-
ness of Interpretability Methods. CoRR, abs/1806.08049.

Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; and Madai,
V. 1. 2020. Explainability for artificial intelligence in health-
care: a multidisciplinary perspective. BMC Medical Infor-
matics and Decision Making, 20(1): 1-9.

Angelino, E.; Larus-Stone, N.; Alabi, D.; Seltzer, M.; and
Rudin, C. 2018. Learning Certifiably Optimal Rule Lists for
Categorical Data. Journal of Machine Learning Research,
18: 234:1-234:78.

Arenas, M.; Barceld, P.; Bertossi, L.; and Monet, M. 2021.
The Tractability of SHAP-Score-Based Explanations for Clas-
sification over Deterministic and Decomposable Boolean Cir-
cuits. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, 6670-6678.

Avellaneda, F. 2020. Efficient Inference of Optimal Decision
Trees. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Appli-
cations of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12,
2020, 3195-3202. AAAI Press.

Barrett, C.; and Tinelli, C. 2018. Satisfiability modulo theo-
ries. In Handbook of Model Checking, 305-343. Springer.

Bastani, O.; Zhang, X.; and Solar-Lezama, A. 2019. Prob-
abilistic verification of fairness properties via concentra-
tion. Proceedings of the ACM on Programming Languages,
3(O0OPSLA): 1-27.

Bjorklund, A.; Henelius, A.; Oikarinen, E.; Kallonen, K.; and
Puolamiki, K. 2019. Sparse robust regression for explaining
classifiers. In International Conference on Discovery Science,
351-366. Springer.

Cadoli, M.; and Schaerf, A. 2005. Compiling problem speci-
fications into SAT. Artificial Intelligence, 162(1-2): 89—120.

Chakraborty, S.; Fried, D.; Meel, K. S.; and Vardi, M. Y.
2015. From weighted to unweighted model counting. In
Twenty-Fourth International Joint Conference on Artificial
Intelligence.

Chavira, M.; and Darwiche, A. 2008. On probabilistic in-
ference by weighted model counting. Artificial Intelligence,
172(6-7): 772-799.

Clarke, E.; Biere, A.; Raimi, R.; and Zhu, Y. 2001. Bounded

Model Checking Using Satisfiability Solving. Form. Methods
Syst. Des., 19(1): 7-34.

Dagum, P.; Karp, R.; Luby, M.; and Ross, S. 2000. An
optimal algorithm for Monte Carlo estimation. SIAM Journal
on Computing, 29(5): 1484-1496.

Darwiche, A. 2020. Three Modern Roles for Logic in AL
CoRR, abs/2004.08599.

Darwiche, A.; and Hirth, A. 2020. On The Reasons Behind
Decisions. CoRR, abs/2002.09284.

Deutch, D.; and Frost, N. 2019. Constraints-based expla-
nations of classifications. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE), 530-541. 1IEEE.

Doshi-Velez, F.; and Kim, B. 2017. A Roadmap for a Rigor-
ous Science of Interpretability. CoRR, abs/1702.08608.

8313

Fong, R. C.; and Vedaldi, A. 2017. Interpretable explanations
of black boxes by meaningful perturbation. In Proceedings
of the IEEE international conference on computer vision,

3429-3437.

Ghorbani, A.; Abid, A.; and Zou, J. Y. 2019. Interpretation
of Neural Networks Is Fragile. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelligence Confer-
ence, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019, 3681-3688.
AAAI Press.

Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Gian-
notti, F.; and Pedreschi, D. 2019. A Survey of Methods for
Explaining Black Box Models. ACM Comput. Surv., 51(5):
93:1-93:42.

Gupta, R.; Sharma, S.; Roy, S.; and Meel, K. S. 2019. WAPS:
Weighted and Projected Sampling. In Proceedings of Tools

and Algorithms for the Construction and Analysis of Systems
(TACAS).

Hoffman, R. R.; and Klein, G. 2017. Explaining Explanation,
Part 1: Theoretical Foundations. IEEE Intelligent Systems,
32(3): 68-73.

Hoffman, R. R.; Mueller, S. T.; and Klein, G. 2017. Ex-
plaining Explanation, Part 2: Empirical Foundations. /EEE
Intelligent Systems, 32(4): 78-86.

Hu, X.; Rudin, C.; and Seltzer, M. 2019. Optimal Sparse De-
cision Trees. In Advances in Neural Information Processing
Systems 32, 7267-7275. Curran Associates, Inc.

Huang, X.; Izza, Y.; Ignatiev, A.; Cooper, M. C.; Asher, N.;
and Marques-Silva, J. 2022. Tractable Explanations for d-
DNNF Classifiers. In AAAL

Huang, X.; Izza, Y.; Ignatiev, A.; and Marques-Silva, J. 2021.
On Efficiently Explaining Graph-Based Classifiers. In KR,
356-367.

Ignatiev, A.; Izza, Y.; Stuckey, P.; and Marques-Silva, J. 2022.
Using MaxSAT for Efficient Explanations of Tree Ensembles.
In AAAL

Ignatiev, A.; and Marques-Silva, J. 2021. SAT-Based Rigor-
ous Explanations for Decision Lists. In 24th International
Conference on Theory and Applications of Satisfiability Test-
ing (SAT 2021), volume 12831 of Lecture Notes in Computer
Science, 251-269. Springer.

Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019a.
Abduction-Based Explanations for Machine Learning Mod-
els. In AAAI 1511-1519.

Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019b.
On Validating, Repairing and Refining Heuristic ML Expla-
nations. CoRR, abs/1907.02509.

Izza, Y.; Ignatiev, A.; and Marques-Silva, J. 2020. On Ex-
plaining Decision Trees. CoRR, abs/2010.11034.

Izza, Y.; and Marques-Silva, J. 2021. On Explaining Random
Forests with SAT. In IJCAI, 2584-2591.

Kohavi, R. 1996. Scaling Up the Accuracy of Naive-Bayes
Classifiers: A Decision-Tree Hybrid. In KDD, 202-207.

Lakkaraju, H.; Arsov, N.; and Bastani, O. 2020. Robust and
Stable Black Box Explanations. ICML 2020.

Lakkaraju, H.; Kamar, E.; Caruana, R.; and Leskovec, J. 2019.
Faithful and customizable explanations of black box models.
In Proceedings of the 2019 AAAI/ACM Conference on Al,
Ethics, and Society, 131-138.

Lipton, Z. C. 2018. The mythos of model interpretability.
Queue, 16(3): 31-57.

Lundberg, S. M.; and Lee, S. 2017. A Unified Approach to
Interpreting Model Predictions. In NIPS, 4765-4774.

Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and Vladu,
A. 2018. Towards Deep Learning Models Resistant to Adver-
sarial Attacks. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenRe-
view.net.

Marques-Silva, J.; Gerspacher, T.; Cooper, M. C.; Ignatiev,
A.; and Narodytska, N. 2020. Explaining Naive Bayes and
Other Linear Classifiers with Polynomial Time and Delay. In
NeurlPS.

Marques-Silva, J.; Gerspacher, T.; Cooper, M. C.; Ignatiev,
A.; and Narodytska, N. 2021. Explanations for Monotonic
Classifiers. In ICML, 7469-7479.

Marques-Silva, J.; and Ignatiev, A. 2022. Delivering Trust-
worthy Al through formal XAI. In AAAIL

Marques-Silva, J.; Lynce, I.; and Malik, S. 2021. CDCL
SAT Solving. In Handbook of Satisfiability: Second Edi-
tion, volume 336 of Frontiers in Artificial Intelligence and
Applications, 133—-182. 10S Press.

Meel, K. S.; Shrotri, A. A.; and Vardi, M. Y. 2019. Not all
FPRAS:s are equal: demystifying FPRASs for DNF-counting.
Constraints, 24(3-4): 211-233.

Moro, S.; Cortez, P.; and Rita, P. 2014. A data-driven ap-
proach to predict the success of bank telemarketing. Decision
Support Systems, 62: 22-31.

Narodytska, N.; Shrotri, A. A.; Meel, K. S.; Ignatiev, A.;
and Marques-Silva, J. 2019. Assessing Heuristic Machine
Learning Explanations with Model Counting. In SAT, 267-
278. Springer.

Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ”Why
Should I Trust You?”: Explaining the Predictions of Any
Classifier. In KDD, 1135-1144.

Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2018. Anchors:
High-Precision Model-Agnostic Explanations. In AAAL
Rudin, C. 2019. Stop Explaining Black Box Machine Learn-
ing Models for High Stakes Decisions and Use Interpretable
Models Instead. arXiv:1811.10154.

Schwab, P.; and Karlen, W. 2019. CXPlain: Causal Explana-
tions for Model Interpretation under Uncertainty. In Wallach,
H.; Larochelle, H.; Beygelzimer, A.; dAlche Buc, F.; Fox,
E.; and Garnett, R., eds., Advances in Neural Information
Processing Systems 32, 10220-10230. Curran Associates,
Inc.

Shih, A.; Choi, A.; and Darwiche, A. 2018. A Symbolic
Approach to Explaining Bayesian Network Classifiers. In
IJCAI 5103-5111.

8314

Shih, A.; Choi, A.; and Darwiche, A. 2019. Compiling
Bayesian Network Classifiers into Decision Graphs. In AAAI,
7966-7974.

Shrikumar, A.; Greenside, P.; and Kundaje, A. 2017. Learn-
ing Important Features Through Propagating Activation Dif-
ferences. In Precup, D.; and Teh, Y. W., eds., Proceedings
of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, vol-
ume 70 of Proceedings of Machine Learning Research, 3145—
3153. PMLR.

Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2013. Deep
Inside Convolutional Networks: Visualising Image Classifi-
cation Models and Saliency Maps. CoRR, abs/1312.6034.
Slack, D.; Hilgard, S.; Jia, E.; Singh, S.; and Lakkaraju, H.
2020. Fooling LIME and SHAP: Adversarial Attacks on
Post Hoc Explanation Methods. In AJES, AIES °20, 180-186.
New York, NY, USA: Association for Computing Machinery.
ISBN 9781450371100.

Soos, M.; Gocht, S.; and Meel, K. S. 2020. Tinted, Detached,
and Lazy CNF-XOR solving and its Applications to Counting
and Sampling. In Proceedings of International Conference
on Computer-Aided Verification (CAV).

Soos, M.; and Meel, K. S. 2019. BIRD: Engineering an Effi-
cient CNF-XOR SAT Solver and its Applications to Approx-
imate Model Counting. In Proceedings of AAAI Conference
on Artificial Intelligence (AAAI).

Sundararajan, M.; Taly, A.; and Yan, Q. 2017. Axiomatic
Attribution for Deep Networks. In Precup, D.; and Teh, Y. W.,
eds., Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine Learning
Research, 3319-3328. PMLR.

Valiant, L. G. 1984. A theory of the learnable. In Proceed-
ings of the sixteenth annual ACM symposium on Theory of
computing, 436-445. ACM.

Van den Broeck, G.; Lykov, A.; Schleich, M.; and Suciu,
D. 2021. On the tractability of SHAP explanations. In
Proceedings of AAAI

Wachter, S.; Mittelstadt, B.; and Russell, C. 2017. Counterfac-
tual explanations without opening the black box: Automated
decisions and the GDPR. Harv. JL & Tech., 31: 841.

Ying, R.; Bourgeois, D.; You, J.; Zitnik, M.; and Leskovec,
J. 2019. Gnnexplainer: Generating explanations for graph

neural networks. Advances in neural information processing
systems, 32: 9240.

Zeiler, M. D.; and Fergus, R. 2014. Visualizing and Under-
standing Convolutional Networks. In Fleet, D. J.; Pajdla,
T.; Schiele, B.; and Tuytelaars, T., eds., Computer Vision -
ECCV 2014 - 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part I, volume 8689 of
Lecture Notes in Computer Science, 818-833. Springer.

Zhang, Y.; Song, K.; Sun, Y.; Tan, S.; and Udell, M. 2019.
” Why Should You Trust My Explanation?” Understand-
ing Uncertainty in LIME Explanations. arXiv preprint
arXiv:1904.12991.

