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Abstract

Random Fourier features (RFF) are a popular set of tools for
constructing low-dimensional approximations of translation-
invariant kernels, allowing kernel methods to be scaled to big
data. Apart from their computational advantages, by working
in the spectral domain random Fourier features expose the
translation invariant kernel as a density function that may, in
principle, be manipulated directly to tune the kernel. In this
paper we propose selecting the density function from a repro-
ducing kernel Hilbert space to allow us to search the space of
all translation-invariant kernels. Our approach, which we call
tuned random features (TRF), achieves this by approximat-
ing the density function as the RKHS-norm regularised least-
squares best fit to an unknown “true” optimal density func-
tion, resulting in a RFF formulation where kernel selection is
reduced to regularised risk minimisation with a novel regu-
lariser. We derive bounds on the Rademacher complexity for
our method showing that our random features approximation
method converges to optimal kernel selection in the large N,D
limit. Finally, we prove experimental results for a variety of
real-world learning problems, demonstrating the performance
of our approach compared to comparable methods.

1 Introduction
Kernel based learning is an elegant and powerful family
of techniques in machine learning (Cristianini and Shawe-
Taylor 2005; Hastie, Tibshirani, and Friedman 2001; Her-
brich 2002; Schölkopf and Smola 2001; Shawe-Taylor and
Cristianini 2004; Steinwart and Christman 2008; Vapnik
1995; Suykens et al. 2002). Rather than constructing a com-
plex parametric model and then learning its parameters,
kernel-based methods encode this complexity into a kernel
and then learn a linear (dual) representation using representor
theory. A significant theoretical framework has been devel-
oped demonstrating the advantages of this approach, backed
by substantial experimental evidence. However the compu-
tational complexity typically scales as O(N3), where N is
the training set size, so kernel methods may not scale well
for large datasets. Further, kernel selection is often ad-hoc,
relying heavily on user knowledge and guesswork (which
kernels to consider etc), and can be slow if global optimisa-
tion methods such as Bayesian optimisation are used to tune
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hyper-parameters like weights, length-scales etc.
Random Fourier features (RFF) (Rahimi and Recht 2006;

Liu et al. 2020) was originally developed to tackle the prob-
lem of computational complexity. RFF-based methods work
by approximating the feature map underlying a kernel using
a finite (D-) dimensional map obtained by sampling from a
density function - typically, but not necessarily (Chang et al.
2017; Liu et al. 2020; Bullins, Zhang, and Zhang 2017), the
spectral density corresponding to the kernel by Bochner’s the-
orem. Using this map, the problem is re-cast in approximate
feature space and solved in primal form, reducing the typi-
cal complexity to O(ND3). Building on this, methods have
been developed that take advantage of the fact that the fea-
ture space is exposed to, in effect, tune the feature map. For
example random features may instead be drawn to maximise
some criteria, typically kernel alignment (Li et al. 2019a;
Yu et al. 2015; Bullins, Zhang, and Zhang 2017; Sinha and
Duchi 2016). Alternatively, Fourier kernel learning (FKL)
(Băzăvan, Li, and Sminchisescu 2012) directly learns feature
weights during training, in effect making the density itself an
optimisation parameter. The elegance and directness of FKL
make it particularly attractive from a practical standpoint;
however, regularising the feature weights using a Euclidean
norm effectively casts the density function in reproducing
kernel Hilbert space with a delta (diagonal) kernel, which is
somewhat restrictive and does not afford the user an opportu-
nity to incorporate their expectations regarding the spectral
structure of the optimal kernel.

In this paper we propose an algorithm, tuned random fea-
tures (TRF), to perform simultaneous regularised risk minimi-
sation and kernel learning in spectral space. Our algorithm in-
corporates kernel regularisation in spectral domain to prevent
kernel over-fitting and uses a meta-kernel to allow users to
specify the characteristics that we expect the optimal kernel
to have, or, more precisely, that we expect the optimal ker-
nel’s spectral density to have. To achieve this, we let the den-
sity function itself be the parameter (function) to be selected
from a reproducing kernel Hilbert space (RKHS), where the
meta-kernel defining this RKHS captures the characteristics
we expect of the kernel’s spectral density. We incorporate ker-
nel selection directly into the regularised empirical risk min-
imisation problem formulation, with regularisation towards a
default (reference) kernel. Using representor and RFF theory,
we obtain a convex optimisation problem combining kernel
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learning - that is, learning a function in reproducing kernel
Hilbert spaceHK - and learning the kernel K itself.

We show that TRF is convex and readily trained using
gradient-based methods, and demonstrate uniform conver-
gence as N,D →∞ using Rademacher complexity analysis,
given an appropriate “schedule” of hyper-parameters. Experi-
mentally, we have tested TRF on a variety of small and large
real-world problems and showed that TRF outperforms com-
parable methods on most occasions.

1.1 Notation
Column vectors are written in lower-case bold a,b, . . .
with elements ai, so a = [ai]i, matrices in upper-case
bold A,B, . . . with elements Ai,j , so A = [Ai,j ]i,j , and
a† = a∗T, A† = A∗T is the conjugate transpose. The
Hadamard (elementwise) product is denoted a� b = [aibi]i,
the Hadamard power a�b = [abi ]i, and the elementwise
norm |a| = [|ai|]i. Nn = {0, 1, . . . , n − 1} is the inte-
gers modulo n. The weighted inner product is 〈ζ, γ〉ρ =∫
ζ∗(ω)γ(ω)ρ(ω)dω for ρ : X → R+, and the weighted

norm ‖ζ‖2ρ = 〈ζ, ζ〉ρ. The reproducing kernel Hilbert space
(RKHS) norm is ‖ · ‖HK for kernel K : X× X→ R. We de-
note by H⊕κ = {σ ∈ Hκ : σ(ω) = σ(−ω) ≥ 0 ∀ω}. The
training set is D = {(xi, yi) ∈ X × yi ∈ Y|i ∈ NN} where
training pairs (xi, yi) ∼ S are drawn i.i.d. from distribution
S. We use N for the size of the training set, d for its input
dimension x ∈ X ⊂ Rd, and D for the dimension of the ran-
dom feature map z : Rd → CD.

2 Background: Random Fourier Features
As first introduced in (Rahimi and Recht 2006), random
Fourier features (RFF) (Liu et al. 2020) allow kernel meth-
ods to be scaled to large data by approximating the kernel
by K(x,x′) ≈ z†(x)z(x′) for some finite-dimensional z :
Rd → CD. So for example rather than learning a function
f ∈ HK ⊕ C for positive-definite kernel K:

f (x) =
∑
i αiK (x,xi) + b (1)

which has a typical complexityO(N3) to findα and requires
O(N2) memory, we may instead learn:

f (x) ≈ f̃ (x) = w†z (x) + b

which has a typical complexity O(ND2) to find τ and re-
quires O(ND) memory. By making the complexity linear in
N it becomes feasible to scale SVMs (and many other kernel-
based methods such as Gaussian Processes) to large datasets.

For translation-invariant kernels (Genton 2001) the basis
of random Fourier features is Bochner’s theorem (Bochner
1932) - for a continuous, translation invariant, positive defi-
nite kernel K(x,x′) = k(x− x′), there exists an even spec-
tral density function ρ : Rd → R+ so that:

K(x,x′)=
∫
Rde

iωT(x−x′)ρ(ω)dω (Fourier xform)
=
∫
Rd ξ

∗ (ω; x) ξ (ω; x′)ρ(ω) dω (Split x, x′ terms)
=〈ξ (·; x) , ξ (·; x′)〉ρ (Inner product in feature space)
=Eω∼ρ [ξ∗ (ω; x) ξ (ω; x′)] (As an expectation)

(2)

where ξ(ω; x) = eiω
Tx, and ξ(·; x) = [ξ(ω; x)]ω∈Rd is the

feature map for kernel K. Thus, re-writing in feature-space
form, (1) becomes (Bach 2017, Appendix A):

f(x)=〈τ (·) , ξ (·; x)〉ρ+b=Eω∼ρ[τ
∗(ω)ξ(ω; x)]+b (3)

where τ : Rd → C is the weight function and b ∈ C is the
bias. Thus ifω ∼ ρ then ξ∗(ω; x)ξ(ω; x′) and τ∗(ω)ξ(ω; x)
are unbiased estimates ofK(x,x′) and f(x)−b, respectively.
By sampling ω0,ω1, . . . ,ωD−1 ∼ ρ we obtain the Monte-
Carlo (MC) approximations of K and f :

K (x,x′) ≈ K̃ (x,x′) = z† (x) z (x′)

f (x) ≈ f̃ (x) = τ †z (x) + b
(4)

where z(x) = [eiω
T
i x/
√
D]i∈ND is the random feature map

and τ = [τ(ωi)/
√
D]i is the weight vector. This approxi-

mate feature map has dimension D. By working in the ap-
proximate feature space we reduce computational complexity
toO(ND2) rather thanO(N3), which is scalable to large N .

It is not necessary to sample from the distribution ρ defined
by K (Yang, Sindhwanim, and Mahoney 2014; Avron et al.
2016; Chang et al. 2017; Bullins, Zhang, and Zhang 2017;
Liu et al. 2020; Li et al. 2019b). Given a strictly positive, even
reference density ρ̂ : Rd → R+ (which is associated with a
reference kernel K̂(x,x′) = k̂(x− x′) via Bochner’s theo-
rem), and defining µ(ω̂) = ρ(ω̂)/ρ̂(ω̂), (2) and (3) become:

K (x,x′) = 〈µ (·) ξ (·; x) , ξ (·; x′)〉ρ̂
= Eω̂∼ρ̂ [µ (ω̂) ξ∗ (ω̂; x) ξ (ω̂; x′)]

f (x) = 〈µ (·) τ̂ (·) , ξ (·; x)〉ρ̂ + b
= Eω̂∼ρ̂ [µ (ω̂) τ̂∗ (ω̂) ξ (ω̂; x)] + b

Here µ(ω̂)ξ∗(ω̂; x)ξ(ω̂; x′) and µ(ω̂)τ̂∗(ω̂)ξ(ω̂; x) are un-
biased estimates ofK(x,x′) and f(x)−b, respectively, when
ω̂ ∼ ρ̂. Hence by sampling ω̂0, ω̂1, . . . , ω̂D−1 ∼ ρ̂:

K (x,x′) ≈ K̃ (x,x′) = (u� ẑ (x))
†
ẑ (x′)

f (x) ≈ f̃ (x) = (u� τ̂ )
†
ẑ (x) + b

K̂ (x,x′) ≈ K̃̂ (x,x′) = ẑ† (x) ẑ (x′)

(5)

where ẑ(x) = [eiω̂
T
i x/
√
D]i∈ND is the random feature map,

τ̂ = [τ̂(ω̂i)/
√
D]i is the weight vector, and we call u =

[µ(ω̂i)]i the density (ratio) vector. As demonstrated in for
example (Li et al. 2019b; Avron et al. 2017), this approach
may give a better approximation of K from fewer samples
(for example the features ω̂i may be placed according to the
data dependent empirical ridge leverage score distribution).
Table 1 summarises the definitions and notations for RFF for
both the standard MC and weighted-MC approaches.

2.1 (Spectral) Kernel Selection
Having exposed the feature map in spectral form, it is nat-
ural to ask if kernel selection may be done by tuning the
(spectrally sampled) feature map z : Rd → RD. For exam-
ple, rather than drawing features ωi from ρ or ρ̂ we may se-
lect them to maximise kernel alignment (Li et al. 2019a; Yu
et al. 2015; Bullins, Zhang, and Zhang 2017), (Cristianini
et al. 2002; Cortes, Mohri, and Rostamizadeh 2012); or we
may give ρ a parametric form such as a mixture of Gaussians
(Wilson and Adams 2013) or something more general (Yang
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Standard Form Modified (weighted) Form
Kernel K (x,x′) = 〈ξ (·; x) , ξ (·; x′)〉ρ K (x,x′) = 〈µ (·) ξ (·; x) , ξ (·; x′)〉ρ̂

Reference Kernel – K̂ (x,x′) = 〈ξ (·; x) , ξ (·; x′)〉ρ̂
Function Form f (x) = 〈τ (·) , ξ (·; x)〉ρ + b f (x) = 〈µ (·) τ̂ (·) , ξ (·; x)〉ρ̂ + b

Feature map ξ (·; x) = [eiω
Tx]ω∈Rd ξ (·; x) = [eiω̂

T
x]ω̂∈Rd

Weight function τ : Rd → C, τ ∈ L2,ρ τ̂ : Rd → C, µ (·) τ̂ (·) ∈ L2,ρ̂

Feature weights – µ (ω̂) =
ρ(ω̂)
ρ̂(ω̂)

Monte-Carlo Approximate Weighted Monte-Carlo Approximation
Kernel K (x,x′) ≈ K̃ (x,x′) = z† (x) z (x′) K (x,x′) ≈ K̃ (x,x′) = (u� ẑ(x))

†
ẑ (x′)

Reference Kernel – K̂ (x,x′) ≈ K̃̂ (x,x′) = ẑ† (x) ẑ (x′)

Function Form f (x) ≈ f̃ (x) = τ †z (x) + b f (x) ≈ f̃ (x) = (u� τ̂ )
†
ẑ (x) + b

Feature map z (x) =
[

1√
D
eiω

T
i x
]
i∈ND

ẑ (x) =
[

1√
D
eiω̂

T
i x
]
i∈ND

Weight vector τ =
[

1√
D
τ (ωi)

]
i∈ND

τ̂ =
[

1√
D
τ̂ (ω̂i)

]
i∈ND

Density vector – u = [µ (ω̂i)]i∈ND

Feature space inner product 〈ζ, γ〉ρ =
∫
Rd ζ

∗ (ω) γ (ω) ρ (ω) dω 〈ζ, γ〉ρ̂ =
∫
Rd ζ

∗ (ω̂) γ (ω̂) ρ̂ (ω̂) dω̂
Samples ω0,ω1, . . . ,ωD−1 ∼ ρ ω̂0, ω̂1, . . . , ω̂D−1 ∼ ρ̂

Figure 1: Summary of RFF and related notations. In this table f ∈ HK ⊕ C is the function we wish to learn, where K is a
translation invariant kernel with corresponding density ρ as per (2) (Bochner’s theorem). The upper-left quadrant shows the
spectral form of f , and the upper-right quadrant the modified (weighted) spectral form using reference kernel K̂. The bottom-left
shows the Monte-Carlo approximation with D samples, and the bottom right the weighted-Monte-Carlo approximation, where
we use f̃ and K̃ to indicate RFF approximations of f and K, respectively.

et al. 2015) to obtain a kernel mixture that may be tuned. Al-
ternatively, Fourier kernel learning (FKL) (Băzăvan, Li, and
Sminchisescu 2012) proposes directly selecting u ∈ RD+ dur-
ing training with a regularisation term ‖u‖22.

In the present paper we propose selecting (learning) a
weight function µ ∈ H⊕κ in spectral space, where κ is a ker-
nel (we call κ a meta-kernel) that defines the characteristics
we expect of the spectral density ρ(·) = µ(·)ρ̂(·) without
restricting it’s exact form. Interestingly we note that FKM
is a variant (special case) of our method where we use the
meta-kernel κ(ω,ω′) = 1ω=ω′ and substitute µ̂(·) = 0 (so
v̂ = ṽ̂ = 0 - see sections 3.1, 3.2).

For completeness we note standard approaches to kernel
selection and tuning, which typically involve selecting a finite
set of test kernels and using grid-search, Bayesian optimisa-
tion or similar methods to tune parameters (e.g. length-scale);
or multi-kernel learning (Gönen and Alpaydin 2011). While
powerful, these ad-hoc approaches are often computationally
expensive and restrict the search space to the span of a small,
pre-defined set of kernels. Alternatively, hyper-kernel meth-
ods (Ong, Williamson, and Smola 2003; Ong, Smola, and
Williamson 2005) select K from a hyper-RKHS defined by a
hyper-kernel K. However, hyper-kernel methods tend to be
computationally complex, scaling as O(N3) or worse.

3 Tuned Random Features
In this section we introduce our method, tuned random fea-
tures (TRF), for combining kernel selection and regularised

risk minimisation using random Fourier features. We begin
by constructing a regularised empirical risk minimisation for-
mulation in Fourier feature space. We then apply modified
random Fourier features techniques to make the formulation
practically attainable.

3.1 Learning the Kernel in the Spectral Domain
Given a training set D = {(xi, yi) ∈ Rd × Y|i ∈ NN}
of N samples (xi, yi) ∼ S drawn i.i.d. from a distribution
S, our goal is to select both f ∈ HK ⊕ C, where HK is
the reproducing kernel Hilbert space defined by translation-
invariant kernel K, and the kernel K defining the hypothesis
spaceHK itself to minimise the regularised empirical risk:

RN (f) = 1
N

∑
i ` (f (xi) , yi) + λ

2 ‖f‖
2
HK

where ` is a loss function whose form depends on the problem
being solved. Equivalently, in modified Fourier feature space
(Table 1, upper-right quadrant), we may minimise:

RN (τ̂ , b) = 1
N

∑
i `
(
〈µ (·) τ̂ (·) , ξ (·; xi)〉ρ̂ + b, yi

)
+λ

2 〈µ (·) τ̂ (·) , τ̂ (·)〉ρ̂
(6)

To incorporate kernel selection into this formulation we pro-
pose letting µ ∈ H⊕κ = {σ ∈ Hκ : σ(ω̂) = σ(−ω̂) ≥
0 ∀ω̂ ∈ RD} be an even, strictly positive function for some
meta-kernel κ defining the spectral characteristics we expect
of ρ(·) = µ(·)ρ̂(·) and hence indirectly, by Bochner’s theo-
rem, our expectations of the kernel K. In modified Fourier
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feature space (Table 1, top-right), we aim to find:
f (x) = 〈µ (·) τ̂ (·) , ξ (·; x)〉ρ̂ + b (7)

where τ̂ : Rd → C, b ∈ C, µ ∈ H⊕κ minimise the tuned
regularised empirical risk:

QN (τ̂ , b, µ) = 1
N

∑
i`
(
〈µ(·)τ̂(·) , ξ(·; xi)〉ρ̂+b, yi

)
+λ

2 〈µ (·) τ̂ (·) , τ̂ (·)〉ρ̂ + Λ
2 ‖µ− µ̂‖

2
Hκ

(8)

and:
µ̂ (·) = argmin

µ̂∈H⊕κ

∫
Rd (µ̂ (ω̂)− 1)

2
ρ̂ (ω̂) dω̂

is the function inHκ that most closely approximates µ̂(·) = 1
in the least-squares sense.1 In this formulation ρ̂ is defined by
the (fixed) reference kernel K̂, and µ ∈ H⊕κ is characterised
by the positive definite meta-kernel κ. As per our definitions
in previous section and Table 1, the kernel K is defined by
the density function ρ(·) = µ(·)ρ̂(·), so minimising QN for
µ optimises ρ and hence tunes K to minimise the tuned
regularised empirical risk. Note that:
1. The first two terms in the tuned regularised empirical

risk (8) are the standard empirical risk and RKHS-norm
regularisation terms as per (6).

2. The final term is a regularisation term designed to pre-
vent over-fitting of ρ (and hence K). It is designed to reg-
ularise toward µ = µ̂ ≈ 1 in the limit Λ → ∞, which
corresponds to ρ ≈ ρ̂ and hence K ≈ K̂. It follows that
K̂ acts as a default (fallback) kernel in the strong regular-
isation limit. Note that if we regularised using Λ

2 ‖µ‖
2
Hκ

then µ→ 0 in the limit, which corresponds to K = 0 and
is therefore unhelpful.

To finish, we further simplify the tuned regularised empir-
ical risk minimisation problem by defining η(·) = τ̂(·)µ(·).
In terms of η, b in this paper we aim to find:

f (x) = 〈η (·) , ξ (·; x)〉ρ̂ + b (9)

The variables η : Rd → C and b ∈ C minimise the tuned
regularised empirical risk minimisation problem (8), which
we re-write in terms of η as follows:

QN (η, b) = 1
N

∑
i`
(
〈η(·), ξ(·; xi)〉ρ̂+b, yi

)
+ λ

2 r(η) (10)

In this expression r is a regulariser of the form:

r(η) = min
µ∈H⊕κ

‖η (·)‖2ρ̂(·)
µ(·)

+ Λ
λ ‖µ− µ̂‖

2
Hκ (11)

where ‖ · ‖2ρ = 〈·, ·〉ρ. Thus we see that the tuned empirical
risk minimisation formulation can be written as a novel form
of regularised risk minimisation.

1We cannot guarantee µ̂ = 1 in general. If the feature map
ϕκ : Rd → Rm associated with κ(ω̂, ω̂′) = ϕT

κ (ω̂)ϕκ(ω̂
′) by

Mercer’s theorem includes a constant term then, as µ̂(·) = v̂Tϕκ(·)
by definition, we can always select v̂ so that µ̂(·) = v̂Tϕκ(·) =

1 ∈ H⊕κ . For example if κ(ω̂, ω̂′) = (1 + ω̂Tω̂′)2 and d =

2 then ϕκ(ω) = [1;
√
2ω0;

√
2ω1;ω

2
0 ;ω

2
1 ;
√
2ω0ω1] and µ̂(·) =

v̂Tϕκ(·) = 1 ∈ H⊕κ when v̂ = [1;0]. However if κ is an RBF
kernel then 1 /∈ Hκ, though it may be approximated to arbitrary
accuracy w.r.t. ρ̂ as the RBF kernel is universal.

3.2 Learning the Kernel via Tuned Random
Features

We now apply modified random Fourier features to (8)/(10).
Selecting a reference kernel K̂ and using Table 1, we see
that, in terms of the weight vector τ̂ , density vector u and
random feature map ẑ : Rd → CD, the trained machine may
be approximated using:

f (x) ≈ f̃ (x) = (u� τ̂ )
†
ẑ (x) + b

where u ≥ 0 (this is a relaxation of µ ∈ H⊕κ as we do not
require that µ(ω̂) ≥ 0 for ω̂ /∈ {ω̂0, ω̂1, . . . , ω̂D−1}), and
τ̂ , b and µ ∈ {σ ∈ Hκ : σ(ω̂i) = ui ≥ 0∀i} minimise:

Q̃N (τ̂ , b,u, µ) = 1
N

∑
i `
(

(u� τ̂ )
†
ẑ (xi) + b, yi

)
+λ

2 (u� τ̂ )
†
τ̂ + Λ

2 ‖µ− µ̂‖
2
Hκ

(12)

To be useful in practice the final term must be approximated
in terms of the random Fourier features representation. To
this end we note that we can write µ, µ̂ ∈ H⊕κ in feature
space form µ(·) = vTϕκ(·) and µ̂(·) = v̂Tϕκ(·), where
v, v̂ ∈ Rm andϕκ : Rd → Rm is the feature map associated
with κ through Mercer’s theorem. Define:

v=argmin
v∈Rm

1
2

∫
Rd
(
vTϕκ(ω̂)−µ (ω)

)2
ρ̂ (ω̂) dω̂

v̂=argmin
v̂∈Rm

1
2

∫
Rd
(
v̂Tϕκ(ω̂)−1

)2
ρ̂ (ω̂) dω̂

(13)

Note that the definition of v is tautological, while the defini-
tion of v̂ defines the sense in which µ̂ ≈ 1. We approximate
these as µ̃(ω̂) = ṽTϕκ(ω̂) and µ̃̂(ω̂) = ṽ̂Tϕκ(ω̂), respec-
tively, where, recalling that ui = µ(ω̂i):

ṽ = argmin
ṽ∈Rm

1
2

∑
i

(
ṽTϕκ (ω̂i)− ui

)2
+ γ

2 ‖ṽ‖
2
2

ṽ̂ = argmin
ṽ̂∈Rm

1
2D

∑
i

(
ṽ̂Tϕκ (ω̂i)− 1

)2

+ γ
2 ‖ṽ̂‖

2
2

(14)

That is, we replace µ and µ̂ with the regularised least-squares
approximations obtained from the training sets {(ω̂i, ui) :
i ∈ ND} and {(ω̂i, 1) : i ∈ ND}, respectively, where the
regularisation terms are included to ensure uniform conver-
gence µ̃→ µ, µ̃̂→ µ̂ in the limit D →∞. Hence:

ṽ =
(
ΦTΦ + γDI

)−1

ΦTu

ṽ̂ =
(
ΦTΦ + γDI

)−1

ΦT1

where Φ = [ϕκj(ω̂i)]ij . Subsequently, using the Wood-
bury matrix identity, (ṽ − ṽ̂)T(ṽ − ṽ̂) = uTHγu, where
Hγ = (Γ + γDI)−1Γ(Γ + γDI)−1 and Γ = ΦΦT =
[κ(ω̂i, ω̂j)]i,j . Recalling that the RKHS norm ‖ · ‖Hκ corre-
sponds to the Euclidean norm in feature space, we see that
‖µ− µ̂‖2Hκ = ‖v− v̂‖22 ≈ ‖ṽ− ṽ̂‖22, and so we approximate:

‖µ− µ̂‖2Hκ ≈ (u− 1)
T

Hγ (u− 1)

where: Hγ = (Γ + γDI)
−1

Γ (Γ + γDI)
−1

Γ = [κ (ω̂i, ω̂j)]i,j∈ND

(15)

With this approximation we may re-write the approximated
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modified regularised empirical risk (12) entirely in terms of
(finite dimensional) modified random Fourier features. To
further simplify let w = u� τ̂ = [η(ω̂i)]i∈ND , so:

f (x) ≈ f̃ (x) = w†ẑ (x) + b (16)

where w ∈ CD and b ∈ C minimise the tuned random
features (TRF) objective, substituting (15) into (12):

Q̃N (w, b) = 1
N

∑
i`
(
w†ẑ (xi)+b, yi

)
+ λ

2 r̃(w) (17)

where r̃ is a regulariser of the form:

r̃(w)= min
u∈RD+

w†diag(u)
−1

w+ Λ
λ (u−1)

T
Hγ(u−1) (18)

Note that (16)-(18) are the random Fourier features approx-
imation of (9)-(11). In the next section we will show that r̃
is in fact convex, and moreover the gradient of r̃ is element-
wise positive. Thus when training with gradient-descent (or
similar) the effect of r̃ is to apply adaptive regularisation to
each compound weight component w.

4 Theoretical Analysis
In this section we analyse the properties of the TRF formula-
tion from a theoretical standpoint. We first analyse the prop-
erties of the TRF regulariser function r̃ and demonstrate that
it is a convex regularisation function with a straightforward
gradient. Subsequently we analyse the Rademacher complex-
ity of the formulation and give bounds to demonstrate uni-
form convergence both in terms of N (the training set size)
and D (the number of random features).

4.1 Properties of the TRF Regulariser r̃
In the previous section we demonstrated how tuned regu-
larised empirical risk minimisation using random Fourier fea-
tures could be reduced to a regularised empirical risk minimi-
sation problem (17) where the density vector u only appears
in the regulariser r̃ defined by (18). For convenience, we re-
factor the regulariser r̃ as:

r̃ (w) = ρ (u? (w) ; w) (19)

where u?(w) = argminu∈RD+ ρ(u; w), and:

ρ (u; w) = w†diag(u)
−1

w+ Λ
λ (u−1)

T
Hγ(u−1) (20)

The first term, which will dominate when Λ� λ, will tend
to push the density vector u? →∞, so r̃(w)→ 0; while the
second term, which will dominate when Λ� λ, will tend to
pull toward u = 1, so ρ ≈ ρ̂ and hence K ≈ K̂. Applying
first-order optimality conditions we see that these opposing
influences cancel out at the optimal u? = u?(w):

∇uρ (u?; w)=−
∣∣w�u?�−1

∣∣�2
+2Λ

λHγ(u?−1)=0 (21)

As shown in the supplementary material:
• The regularisation function r̃ is convex and has gradient:

∇wr̃ (w) = 2w � u?�−1

• The optimal density vector satisfies u?(w) ≥ 1.
The convexity of the regulariser r̃ means that, if the loss
function ` is convex, then so too is the tuned regularised
empirical risk Q̃N , which is helpful for training.

Γ-Spectrum Polynomial Exponential
∆̂i = O(Di−ν) ∆̂i = O(De−ci)

Parameter λ λ = Ω(N ε−φ) λ = Ω(N ε−φ)
λ = O(N−ε) λ = O(N−ε)

λ = O(D−
1
2 (ν+1)) λ = O( 1√

D
e−

cD
2 )

Parameter Λ Λ = Ω(N ε−φ) Λ = Ω(N ε−φ)
Λ = O(N−ε) Λ = O(N−ε)

Parameter γ γ = Ω(Dε−1) γ = Ω(Dε−1)
γ = O(D−ε) γ = O(D−ε)

Figure 2: Summary of convergence characteristics for kernels
with polynomially and exponentially decaying eigenspectra.
In this table ∆̂0 ≥ ∆̂1 ≥ . . . ≥ ∆̂D−1 are the eigenvalues
of the random feature Gram matrix Γ for meta-kernel κ;
0 < ε � 1; ν ≥ 1 and c ≥ 1 are constants characterising
κ; φ = 1

10 if ` is Lipschitz, φ = 1
6 if ` is quadratic; and the

hyper-parameter recommendations are designed to ensure
uniform convergence as N,D →∞.

4.2 Convergence and Complexity
While we formulate TRF as a combination of regularised
empirical risk minimisation and kernel learning for a given
dataset D, the underlying goal remains to minimise the actual
risk on the distribution S , where D ∼ SN . Precisely, defining
(using the notation of Figure 3):

f̃? = argmin
f̃∈W

Q̃N (f̃), f? = argmin
f∈HK⊕C

QS(f)

where :W ⊂
{

w†ẑ (·) + b
∣∣w ∈ CD, b ∈ C

}
we aim to show f̃? → f? with high probability as N,D →
∞ (i.e. uniform convergence (Menon and Williamson 2018;
Bartlett and Mendelson 2002)). To this end, as illustrated in
Figure 3, we may split the analysis of TRF on to two axis,
specifically the asymptotic behaviour as N → ∞, and the
asymptotic behaviour as D →∞. Then:

1. We show that Q̃N (f̃)→ Q̃S(f̃) with high probability in
the limit N →∞ for all D, f̃ ∈ W .

2. We characterise the schedule of hyper-parameters λ,Λ, γ
with respect to N,D so that this convergence is guaran-
teed and λ→ 0 as N →∞ for all D, f̃ ∈ W .

3. We show thatW → HK̂ ⊕ C as D →∞.

Combining these results, we find that f̃? → f? with high
probability as N,D →∞; first, as N →∞, TRF converges
to an unregularised RFF approximation of actual risk min-
imisation, and then, as D →∞,W → HK̂ ⊕ C and noting
that Q̃S = QS (each is independent of the range of f̃ or f ),
we obtain the desired result.

4.3 Convergence as N →∞
In this section we derive a bound on the Rademacher com-
plexity RN (W) of the (hypothesis spaceW of the) TRF for-
mulation and derive schedules for λ and Λ such that λ→ 0
and RN (W) → 0 as N → ∞. Given this, it is then trivial
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TRF:

f̃ ∈ W ⊂
{
w†ẑ (·) + b

∣∣w ∈ CD, b ∈ C
}

Q̃N (f̃) = L̃N (f̃) + λ
2
r̃(f̃)

L̃N (f̃) = 1
N

∑
i `
(
f̃ (xi) , yi

)
r̃(f̃) = minu∈RD+

w†(u�w)+ Λ
λ
(u−1)THγ(u−1)

D→∞
=⇒ ERMreg :

f ∈ HK ⊕ C
QN (f) = LN (f) + λ

2
r (η)

LN (f) = 1
N

∑
i ` (f (xi) , yi)

r (η) = min
µ∈H⊕κ

‖η‖2ρ̂
µ
+ Λ

λ
‖µ− µ̂‖2Hκ

=⇒ N→∞
λ→0 x

=⇒ N→∞
λ→0

TRFS :
f̃ ∈ W ⊂

{
w†ẑ (·) + b

∣∣w ∈ CD, b ∈ C
}

Q̃S(f̃) = L̃S(f̃)
L̃S(f̃) = E(x,y)∼S`(f̃ (x) , y)

D→∞
=⇒ Actual risk

minimisation:

f ∈ HK ⊕ C
QS (f) = LS (f)
LS (f) = E(x,y)∼S` (f (x) , y)

Figure 3: Connection between TRF (top left), tuned regularised risk minimisation (top right), TRF in the limit N →∞ (bottom
left) and actual risk minimisation (bottom right).

use standard Rademacher complexity based uniform conver-
gence bounds (Menon and Williamson 2018; Bartlett and
Mendelson 2002) to guarantee that Q̃N (f̃) → Q̃S(f̃) with
high probability for a variety of loss function families. We
require the following assumptions:
1. Either ` isL-Lipschitz and sub-differentiable, or `(y̆, y) =

1
2 (y̆ − y)2 is quadratic and Y = [−m,m] ⊂ R.

2. λ
Λ∆̂
−1/2
γ,min → C < ∞ as D → ∞, where ∆̂γ,min is the

minimum eigenvalue of Hγ .
A detailed derivation of our complexity bound is given

in the supplementary and summarised here. As a first step,
we show thatW ⊂ {w†ẑ(·) + b : r̃(w) ≤ R}, where (see
theorems 11 and 12 in the supplementary):

R < aDλ
−pa + bDλ

−pb + cDλ
−pc

for positive, finite-valued sequences aD, bD, cD and positive
exponents pa, pb, pc; and pa < pb < pc ≤ 5 in the case
where ` is Lipschitz, pa < pb < pc ≤ 3 if ` is quadratic; and
moreover the Rademacher complexity ofW is bounded as
(supplementary, theorem 7):

RN (W) ≤
√
R/N + eDR/

√
N

where eD is a positive, finite-valued sequence. Hence
RN (W) → 0 as N → ∞ if λ,Λ = Ω(N ε−φ) (we require
Λ
λ → E < ∞ as N → ∞) for 0 < ε � 1, and φ = 1

10 if `
is Lipschitz, and φ = 1

6 if ` is quadratic.
The proviso λ

Λ∆̂
−1/2
γ,min → C <∞ as D →∞ leads us to

analyse the eigenspectrum of Hγ (supplementary, Lemma
5). Denoting the eigenspectrum of the random-feature Gram
matrix Γ by ∆̂0 ≥ ∆̂1 ≥ . . . ≥ ∆̂D−1, we show that:

∆̂−1
γ,min≤D

{
4∆̂0/D if γ ≤ γ⊥
∆̂D−1/D+2γ+γ2/(∆̂D−1/D) if γ ≥ γ⊥

where γ⊥ = 1
D (∆̂0∆̂D−1)1/2. Then, for example, for ker-

nels with polynomially decaying eigenvalues, we have ∆̂i =

O(Di−ν) for some ν ≥ 1,2 so, in this case, λ
Λ∆̂
−1/2
γ,min →

2For example all ν-times continuously differentiable meta-

C <∞ as D →∞ if Λ = O(1) (w.r.t. D) and:

λ = O(1/
√
D) if γ ≤ γ⊥, λ = O(1/

√
Dν+1) otherwise

Finally, we note that γ⊥ = O(D−
1
2 (ν+1)). We will show

in our analysis of the D → ∞ limit that γ = Ω(1/D) is
necessary to ensure convergence Q̃N → QN , so in most
cases γ > γ⊥ for large D, so λ = O( 1√

Dν+1
) is required to

ensure uniform convergence. See Table 2 for a summary of
scheduling requirements for hyper-parameters λ,Λ, γ.

4.4 Convergence in µ and µ̂
The role of γ in the TRF formulation is to regularise the
approximation of µ and µ̂, defined by (13), via the regularised
least-squares approximation µ̃ and µ̃̂, defined by (14). Thus
the scheduling of γ as D → ∞ is pivotal in determining
whether µ̃ → µ and µ̃̂ → µ̂ uniformly as D → ∞. For
regularised least-squares, it is well-known that γ = Ω(Dε−1),
γ = O(D−ε), where 0 < ε � 1, is sufficient to ensure
µ̃ → µ and µ̃̂ → µ̂ with high probability as D → ∞. As
noted previously, this implies that γ ≥ γ⊥ as D →∞.

4.5 Convergence as D →∞
Our goal is to show thatW → HK ⊕ C as D →∞. Recall
that K̂ is a translation invariant kernel with a corresponding,
strictly positive, even density function ρ̂; and likewise K is a
translation invariant kernel with a strictly positive and even
density function ρ = µ(·)ρ̂(·), where µ ∈ H⊕κ . Thus, ignor-
ing the inner-product (which is different for HK and HK̂),
HK andHK̂ actually represent the same set of functions:

HK =
{
〈η (·) , ξ (·,x)〉ρ

}
=

{〈
ρ(·)
ρ̂(·)η (·) , ξ (·,x)

〉
ρ̂

}
=
{
〈η̂ (·) , ξ (·,x)〉ρ̂

}
= HK̂

kernels have polynomially decaying eigenvalues (Wathen and Zhu
2015, Theorem 1), so this includes the RBF kernel, Matérn kernel
of order ≥ 3

2
etc. See results in (Braun 2005; Williamson, Smola,

and Schölkopf 2001; Wathen and Zhu 2015) for further discussion.
In the supplementary we also give results for meta-kernels with ex-
ponentially decaying eigenspectra.

8291



so it suffices to show thatW → HK̂⊕C. Moreover, recalling
thatHK̃̂ = {w†ẑ(·)|w ∈ RD} with feature map ẑ:

W =
{
w†ẑ(·) + b

}
= HK̃̂ ⊕ C

so it suffices to show that K̃̂ → K̂ as D → ∞. The con-
vergence properties of RFF kernel approximations has been
widely studied (Li et al. 2019b; Rahimi and Recht 2006; Liu
et al. 2020; Yang, Sindhwanim, and Mahoney 2014). In par-
ticular, (Sutherland and Schneider 2015) present a range of
convergence bounds showing that ‖K̃̂ − K̂‖∞ → 0 with
high probability as D → ∞, any one of which suffices to
show thatW → HK ⊕ C with high probability as D →∞,
and hence, when combined with our previous analysis, that
f̃? → f? with high probability as N,D →∞ so long as λ,
Λ and γ are scheduled appropriately (see Table 2).

5 Training Considerations
In this section we consider the question of training. Re-
call that the regulariser r̃ may be rewritten as r̃(w) =
ρ(u?(w); w) as per (19)-(20). In section 4.1 we showed that
u?(w) ≥ 1 for all w, which allows us to re-write our optimi-
sation problem - that is, minimising Q̃N as defined by (17)-
(18) - as a constrained minimisation problem including u:

argmin
w,u,b:u≥1

T̃N = 1
N

∑
i `
(
w†ẑ (xi) + b, yi

)
+ . . .

. . .+ λ
2 w†diag (u)

−1
w + Λ

2 (u− 1)
T

Hγ (u− 1)
(22)

the gradients (assuming ` is differentiable - more generally
we may use subgradient methods) of which are:

∇wT̃N = 1
N

∑
i `
′(w†ẑ(xi) + b, yi

)
ẑ(xi)+λu�−1�w

∇bT̃N = 1
N

∑
i `
′(w†ẑ(xi) + b, yi

)
∇uT̃N =ΛHγ (u− 1)− λ

2 |w|
�2 � u�−2

where we denote by `′ the gradient of ` with respect to its first
argument. As u ≥ 1 we see that all three gradients are well-
defined and well-behaved, making gradient-based approaches
well-suited to the task of minimising T̃N . We have chosen to
use Adam (Kingma and Ba 2015) in our experiments, with
an additional clipping step after each iteration to enforce the
constraint u ≥ 1. An alternative approach is to minimise
(17) with a loss-specific algorithm (e.g. Pegasos (Shalev-
Shwartz, Singer, and Srebro 2007; Menon and Williamson
2018; Jumutc and Suykens 2013) if ` is a hinge loss) and
minimise (18) at each step as an inner loop using a gradient-
based approach (or use bi-quadratic optimisation). However
our initial experiments showed that a simple, single-layer
gradient-based approach was significantly faster and had a
more predictable running time, so we focus on it exclusively.

6 Experimental Results
In this section we present experimental results for TRF ap-
plied to classification and regression problems for small and
medium sized datasets. For classification we use hinge loss
`(y̆, y) = (1− y̆y)+, and for regression `(y̆, y) = 1

2 (y̆− y)2.
Experiments were run on a Ubuntu 4.15 server with 72
x86 64 cores and 754 GB of memory running SVMHeavy 8.

Dataset SVM-RBF SVM-MKL FKL TRF
Biodeg 13.9(2.8) 12.3(2.1) 12.0(2.3) 11.2(3.5)

Car 1.15(0.4) 0.81(0.2) 0.75(0.1) 0.73(0.1)
Contra. 40.1(4.8) 31.6(4.8) 35.0(3.7) 29.5(3.1)
Fertility 9(4.2) 9(4.2) 9(4.2) 9(4.2)
Ionosph. 5.92(2.5) 4.22(1.4) 3.99(1.6) 14.7(7.4)

Sonar 27.1(16) 20.5(2.7) 21.1(4.5) 15.5(3.2)
a8a 15.7(1.0) 13.2(2.4) 12.9(2.7) 12.6(2.7)

Dataset SVM-RBF SVM-MKL FKL TRF
Airfoil 0.48(0.30) −(−) 0.46(0.02) 0.43(0.02)
Auto 0.18(0.04) 0.17(0.04) 0.17(0.03) 0.16(0.03)

Boston 0.43(0.13) 0.38(0.07) 0.38(0.13) 0.38(0.14)
Slump 0.028(0.02) 0.020(0.01) 0.20(0.01) 0.018(0.01)
Yatch 0.17(0.07) 0.05(0.03) 0.07(0.06) 0.16(0.12)

Figure 4: Classification (top, misclassification error %) and
Regression (bottom, RMSE error) results on 20% test set with
5 repeats. TRF is our method, SVM-RBF is the SVM with
RBF kernel, and SVM-MKL is the SVM with MKL kernel.

For our TRF method we use an RBF meta-kernel κ
with length-scale l, and an RBF reference kernel K̂ with
fixed length-scale 1. Hyper-parameters were selected to min-
imise 10-fold cross-validation error on the training set, with
λ,Λ, γ, l ∈ [0.01, 100], using Bayesian optimisation with
GP-UCB acquisition function (Srinivas et al. 2012) with a
budget of 105 evaluations (5 in the initial random set). This
was repeated for D = 50, 100, 200, 400, 800, 1600 random
features to find D to minimise 10-fold cross validation error.

Our baselines were SVM (ε-SV regression and C-SV clas-
sification) with RBF and MKL kernel KMKL = m0KRBF +
m1KMAT + m2Kpoly (KRBF, KMAT and Kpoly are RBF,
3
2 -Matérn and 2nd-order polynomial kernels, respectively);
and FKL (Băzăvan, Li, and Sminchisescu 2012). All hyper-
parameters, including C, ε (for regression), m0,m1,m2, and
the length-scales for KRBF and KMAT were chosen using
Bayesian optimisation with GP-UCB acquisition function to
minimise 10-fold cross-validation error on the training set.

All datasets are taken from the UCI repository (Dua and
Graff 2017), normalised so xi lies in the unit hypersphere
and split randomly 80% training and 20% testing. All experi-
ments were repeated 5 times to generate error bars. Results
for regression and classification are shown in Table 4. Note
that our method outperforms the baseline in most cases.

7 Conclusion
We have introduced the tuned random features (TRF) algo-
rithm that combines kernel learning and regularised risk min-
imisation in the spectral domain, allowing the kernel to be se-
lected automatically from the set of all translation-invariant
kernels. We have shown that TRF training may be done via
a simple gradient-based approach on the convex objective.
We have also analysed the convergence properties of TRF
as N,D →∞, and, using Rademacher complexity analysis,
proved that TRF converges uniformly in the limit. Finally,
we have demonstrated the effectiveness of TRF on a range of
real regression and classification datasets.
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Geršgorin, S. 1931. Über die Abgrenzung der Eigenwerte
einer Matrix. Bulletin de l’Académie des Sciences de l’URSS.
Classe des sciences mathématiques et na, 749–754.
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