The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Scaling Up Influence Functions

Andrea Schioppa®, Polina Zablotskaia, David Vilar, Artem Sokolov

Google Research
{arischioppa, polinaz, vilar, artemsok } @ google.com

Abstract

We address efficient calculation of influence functions for
tracking predictions back to the training data. We propose
and analyze a new approach to speeding up the inverse Hes-
sian calculation based on Arnoldi iteration. With this im-
provement, we achieve, to the best of our knowledge, the first
successful implementation of influence functions that scales
to full-size (language and vision) Transformer models with
several hundreds of millions of parameters. We evaluate our
approach on image classification and sequence-to-sequence
tasks with tens to a hundred of millions of training exam-
ples. Our code will be available at https://github.com/google-
research/jax-influence.

1 Introduction

Recognizing data’s highest agency in defining deep neural
networks’ (DNN5s) performance, the pursuit of state-of-the-
art has made datasets for training modern DNNs grow to
sizes that can no longer be curated by humans. This has
acutely aggravated data issues like noise and mislabeled
data: Noise is characteristic of tasks where training data is
crawled from the Web (e.g. machine translation) and where
golden-truth labels are heuristically paired to inputs (Uszko-
reit et al. 2010), leaving ample room for errors and inher-
iting biases of the heuristic. Wrong labels can be also in-
troduced by non-expert crowd annotators who, considering
the amount of data to be labeled, are hard to incentivize for
quality within available budgets (Bowman and Dahl 2021).
Given the above, a natural way to interpret and fix DNN
models is to track their bad (or good) predictions down to
the training examples that caused them (Cook and Weisberg
1980; Koh and Liang 2017; Yeh et al. 2018), and take ap-
propriate action on the found examples or annotation poli-
cies. Addressing this, Koh and Liang (2017) proposed in-
fluence functions (IFs) as a theoretically motivated method,
grounded in robust statistics (Cook and Weisberg 1982), of
quantifying the effect of training examples on predictions:
For a query example z, IFs estimate the most influential ex-
ample z in training data D, in terms of absolute change of

*Google Al Resident.
Copyright (© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

8179

loss L if x were infinitesimally up-weighted in D, with:

Tu(z,z) = (VoL(z), H 'VeL(x)), (1)

where H = V2L is the Hessian of the model at param-
eters ©. The straight-forward IF implementation, using the
approximate Hessian inversion procedure LI SSA (Agarwal,
Bullins, and Hazan 2017), has O(p) memory and O(r - p)
time complexities, where r is the LI SSA iteration count and
p = |©], incurred at every x. Besides the need of careful tun-
ing of LISSA, the O(p)-memory has been the major obsta-
cle on the way of IF deployment for debugging application-
relevant DNNs with hundreds of millions (or more) training
examples and model parameters; so noise or mislabeling is-
sues remain unfixed or even undetected, and are adversely
impacting predictions.

In this work, we focus on reducing the IF memory foot-
print by not materializing O(p)-size gradients nor Hes-
sians, and decoupling the required number of H estimations,
O(r - | D)), from the training data size. This allows to paral-
lelize computation over larger b and scale to huge datasets
and models. Specifically, we use Arnoldi iteration (Arnoldi
1951) to find the dominant (in absolute value) eigenvalues
of H and their orthonormal eigenvectors on a random data
subset, |D’| < |DJ, and then cheaply invert the diagonalized
H, avoiding calls to LISSA as well as its convergence and
stability issues. As H is Hermitian, (1) is symmetric w.r.t. «
and z, so previous work cached {VgL(x)} to improve IFs
usability (Guo et al. 2021), however, it only spares one back-
ward pass per z and requires to re-estimate the product of
the (unstorable) H ! with Vg L(2) every time an influence
on z is requested. The crux of our approach is in caching
instead H in the trivially-invertable diagonalized form and
for the small-dimensional subspace spanned by a few dom-
inant eigenvectors, p < p. Hessian-gradient products are
then reduced to simple scalar-gradient products, which do
not need to be materialized in memory as (1) can now be im-
plemented with Jacobian-vector products. In summary, our
approach renders repeated re-estimations of H 'V g L(x) at
every x unnecessary and they are replaced with the memory-
and time-efficient forward-mode differentiation.

Empirically, IFs with Arnoldi iteration achieve speed-
ups of 3-4 orders of magnitude over the LISSA-powered
IFs (Koh and Liang 2017) and of 10x over TracIn (Pruthi
et al. 2020), a heuristic gradient-only alternative to IFs (§5),

with better or similar accuracy. With this improvement, we
successfully evaluated IFs on both language and vision, full-
size Transformer models (up to 300M of parameters) in im-
age classification and sequence-to-sequence tasks, resp., on
14M (ImageNet) and 100M (Paracrawl) training examples.

Note that the standard conditions for (1) to be a correct
influence estimate, i.e. locally strictly-convex L € C? (Koh
and Liang 2017), remain in place and their fulfilment de-
pends on the concrete task, network, training algorithm and
its convergence status. The time/memory complexity also
remain, however, our contribution improves constants hid-
den in the O-notation, and thus permits IF evaluation on
full data/models that are relevant in applications, on stan-
dard memory-limited hardware. This opens the way for de-
velopers to make informed decisions if IFs are appropriate
for their task, rather than to resort to heuristics from the start.
This is encouraging, since the existing brute-force recipe
of “soothing” the O(p) complexity by subsetting parame-
ters, e.g. focusing on few layers only (Chen et al. 2020),
is prone to producing incorrect results (Feldman and Zhang
2020) (see also §5.2). On the other hand, running IF on
subsets of D to reduce runtime (Guo et al. 2021) may in-
troduce unwanted biases, misattribute prediction failures,
and would not be enough for identifying mislabeled exam-
ples (Pruthi et al. 2020) or “hard” examples requiring mem-
orization (Feldman and Zhang 2020). Yet, these approaches
are compatible with our method and should result in com-
pound speed-ups.

We will open-source our implementation of Arnoldi iter-
ation at https://github.com/google-research/jax-influence.

2 Related Work

Explaining DNN predictions falls under a broader inter-
pretability umbrella, where the lingering complexity of the
data-explainability approach made research historically fo-
cus on instance-based methods, that explain predictions in
terms of task-specific structural units of inputs, e.g. pixels or
tokens. Rich literature offers different instantiations of the
idea: gradient-based saliency maps (Simonyan, Vedaldi, and
Zisserman 2013),input perturbations (Li, Monroe, and Ju-
rafsky 2016) or LIME (Ribeiro, Singh, and Guestrin 2016),
which fits a linear model in the inputs neighborhood. How-
ever, being limited to specific inputs, their insights are rarely
actionable for system developers. And while it is possible to
repurpose them to data explainability, e.g. via clustering of
saliency maps (Lapuschkin et al. 2019), this solves a more
difficult task than necessary, introduces new hyperparame-
ters (incl. the saliency method itself) and relies on human
experts to make sense of the clusters.

In contrast to instance-explanations in the form of to-
ken level heatmaps, the IF provides a method for tracing
model predictions back to training examples. Existing ap-
proaches to reducing IF runtime mostly address salient prob-
lem axes — dimensionality of active parameters, cardinality
of data subset or number of iterations — without addressing
the procedure itself; or they drop theoretical foundations to
use heuristics simpler than IF: e.g. Pruthi et al. (2020) re-
duce influence to tracking loss changes with the cumulative
(over training model checkpoints, i.e. model snapshots) dot

8180

products of gradients, and in (Yeh et al. 2018) authors lever-
age kernel functions evaluated at the training samples for
explaining inference decisions.

Mathematically, the closest to our work is (Ghorbani, Kr-
ishnan, and Xiao 2019) who use a specialization of Arnoldi
iteration to Hermitian matrices (Lanczos iteration) to study
the dynamics of spectra of entire Hessians at different snap-
shots during training. Because of this different goal, they
use full-batch Hessians (i.e. computed on the full dataset),
while we “spread” the Hessian approximation across smaller
batches that do not cover the full D. In result, we can
work with larger models and datasets, e.g. ResNet50/ViT
vs. ResNetl18, and at a larger speed (simultaneously bump-
ing the number of Lanczos/Arnoldi iterations from 90 to 200
to increase precision).

3 Influence and Influence Functions

The true influence of x on z, Zyue(z, 2), is defined as the
change in the loss L at z between having learned the model
parameters © without and with z in the training data (Cook
and Weisberg 1980):

Tirue(z,2) = L(2|© : © ¢ D) — L(2|© : x € D).

Explicit calculation of Zi e (1, 2), by removing every x and
retraining, is infeasible for large D and several approxima-
tion techniques have been proposed. Feldman (2020) and
Feldman and Zhang (2020) propose to train multiple models
on randomly selected data subsets while tracking, for each z,
to which subsets it belonged; this way, one can obtain an un-
biased estimator Zpem (2,) of Zirue (2,) which, however,
requires a substantial amount of model re-trainings (up to
thousands to satisfy theoretical guarantees (Feldman 2020)).
Koh and Liang (2017) advocated the use of IFs in (1)
that approximate the loss change after an infinitesimal up-
weighting of z in D. For models used in practice, H cannot
be materialized in memory, let alone be inverted by standard
linear algebra. However, for a fixed vector v, the Hessian-
vector product (HVP), Hv, can be computed in O(b - p)
time and memory (Pearlmutter 1994), where b is the batch
size and defines the number of training examples on which
H (of an implicitly given loss L) will be approximated. HVP
is commonly implemented in modern autodiff toolkits (Bay-
din et al. 2018) as the reverse-mode differentiation Jacobian-
vector product (JVP), followed by a forward-mode JVP.
Repeated HVP calls are the workhorse of the iterative pro-
cedure LISSA (Agarwal, Bullins, and Hazan 2017), used
by (Koh and Liang 2017), that estimate inverse HVP as:
H'v=v+4 (I - H)H v,

T

where H is approximated on random batches and v is a
gradient. Even for small r, the procedure is both time- and
memory-expensive as the O(p)-memory of HVP on explic-
itly instantiated v forces to estimate H on a single sampled
training point per iteration (b = 1), impacting accuracy.
Moreover, the total O(r - b - p) time complexity will be in-
curred at every x in whose influence on z we are interested.

Evaluating influence methods. A practical problem with
influence-based explainability is the absence of ground-truth

to verify that a method produces correct results. In this pa-
per we use two proxies, following the assumption that zs
with high self-influence Zy (x,x) correspond to data out-
liers (Koh and Liang 2017; Pruthi et al. 2020): we either in-
troduce a known synthetic data corruption and check for its
correct retrieval by a method, or filter high-influence points
out and measure a change in downstream task metrics (Guo
et al. 2021; Kocijan and Bowman 2020). Using Zg (z, z)
as a retrieval score for corrupted data, we measure the re-
trieval quality as areas under the ROC and the precision-
recall curves, respectively denoted as the Area Under the
Curve (AUC) and the Average Precision (AP).

4 Scaling Influence Functions

From the discussion above, the O(p)-memory complexity
is the major bottleneck for efficient implementation of IFs.
We start with an overview of existing techniques, showing
their commonalities. Note that all are compatible with the
approach we propose.

Caching. For data-interpretability purposes one might
consider limiting (1) to a sufficiently promising subset D’ C
D, e.g. Guo et al. (2021) define D’ as the top-k £2-neighbors
of z in D. Besides more hyperparameters, this still re-
quires computing H 'VgL(z) for every z and, as dis-
cussed above, reducing D’ would not be enough for appli-
cations that require computing Zy (z, z) on all training x.
As H is symmetric, one could swap = and z, and cache
H~'VeoL(z) instead, bringing down the query complexity
having only to compute Vg L(z) now, but this would just
shift the computational burden to building the search index
over H='VgL(x).

Restricting parameters. Reducing required memory is
possible by naively limiting the computation to a smaller
subset of parameters of cardinality p, e.g. selecting one or
few layer(s); usually, the last layer is selected (Koh and
Liang 2017). This has two drawbacks: the choice of layers
becomes a hyperparameter and the viable values of p will de-
pend on the model architecture, and as Feldman and Zhang
(2020, §3.6) show using just one layer can result in different
influence estimates compared to the full model.

Random projections. For simplification one might as-
sume H = I and reduce influence estimates to dot prod-
ucts of gradients. To account for multiple layers at once and
to get a finer-step control of p, we consider a simple base-
line, RandSelect, which randomly selects p parameters
© C © and computes influence using the final checkpoint
and gradients with respect to ©, and can be combined with
layer selection. The RandSelect estimator can be equiv-
alently expressed as

Ig(x,Z) - <GV@L(I),GV@L(2)>, 2

where G € RP*? is a row selection matrix of the gradient’s
components corresponding to ©.

We also use another sketching (Woodruff 2014) baseline,
RandProj, initially proposed by Wojnowicz et al. (2016)
for generalized linear models: for a random Gaussian pro-
jection matrix G, E[GTG] = I, which leads to an unbiased

8181

estimate in (2). Since normally p < p, it allows a memory-
efficient implementation in the forward mode: one just es-
timates p JVPs with the rows of G that avoid materializ-
ing O(p)-size gradients. This has a lower memory footprint
than RandSelect, which requires back-propagation as its
p (e.g. one layer) is still of the same order as p (see §5.2).

Tracing updates. A development of the H = [idea is
proposed in (Pruthi et al. 2020), where influence approxi-
mation works for the case when one can trace changes to the
loss L across all gradient steps. In order to make this feasi-
ble, they propose the TracIn estimator, defined on a subset
of gradient steps:

C
1
ITracIn(xaz) = 5 E <V@iL(.’I)),V@iL(Z)>,
i=1

where the {O,} is a set of C' checkpoints. Note that the com-
plexity of TracIn is C times that of using exact gradient
similarity and, as discussed in (Pruthi et al. 2020), care needs
to be taken in selecting checkpoints. Another practical ob-
stacle to TracIn is that, when analysing publicly released
models, usually only the final model checkpoint is provided.

Compatible projections. RandProj assumes the full-
dimension Hessian, H = I; if we drop this requirement,
we might consider H restricted to the subspace S which
is the image of (G, and work with G - H - GT instead of the
larger H. However, S¢ is not in general H-invariant which
can lead to approximation errors as when H is applied to a
vector v € Sg, the result might have non-negligible com-
ponents orthogonal to Si. We will see an example of this
later in the experiments on eigenvalue retrieval for MNIST
(Figure 1) where RandProj requires a considerably larger
p than Arnoldi to retrieve the top-p eigenvalues of H.

Our approach. We propose to use the standard tech-
nique of building an approximately H-invariant subspace
by selecting an arbitrary (e.g. random) vector v €
RP and constructing the n-th order Krylov subspace:
K, (H;v) = Span{v, Hv, H?v, ..., H"v}. The Arnoldi it-
eration (Arnoldi 1951) additionally builds an orthonormal
basis for K,,(H;v), so that the diagonalization of the re-
striction H of H to K,,(H;v) yields an approximation of the
largest (in absolute value) eigenvalues of H and of the cor-
responding eigenvectors (Trefethen and Bau 1997, Ch. 33-
34). Assuming n is large enough to estimate the largest p
eigenvalues, in summary we obtain a projection matrix G
and work with H = G - H - GT, which is a smaller dimen-
sional matrix. We will call this algorithm Arnoldi, with
the pseudocode in Algorithm 1.

The common feature of RandProj and Arnoldi is
that, instead of working with the full gradient Vg L(x),
one takes the JVPs (g;, Vo L(x)) with respect to the rows
g; of G. The implementation then becomes considerably
more efficient as it can be done in the forward-mode dif-
ferentiation and on larger batches. Moreover, in the case of
Arnoldi the matrix H gets replaced with now diagonal H,
simplifying the matrix inversion appearing in the definition
of 7y, and dispensing with the expensive LI SSA procedure.

Error analysis. It remains to analyse the effect of us-
ing top-p eigenvalues in Arnoldi. Recall that Koh and
Liang (2017) derive (1) by minimizing the quadratic form
Q(8) = 1(0, HO) — 1 (VoL(z|0y),0), where O are the
parameters at convergence. Ordering the eigenvalues of H
at ©g, |A1] > |Aa] > -+ and letting ey, eq,--- be the
corresponding eigenvectors, Ghorbani, Krishnan, and Xiao
(2019) empirically observe (and prove in the quadratic case)
that gradient updates align with the subspace of H corre-
sponding to the dominant As. We provide two additional ar-
guments in the same direction: we upperbound the error of
approximating () using such a subspace in Lemma 1, and
discuss the effect of noise in H and the size of A\ on apply-
ing H~! to a vector in Lemma 2 (with proofs in §A).

Let @ be the form @) restricted to the H-subspace
spanned by the top-k As. We show that, as k increases, Qx
approximates @ better and the errors in directions of ey, cor-
responding to smaller |\z| matter less':

Lemma 1. Q) approximates () by an error bounded by:
0 < Q(8) — Qr(0) < % Niy1]||01|3. Further, if minimizing
Q introduces an error € in the direction of ej1 obtaining
an estimate 0’ for 0., then Q(0') — Q(0,) = %)\;ﬁl.

Another way of looking at the same phenomenon is to
consider the variance of estimated influence as the function
of | \¢|. Consider a computation of y = H ~'u, where vector
u is known exactly. Assume also that [’s estimation is noisy
resulting in error H + 6H, that E[0H] = 0, and that the
0 H is isotropic (e.g. does not preferentially align with some
e nor co-vary with Ay). Then the variance of the estimator
y = (HS)U + 6 H) 1w in the direction of ey, is proportional
to | Ak |~

Lemma 2. The variance of § in the direction of ey, is
Var((g, ex)) =~ ﬁVar((éHek, y)).

5 Experiments
5.1 Small Model & Data Scale: Digit Recognition

In this subsection, to be able to compare all baselines we
pick the small MNIST dataset (LeCun, Cortes, and Burges
1994) and consider two CNNss of different sizes: a small one
that permits the exact Hessian calculation, and a larger one
on which we can gauge the scalability potential.

Because the influence calculation with LISSA and
TracIn is slow, following (Koh and Liang 2017), we take
two 10% subsamples of the original data for training and
evaluation, and randomly relabel 20% of training examples
to create a corrupted dataset to evaluate mislabeled example
retrieval with influence estimates. Unlike (Koh and Liang
2017; Pruthi et al. 2020) we introduce the noise before train-
ing the models; by design, a perfect model on correctly la-
beled data would achieve only 80% accuracy on our eval set.

Small network. We re-implemented the small convolu-
tional network with smooth non-linearities from (Koh and

'One might attempt Arnoldi on H, g; to obtain an approxi-

mation directly in the subspace of the top-k eigenvalues of H, (_;3.
We found this approach however to be less performant (see §A.1).

Algorithm 1: Arnoldi

1: procedure ARNOLDI(v, n) ©> Build orthonormal basis
for the Krylov subspaces K,.

2 Wt

3 Ajm < 0for0<I<nand0<m<n

4 for i < 1,n do

5: w; < H -w;—1 > HVP in fwd-over-rev mode
6: Set A; j = (w;, w;) for j < i

E Wi < wi =) Aijw, > Orthogonalize
8 A1, < will2, wi + H':)UW

9 return: A, {w;}

10: procedure DISTILL(A, {w;},) > Distill A, {w;} to its
top-p eigenvalues.

11: Discard the last row of A and the last w,,

12: Obtain A’s eigenvalues {), } and eigenvectors {e;}

13: Set {\}} to the p-largest (in absolute value) of {);}

14: Set {e}} to the corresponding eigenvectors
15: Set G to the projection onto the spans {e}} in {w; }-
basis

16: return: {\}}, G

17: procedure INFLUENCE(z, z,n,p) > Influence of on
z with n iterations and top-p eigenvalues.

18: v+ N(0,1) }

Executed once

19: A, {w;} = ARNOLDI(v, n) and cached

20: {\.}, G =DISTILL(4, {w;}, D)
21: gz — G-VeoL(xz) > fwdIVP for z over G-rows
22: g. < G-VeL(z) »>fwdJVP for z over G-rows
23: gy < gz/{N\;} > Multiply with diagonalized H~*
24: return: (g, g.)

Liang 2017), and trained it following their recipe that is de-
signed to make the assumptions behind the influence func-
tion method (Cook and Weisberg 1982) satisfied: First, to
ensure convergence, the network is trained for more steps
(500k) than one would normally do, with a large batch size
of 500 images. Second, the ¢5-regularization of 5 - 1073 is
introduced to make H positive definite. With only 3k param-
eters, it is a useful benchmark where it possible to compute
H explicitly. We achieve accuracy of 73.8% and 92.3% on,
resp., the corrupted and the true evaluation set.

In Figure 1 we compare the accuracy between the top-p
eigenvalues estimations obtained by Arnoldi (for n =
200) and RandPro j. This illustrates the point made above
that if the image subspace S¢ associated with the projection
G is not H-invariant, then eigenvalue estimates can be poor.

In Figure 2 we plot the retrieval quality of mislabeled ex-
amples by Arnoldi and RandProj as a function of p.
The horizontal lines correspond to using the exact Hessian,
LISSA and TracIn (C' = 25 checkpoints, taken every
10 epochs). For this network we see that Arnoldi outper-
forms RandProj and steadily improves for further larger
values, outperforming even the exact Hessian for a large
enough p (which can be explained by presence of close-to-
zero eigenvalues in the exact H which affects its inverse).

ot .
107!
e - RandProj
g Arnoldi
o 1073 .
—— std eigenvalues
1075
10 20 30 40 50 60 70 80 90 100
k

Figure 1: Estimation error of the top-p eigenvalues obtained
by DISTILL as the optimal transport (Wasserstein) distance
to the exact H eigenvalues (assuming uniform distribution).
The horizontal line is the standard deviation of the latter.

Larger network. To consider a more realistic and larger
network we use the CNN from the Flax library? with 800k
parameters, still small by industry standards, but for which
H cannot be already computed explicitly. We train it for 10
epochs on GPU V100 without regularization, and achieve
75.4% on the corrupted and 94.8% on the true labels test
set. This network is more realistic in size and in training
procedure than the one in (Koh and Liang 2017).

Table 1 reports results of retrieval of mislabeled examples
with the total scoring time T as there is a trade-off between
gains in AP or AUC vs. T'. As computing exact /I was not
possible, our baseline for self-influence scoring is LISSA,
which is about 10 times slower than Arnoldi (which took
353 sec to estimate H for p = 10, n = 200 and b = 512).

We find that both Arnoldi and RandProj have a
good trade-off between retrieval accuracy and speed, while
RandSelect, despite being the fastest, suffers in retrieval
quality. As here RandProj performs slightly better than
Arnoldi, we initially hypothesized that this might indicate
an insufficient accuracy of HVP estimations: To verify, we
re-ran Arnoldi with the HVPs estimated on the full dataset
and obtained almost identical results, indicating that, on the
one hand, Arnoldi accurately estimates eigenvalues with
only 512 examples per HVP and, on the other hand, for this
network and task, gradient similarity methods might be more
appropriate (cf. LISSA for r = 100 does not move the nee-
dle either). Finally, TracIn on 10 checkpoints (after each
epoch) had the best retrieval quality, however, while its run-
time on this model and dataset is acceptable, it becomes a
problem for the larger models we consider later.

In §B.1, we show that images with Z(x, z) < 0 do appear
ambiguous to humans or are incorrectly labeled. Results for
the same CNN when over-trained or regularized are in §B.2.

5.2 Scaling with Data Size: Machine Translation

To test scalability over the data size dimension, we investi-
gate IFs for machine translation focusing on data selection

*https://github.com/google/flax/tree/master/examples/mnist

8183

Method p T,secs AUC AP
LISSA,r =10 - 4900 989 95.0
LISSA,r =100 (10% ©) - 32300 98.8 94.8
TracIn[l1] - 5 987 94.0
TracIn [10] - 42 99.7 98.7
RandProj 10 02 972 877
RandProj 100 1.9 98.6 939
RandSelect 10 0.1 549 312
RandSelect 100 1.8 91.8 72.6
Arnoldi 10 0.2 950 84.0
Arnoldi 100 1.9 982 929

Table 1: Retrieval of mislabeled MNIST examples using
self-influence for larger CNN. For TracIn the C value is
in brackets (last or all). All methods use full models (except
the LISSA run on 10% of parameters ©). For RandPro
std deviation of AUC/AP estimates is 0.1/0.7 over 20 runs.

over millions of examples. We verify the hypothesis that the
“cleanest” data is the one with the lowest self-influence (Koh
and Liang 2017; Pruthi et al. 2020). We evaluate retrieval
of artificially corrupted examples on the WMT17 dataset
(6M sentences), and evaluate data cleaning on the large
noisy Paracrawl corpus (100M sentences). Arnoldi used
b = 512 for HVPs; n = 200 iterations took 139 minutes.

Retrieving mislabeled parallel data. We experiment
with the Transformer Base model (Vaswani et al. 2017),
implemented in Flax3, on the clean WMT17 dataset for
the German-English direction. We follow the original setup
from (Vaswani et al. 2017) and train it for 100k steps on a
16-core TPUV2 (details in §C.2). As is standard in machine
translation, the model is neither over-trained to full conver-
gence nor we employ the ¢5-regularization, so a priori is
not guaranteed if IFs that rely on Hessian approximations
would fair better than the gradient heuristics, RandProj
and TracIn. On the test set newstestl16 we obtained BLEU
36.0 after 100k training steps.

To construct a synthetic noisy dataset, we uniformly sam-
pled 4096 examples from the training data and, for 256 ex-
amples of those, randomly shuffle the target sides, and re-
peat the above to obtain 5 data folds. We then apply different
methods to compute self-influence scores and evaluate their
quality with AUC and AP, averaging over the 5 data folds.

From Table 2 we observe that RandSelect performs
the worst in terms of retrieval quality. Arnoldi outper-
forms RandPro j and we observe that here AP is a measure
more sensitive to differences than AUC. The memory foot-
print of RandSelect scales poorly: while we managed to
run Arnoldi with b = 512 to compute self-influence, for
RandSelect we had to reduce it to 64.

Finally, we consider the question of the quality of influ-
ence estimates obtained for subsets of layers. For large mod-
els it is common to reduce p by looking at the last few lay-
ers (Pruthi et al. 2020; Guo et al. 2021; Han, Wallace, and
Tsvetkov 2020). However, Feldman and Zhang (2020) ob-

*https://github.com/google/flax/tree/main/examples/wmt

e
92.5
90.0 /
87.5
v 85.0
2
82.5 —— Arnoldi
80.0 RandProj
e T R LISSA
TracIn[25]
75.0 —— Exact Hessian

10 25 50 75

Number of projections

100

S
65
60
& 55
—— Arnoldi
50 RandProj
------ LISSA
45 TracIn[25]
—— Exact Hessian

10 25 50 75

Number of projections

100

Figure 2: AUC and AP for retrieval of mislabeled MNIST examples as a function of p for the small CNN model.

Layers = Method p AUC AP
RandSelect 10 67.0 122
RandSelect 100 79.3 19.7

all RandProj 10 85.6 31.3

layers RandProj 20 852 28.0
Arnoldi 10 92.0 47.8
Arnoldi 20 93.8 544
RandSelect 100 80.2 20.1

last 3 RandSelept 1000 81.3 22.2
decoder RandPro] 10 80.6 235
layers RandProj 20 83.0 25.8
Arnoldi 10 82.0 28.1
Arnoldi 20 83.7 285

Table 2: Retrieving synthetic mislabeled examples on
WMT17. The standard deviation of AUC and AP estimates
were under, resp., 0.9 and 1.0. for the Rand* methods.

served for their estimator Z,,.,, a degradation of the self-
influence estimates computed using only the last layer of
ResNet50, conjecturing that memorization of difficult ex-
amples has already happened by the time the computation
reaches the last layer. We corroborate their findings here for
Transformers: using only the last three decoder layers we
observe a significant degradation of the retrieval quality for
all algorithms, with Arnoldi still outperforming the rest.

Filtering noisy training corpus. To simulate a realistic
data cleaning setup, we take the noisy Paracrawl corpus from
the WMT18 Parallel Corpus Filtering Task*. This dataset
consists of 100M German-English sentence pairs with dif-
ferent kinds of noise that naturally occur in Web crawled
datasets: sentence pairs in languages others than English or
German; where both sides are in English or German; where
the target is either not or only a partial source translation,
or is a near copy of the source; or non-informative pairs,
e.g. short sentences consisting of numbers.

*http://statmt.org/wmt18/parallel-corpus-filtering. html

8184

We trained a model on WMT 17 to bootstrap self-influence
calculation and used newstest2016 for evaluation of re-
trained models. The methods that scale to this data size are
Arnoldi, RandProj and RandSelect, but as the lat-
ter underperformed on the retrieval of synthetically misla-
beled data and has heavy memory consumption, we focused
on the former two. We chose p = 10 as it is faster than
p = 20, which did not substantially increase the scores in
Table 2. With this, self-influence scoring speed was 2.2M
examples/hour on a 16-core TPUV2 using b = 2048.

As filtering baselines we consider training on the full
uncleaned data and some pre-filtering strategies from the
AFRL, Alibaba and Microsoft submissions (Gwinnup et al.
2018; Deng et al. 2018; Junczys-Dowmunt 2018) that are de-
tailed in §C.1. In Table 3 we report results after training on
1%, 5% and 10% of the data with the lowest self-influence,
i.e. the cleanest data by assumption. We followed (Vaswani
et al. 2017) and reported BLEU scores both at 10k steps and
at the final 200k steps as the gap between data selection
strategies might reduce over the course of training, possi-
bly as gradient updates from cleaner data might be favored
over time. Both Arnoldi and RandProj select cleaner
data at the bottom of the 5% and 10% self-influence scores.
Also Arnoldi outperforms RandProj gaining almost 4
BLEU points at 10k steps, and more than 8 points over the
pre-filtering baseline at 200k steps. At 1%, we see a degra-
dation in the performance at 200k steps and, inspecting the
training loss, we found that it decreases by more than a half
going from 5% to 1% data threshold. We conjecture that the
selected examples at this strict 1%-threshold are too “sim-
plistic” to provide useful translation patterns, in line with
findings of Feldman and Zhang (2020, §3.3) on the marginal
utility of data with low memorization values on ImageNet.
See §C.3 for examples of high/low influence sentences.

Above, we did not aim to beat state-of-the-art cleaning
pipelines, which employ a cascade of filtering stages, but to
investigate whether a simple application of IFs can select
better data to train on. Nevertheless, we evaluated the added
value of Arnoldi by filtering 25% and 50% of the clean
data selected by Microsoft’s cascade (WMT18 winner), and

Method % selected BLEU@10k BLEU@200k
None 100 9.9 17.8
Pre-filtering 14 11.7 22.6
RandProj 1 7.7 8.7
Arnoldi 1 17.8 19.6
RandProj 5 18.7 27.9
Arnoldi 5 24.0 30.3
RandProj 10 21.3 28.6
Arnoldi 10 25.0 30.8

Table 3: Data selection on the noisy Paracrawl corpus (100M
parallel sentences) with evaluation on newstest16.

this increased BLEU from their 36.32 to, resp., 37.38 and
37.20 on newstestl6.

5.3 Scaling with Model Size: Computer Vision

Here we empirically verify if Arnoldi scales well with the
number of parameters for four state-of-the-art computer vi-
sion models of increasing sizes, and also run the mislabeled
data retrieval experiment for the largest Vision Transformer.

Method performance. We considered ResNet50 and Vi-
sion Transformers (ViT): the Flax implementation® of
ResNet50 has about 25M parameters6, and for ViTs we used
the JaX implementation’ and took checkpoints trained on
the mixture of ImageNet and ImageNet21k, that have be-
tween 86M (B32) and 300M (L32) parameters. Additionally,
to cover an intermediate size between the ViT B32 and L32
we took a subset of the layers, starting from the top, to com-
pute influence w.r.t. 50% of the parameters of the ViT L32,
amounting to 150M of weights. For all models we used one
4-core TPUV2, n = 200 and b = 512 (see §D.1).

Figure 3 plots the time taken by an Arnoldi run on the
full set of parameters of the considered models (for a bet-
ter perspective, we also included the translation Transformer
Base model). As expected, we observe a linear trend in terms
of model size, with the largest-size model (ViT-L32) taking
15 hours to estimate top-200 (cachable) eigenvalues.

Retrieving mislabeled data after fine-tuning. As vanilla
ViTs have been reported to have extremely sharp loss land-
scapes (Chen, Hsieh, and Gong 2021), we took their ViT
L32 checkpoint trained with the landscape-smoothing SAM
loss (Foret et al. 2021) to better satisfy IF assumptions, and
fine-tuned it on CIFAR10 for 10k steps obtaining a 98.6%
test accuracy. Since fine-tuning converged to a saddle point®,
we restricted the INFLUENCE procedure only to A; > 0.

We mislabeled 10% of the test examples and compared
their retrieval by Arnoldi and RandProj accumulating
parameters from the top 10%, 20% and the full model in
§D.2, Table 6. Arnoldi wins, but the gap to RandProj

Shttps://github.com/google/flax/tree/main/examples/imagenet

®Even though the model parameter count is about 50M, half of
the parameters are batch statistics, so we treat p as 25M.

"https://github.com/google-research/vision_transformer

8 Among the top-100 \s, 7% of the mass belongs to negative As.

8185

E 937 /YIT_L32
£
5
o
£
<
- . Pl og
ﬁ 415 | YlT_L32_50/
£ 301 V832
= f"TFansfomer Base

139 x x

ResNet50
25 60 86 150 300

Number of parameters (M)

Figure 3: Runtime of Arnoldi for n = 200 iterations on
the full set of parameters of respective networks.

is small and perhaps indicates that accounting for local cur-
vature is superfluous for this particular self-influence bench-
mark and model. As demonstrated by Koh and Liang (2017,
§2.2), this may not be the case in general, and for other IF-
based applications our contribution enables a verification of
whether accounting for Hessians is required. Unlike for the
machine translation case, increasing the number of parame-
ters leads here to a slight decrease in performance, suggest-
ing that one may restrict IFs to the top layers in the fine-
tuning setting. Another reason for the near matching perfor-
mance could be the IF’s increased fragility for large mod-
els (Basu, Pope, and Feizi 2021), also called out for natu-
ral language inference and RoBERTa model by Kocijan and
Bowman (2020), where performance dropped after retrain-
ing on either high- or low-influence (w.r.t. to a validation
set) examples. In §D.4 we also investigate the memorization
vs. generalization trade-off of removing high or low self-
influence images on ImageNet.

In §D.3, for the whole ImageNet and the full ResNet50
model, we picture most self-influential images and the most
influential training images retrieved for a test point.

6 Conclusion

We proposed a new way of calculating influence scores
of (Koh and Liang 2017) for large DNNs by approximate
diagonalization of their Hessians and avoiding re-estimating
them on every training example. We demonstrated finding
influential or noisy examples in datasets of up to 100M train-
ing examples and models with up to 300M parameters.

Acknowledgements

We thank Behrooz Ghorbani and Mukund Sundararajan for
their valuable feedback on the paper.

References

Agarwal, N.; Bullins, B.; and Hazan, E. 2017. Second-
Order Stochastic Optimization for Machine Learning in Lin-
ear Time. JMLR, 18(116): 1-40.

Arnoldi, W. E. 1951. The principle of minimized iterations
in the solution of the matrix eigenvalue problem. Quarterly
of Applied Mathematics, 9(1): 17-29.

Barshan, E.; Brunet, M.; and Dziugaite, G. K. 2020. RelatIF:
Identifying Explanatory Training Samples via Relative In-
fluence. In AISTATS.

Basu, S.; Pope, P.; and Feizi, S. 2021. Influence Functions
in Deep Learning Are Fragile. In ICLR.

Baydin, A. G.; Pearlmutter, B. A.; Radul, A. A.; and Siskind,
J. M. 2018. Automatic differentiation in machine learning:
a survey. JMLR, 18(153): 1-43.

Bowman, S. R.; and Dahl, G. 2021. What Will it Take to
Fix Benchmarking in Natural Language Understanding? In
NAACL.
Chen, H.; Si, S.; Li, Y.; Chelba, C.; Kumar, S.; Boning, D.;
and Hsieh, C.-J. 2020. Multi-Stage Influence Function. In
NeurlPS.

Chen, X.; Hsieh, C.-J.; and Gong, B. 2021. When Vision
Transformers Outperform ResNets without Pretraining or
Strong Data Augmentations. CoRR, abs/2106.01548.

Cook, R. D.; and Weisberg, S. 1980. Characterizations of an
Empirical Influence Function for Detecting Influential Cases
in Regression. Technometrics, 22(4): 495-508.

Cook, R. D.; and Weisberg, S. 1982. Residuals and influence
in regression. Chapman and Hall.

Deng, Y.; Cheng, S.; Lu, J.; Song, K.; Wang, J.; Wu, S.; Yao,
L.; Zhang, G.; et al. 2018. Alibaba’s Neural Machine Trans-
lation Systems for WMT18. In WMT.

Feldman, V. 2020. Does Learning Require Memorization?
A Short Tale about a Long Tail. In STOC.

Feldman, V.; and Zhang, C. 2020. What Neural Networks
Memorize and Why: Discovering the Long Tail via Influ-
ence Estimation. In NeurIPS.

Foret, P.; Kleiner, A.; Mobahi, H.; and Neyshabur, B. 2021.
Sharpness-aware Minimization for Efficiently Improving
Generalization. In /ICLR.

Ghorbani, B.; Krishnan, S.; and Xiao, Y. 2019. An Investi-
gation into Neural Net Optimization via Hessian Eigenvalue
Density. In ICML.

Guo, H.; Fatema R., N.; Hase, P;; Bansal, M.; and Xiong,
C. 2021. FastIF: Scalable Influence Functions for Efficient
Model Interpretation and Debugging. In EMNLP.

Gwinnup, J.; Anderson, T.; Erdmann, G.; and Young, K.
2018. The AFRL WMT18 Systems: Ensembling, Contin-
uation and Combination. In WMT.

Han, X.; Wallace, B. C.; and Tsvetkov, Y. 2020. Explaining
Black Box Predictions and Unveiling Data Artifacts through
Influence Functions. In ACL.

Junczys-Dowmunt, M. 2018. Microsoft’s Submission to the
WMT2018 News Translation Task: How I Learned to Stop
Worrying and Love the Data. In WMT.

8186

Kocijan, V.; and Bowman, S. 2020. Influence Functions Do
Not Seem to Predict Usefulness in NLP Transfer Learning.
https://wp.nyu.edu/cilvr/2020/08/27.

Koh, P. W.; and Liang, P. 2017. Understanding Black-box
Predictions via Influence Functions. In ICML.

Kreutzer, J.; Vilar, D.; and Sokolov, A. 2021. Bandits Don’t
Follow Rules: Balancing Multi-Facet Machine Translation
with Multi-Armed Bandits. In EMNLP.

Kudo, T.; and Richardson, J. 2018. SentencePiece: A sim-
ple and language independent subword tokenizer and detok-
enizer for Neural Text Processing. In EMNLP.

Lapuschkin, S.; Wildchen, S.; Binder, A.; Montavon, G.;
Samek, W.; and Miiller, K. 2019. Unmasking Clever Hans
Predictors and Assessing What Machines Really Learn.
CoRR, abs/1902.10178.

LeCun, Y.; Cortes, C.; and Burges, C. 1994. MNIST hand-
written digit database. http://yann.lecun.com/exdb/mnist/.

Li, J.; Monroe, W.; and Jurafsky, D. 2016. Understanding
Neural Networks through Representation Erasure. CoRR,
abs/1612.08220.

Pearlmutter, B. A. 1994. Fast Exact Multiplication by the
Hessian. Neural Computation, 6: 147-160.

Pruthi, G.; Liu, F.; Sundararajan, M.; and Kale, S. 2020. Es-
timating Training Data Influence by Tracing Gradient De-
scent. In NeurIPS.

Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. “Why
should I trust you?”” Explaining the predictions of any clas-
sifier. In KDD.

Shazeer, N.; Cheng, Y.; Parmar, N.; Tran, D.; Vaswani, A.;
Koanantakool, P.; Hawkins, P.; Lee, H.; et al. 2018. Mesh-
tensorflow: Deep learning for supercomputers. In NIPS.

Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2013. Deep
inside convolutional networks: Visualising image classifica-
tion models and saliency maps. In ICLR.

Trefethen, L. N.; and Bau, D. 1997. Numerical Linear Alge-
bra. SIAM.

Uszkoreit, J.; Ponte, J.; Popat, A.; and Dubiner, M. 2010.
Large scale parallel document mining for machine transla-
tion. In COLING.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, 1. 2017. At-
tention is All you Need. In NIPS.

Wojnowicz, M.; Cruz, B.; Zhao, X.; Wallace, B.; Wolff, M.;
Luan, J.; and Crable, C. 2016. “Influence sketching”: Find-
ing influential samples in large-scale regressions. In Big-
Data.

Woodruff, D. P. 2014. Sketching as a Tool for Numerical
Linear Algebra. CoRR, abs/1411.4357.

Yeh, C.; Kim, J. S.; Yen, I. E.; and Ravikumar, P. 2018. Rep-
resenter Point Selection for Explaining Deep Neural Net-
works. In NIPS.

Zhang, Y.; Riesa, J.; Gillick, D.; Bakalov, A.; Baldridge, J.;
and Weiss, D. 2018. A Fast, Compact, Accurate Model for
Language Identification of Codemixed Text. In EMNLP.

