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Abstract

We study the verification problem for closed-loop dynam-
ical systems with neural-network controllers (NNCS). This
problem is commonly reduced to computing the set of reach-
able states. When considering dynamical systems and neural
networks in isolation, there exist precise approaches for that
task based on set representations respectively called Taylor
models and zonotopes. However, the combination of these
approaches to NNCS is non-trivial because, when convert-
ing between the set representations, dependency information
gets lost in each control cycle and the accumulated approx-
imation error quickly renders the result useless. We present
an algorithm to chain approaches based on Taylor models
and zonotopes, yielding a precise reachability algorithm for
NNCS. Because the algorithm only acts at the interface of
the isolated approaches, it is applicable to general dynami-
cal systems and neural networks and can benefit from future
advances in these areas. Our implementation delivers state-
of-the-art performance and is the first to successfully analyze
all benchmark problems of an annual reachability competi-
tion for NNCS.

Introduction

In this work we consider controlled dynamical systems
where the plant model is given as a nonlinear ordinary dif-
ferential equation (ODE) and the controller is implemented
by a neural network. We call such systems neural-network
control systems (NNCS). We are interested in reachability
properties of NNCS: guaranteed reachability of target states
or non-reachability of error states. These questions can be
verified by computing a set that overapproximates the reach-
able states, which is the subject of reachability analysis, with
a large body of works for ODEs (Althoff, Frehse, and Girard
2021) and neural networks (Liu et al. 2021).

In principle, reachability analysis for NNCS can be im-
plemented by chaining two off-the-shelf tools for analyzing
the ODE and the neural network. The output set of one tool
is the input set to the other, and this process is repeated for
each control cycle. This idea is indeed applied by several
approaches (Tran et al. 2020b; Claviere et al. 2021). While
correct, such an approach often yields sets that are too con-
servative to be useful in practice. The reason is that with each
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switch to the other tool, a conversion between set representa-
tions is required because the tools use different techniques.
Thus some of the dependency information encoded in the
sets is lost when the tools are treated as black boxes. This
incurs an approximation error that quickly accumulates over
time, also known as the wrapping effect (Neumaier 1993).

Reachability algorithms at a sweet spot between preci-
sion and performance in the literature are based on Taylor
models for ODEs (Makino and Berz 2003; Chen, Abraham,
and Sankaranarayanan 2012) and on set propagation via ab-
stract interpretation (Cousot and Cousot 1977) for neural
networks, particularly using zonotopes (Gehr et al. 2018;
Singh et al. 2018). In this work we propose a new reacha-
bility algorithm for NNCS that combines Taylor models and
zonotopes. In general, Taylor models and zonotopes are in-
comparable and cannot be converted exactly. We describe
how to tame the approximation error when converting be-
tween these two set representations with two main insights.
First, we identify a special structured zonotope, which can
be exactly converted to a Taylor model by encoding the addi-
tional structure in the so-called remainder. Second, the struc-
ture of the Taylor model from the previous cycle can be re-
tained by only updating the control inputs, which allows to
preserve the dependencies encoded in the Taylor model.

Our approach only acts at the set interface and does not
require access to the internals of the reachability tools. They
only need to expose the complete set information, which is
only a minor modification of the black-box algorithms. Thus
our approach makes no assumptions about the ODE or the
neural network, as long as there are sound algorithms for
their (almost black-box) reachability analysis available. This
makes the approach a universal tool. While our approach is
conceptually simple, we demonstrate in our evaluation that
it is effective and scalable in practice. We successfully ana-
lyzed all benchmark problems from an annual NNCS com-
petition (Johnson et al. 2021) for the first time.

In summary, this paper makes the following contributions:
* We propose structured zonotopes and show how to
soundly convert them to Taylor models and back.

* We design a sound reachability algorithm for NNCS
based on Taylor models and zonotopes.

* We demonstrate the precision and scalability of the algo-
rithm on benchmarks from a reachability competition.



Related Work

The verification of continuous-time NNCS has recently re-
ceived attention. The tool Verisig (Ivanov et al. 2019) trans-
forms a neural network with sigmoid activation functions
into a hybrid automaton (Alur et al. 1992) and then uses
Flow* (Chen, Abrahdm, and Sankaranarayanan 2013), a
reachability tool for nonlinear ODEs based on Taylor mod-
els, to analyze the transformed control system as a chain of
hybrid automata. While that approach allows to preserve de-
pendencies in the Taylor model, it is not applicable to the
common ReL.U activation functions and the automaton’s di-
mension scales with the number of neurons. The tool NNV
(Tran et al. 2020b) combines CORA (Althoff 2015), a reach-
ability tool for nonlinear ODEs based on (variants of) zono-
topes, and an algorithm based on star sets (Tran et al. 2020a)
for propagating through a ReLU neural network. That ap-
proach suffers from the loss of dependencies when switching
between the set representations. The tool Sherlock (Dutta,
Chen, and Sankaranarayanan 2019; Dutta et al. 2019) com-
bines Flow* with an output-range analysis for ReLU neural
networks (Dutta et al. 2018b). That approach abstracts the
neural network by a polynomial, which has the advantage
that dependencies can in principle be preserved. While the
approach requires hyperrectangular input sets and the ab-
straction comes with its own error, this approach can be pre-
cise in practice for small input sets. The input to the neural
network as well as the polynomial order must be small in
practice for scalability reasons. Further, the approach only
works well for neural networks with a single output; for mul-
tiple outputs, the analysis has to be applied iteratively. The
tool ReachNN* (Huang et al. 2019; Fan et al. 2020) approx-
imates Lipschitz-continuous neural networks with Bernstein
polynomials and then analyzes the resulting polynomial sys-
tem with Flow*; estimates of the Lipschitz constant tend
to be conservative. Claviere et al. (2021) combine validated
simulations and abstract interpretation.

A number of approaches consider discrete-time systems,
which are considerably easier to handle. Xiang et al. (2018)
study the simple case of discrete-time piecewise-linear
(PWL) systems and controllers with ReLU activation func-
tions, for which one can represent the exact reachable states
as a union of convex polytopes. However, the number of
polytopes may grow exponentially in the dimension of the
neural network. VenMAS (Akintunde et al. 2020) also as-
sumes PWL dynamics and considers a multi-agent setting
with a temporal-logic specification. Dutta et al. (2018a) con-
sider nonlinear dynamics and compute a template polyhe-
dron that overapproximates the output of the neural network
based on range analysis. OVERT (Sidrane et al. 2021) ap-
proximates nonlinear dynamics by PWL bounds. Bacci, Gi-
acobbe, and Parker (2021) consider unbounded time.

Qutline In the next section we continue with the back-
ground on NNCS and set representations. Afterward we de-
scribe our approach and evaluate it, and finally we conclude.

Preliminaries

We formally introduce NNCS and the core set representa-
tions used in our approach: Taylor models and zonotopes.
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Figure 1: Neural-network control system.

Neural-Network Control Systems

We consider plants modeled by ODEs & = f(x,u) where
z € R” is the state vector and ©v € R™ is the vector of
control inputs. Given an initial state 2(0) = x¢ and a (con-
stant) control input uy, we assume that the solution of the
corresponding initial-value problem at time ¢ > 0, denoted
by &(t, o, uo, f), exists and is unique. (We only discuss de-
terministic plants here to simplify the presentation. The ex-
tension to nondeterministic systems is straightforward; han-
dling such systems is common in the reachability literature
(Singer and Barton 2006; Althoff, Frehse, and Girard 2021)
and orthogonal to the problem described in this work.)

A neural-network control system (NNCS) is a tuple
(f, N,p2c,2p, ) with a plant f(z,u) over x € R™ and
u € R™, a controller given as a neural network IV : R —
R, a function p2c : R™ — R that takes the current plant
state = and turns it into the input to the controller, a function
c2p : R® — R™ that takes the controller output and turns it
into the new control input u, and a control period 7 € R+ .

A conceptual sketch of an NNCS is given in Figure 1. The
NNCS periodically queries the controller for new control in-
puts. At time points k7, k € N, the state (k) is passed to
p2c, to the controller IV, and to ¢2p, which yields the new
control inputs uy. Here we use the common assumption that
the computation of uy, is instantaneous. The sequence of the
uy, induces a continuous piecewise input signal u(t). For-
mally, given an initial state z¢ at ¢ = 0, we recursively define
the sequence of input vectors ug, k € N, and the evolution
of the state z:(¢), ¢ > 0, which is a trajectory of the NNCS:

up = e2p(N (p2c(x(kT)))) (1)

2(1) )

Zo t=20

€t — kr,a(kr),up, f) t € (kr, (k +1)7]

We may also write (¢, zq) resp. ug (xq) for the trajectory
x(t) resp. for the vector uy to clarify the dependency on zg.

Taylor Models

A d-dimensional Taylor model of order k is a tuple 7 =
(p,A,D) where p = (p1,...,pa)" is a vector of multi-
variate polynomials p; : D — R of degree at most k,
i = 1,...,d, the remainder A = A; x --- X Ay is a
hyperrectangle containing the origin, and D C R? is the
domain (Makino and Berz 2003). Thus 7 represents the
vector-valued function p(z) + A: an interval tube around
the polynomial p. We often use the common normalization
D = [—1,1]¢, which can be established algorithmically.



(a) Zonotope.

(b) Taylor model.

Figure 2: A structured zonotope (left) and a Taylor model
covered with one zonotope and with a union of boxes (right).

Example The tuple (p, A, D) with p1(z) = —0.52% + 3z
over domain D = [—1, 1] and remainder A = [—0.1,0.1] is
a one-dimensional Taylor model of order 2.

Taylor-Model Reach Sets (TMRS)

A Taylor-model reach set (TMRS) R is a structure used
in reachability algorithms when propagating Taylor mod-
els through an ODE in time. For a d-dimensional system,
a TMRS is a d-vector of Taylor models in one variable rep-
resenting time with shared domain. The coefficients of these
Taylor models are themselves multivariate polynomials in
the d state variables, whose domain is assumed to be the
symmetric box [—1, 1]¢. (The time domain of a TMRS is not
normalized to [—1, 1].) Evaluating a TMRS over a time point
(or a time interval) yields a d-dimensional Taylor model.

Example Continuing the previous example, consider the
one-dimensional TMRS consisting of the Taylor model
(g, A, [0,1]) where ¢1 (t) = (—0.52% +2x)t + . Evaluation
at t = 1 yields the Taylor model from the previous example.

Zonotopes

A zonotope is the image of a hypercube under an affine
transformation and hence a convex centrally-symmetric
polytope (Ziegler 1995). Zonotopes are usually character-
ized in generator representation: An n-dimensional zono-
tope Z C R™ with center ¢ € R™ and p generators g; € R"
(3 =1,...,p)is defined as

P
Z= xeR”:mzc—FZngj,Cje[—l,l]
j=1

The generators are commonly aligned as columns in a matrix
Gz =1 9 gp]. The order of Z is the ratio p/n
of generators per dimension. In the special case that Gz is a
diagonal matrix, the zonotope represents a hyperrectangle.
Given two sets X7, X5 C R"”, their Minkowski sum is

Xy @ Xy ={x1+x2: 71 € Xy,29 € X}

We say that a zonotope Z with center ¢ and generator matrix
G z is structured if it has order 2 and GG z has the block struc-
ture [M D], where D is a diagonal matrix. A structured
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zonotope corresponds to the Minkowski sum of 1) the zono-
tope centered in ¢ with generator matrix M and 2) the hyper-
rectangle centered in the origin whose radius corresponds to
the diagonal of D.

Example The two-dimensional structured zonotope with
the center c (2,1.5)7 and the generator matrix

<_0'5 0.403 0 ) is depicted in Figure 2(a).

03 08 0 0.3

Propagating zonotopes through a neural network Ab-
stract interpretation (Cousot and Cousot 1977) is a well-
known technique to propagate sets through a system in a
sound (i.e., overapproximate) way. The sets are taken from a
class called the abstract domain. The idea is to compute the
image of the set under the system’s successor function; if the
image does not fall into the abstract domain, an overapprox-
imation from that domain is chosen. For neural networks
the idea is to iteratively propagate a set through each layer.
For instance, several algorithms based on the zonotope ab-
stract domain (Ghorbal, Goubault, and Putot 2009) for prop-
agation through neural networks have been proposed (Gehr
et al. 2018; Singh et al. 2018). Given an input zonotope,
the algorithm outputs a zonotope that overapproximates the
exact image of the neural network. The smallest zonotope
overapproximation is not unique. Zonotopes are efficient to
manipulate and closed under the affine map in each layer
(multiplication with the weights and addition of the bias);
only the activation function requires an overapproximation.

Reachability Algorithm

In this section we formalize the reachability problem for
NNCS, explain how one can convert between (structured)
zonotopes and Taylor models in a sound way, and finally in-
tegrate these conversions into a reachability algorithm.

Problem Statement

Given an NNCS, a set of initial states Xy € R"™, and an-
other set of states JJ C R"™, we are interested in answering
two types of questions: The must-not-reach question asks
whether no trajectory reaches any state in ). The must-reach
question asks whether each trajectory reaches some state
in ). To answer these questions, we aim at computing the
reachable states S; = {z(t,zg) : o € Xo} at time ¢. De-
termining reachability of a state (i.e., membership in S;) is
undecidable, which follows from undecidability of reacha-
bility for nonlinear dynamical systems (Hainry 2008).

The common approach in the literature is to consider
the reachable states for time intervals [Ty, T1], Siz,,7,) =
UtE[TO,Tl] S, and to find a coverage Sir, 1) 2 Si1y,1)-
This allows to give one-sided guarantees: if E[O,T] ny==>0
for some time horizon T, we can affirmatively answer a
must-not-reach question, and if S (To, 1] S Y for some time
interval [Ty, T} ], we can affirmatively answer a must-reach
question. The task we aim to solve is thus, given a time hori-
zon T > 0, to compute a covering Sjo, 7] 2 Sjo,77]-



Computing Sequences of Covering Sets

Given a set of initial states X; C R"™ and a bound on the
number of control periods K € N, foreach &k = 0,..., K
we want to cover the set of control inputs Uy, = {ux(xo) :
xo € Xp} by a set Z; D Uy,. Similarly, we want to com-
pute sets Ry 2 Siir,(k+1)r]- The idea is to represent the sets
Z, as structured zonotopes and the sets Ry, as TMRS. From
the recursive definition in (1) and (2), for each control cycle
we shall evaluate the TMRS, obtaining a Taylor model, then
convert to a zonotope and back, and finally compute a new
TMRS. Exact conversion between Taylor models and zono-
topes is generally not possible, so we must overapproximate.

To simplify the presentation, we turn the input variables
into new state variables by adding m fresh state variables
with zero dynamics. Thus from now on we sometimes as-
sume a state vector of dimension n + m.

From Taylor Model to Structured Zonotope

Given an n-dimensional Taylor model 7, we want to com-
pute a covering zonotope. (Since a Taylor model can repre-
sent nonlinear dependencies and a zonotope only consists of
linear constraints, one cannot hope for an exact conversion.)
We construct a structured zonotope Z as the Minkowski sum
Z1®H ,; of azonotope and a hyperrectangle. The intuition is
that Z; exactly captures the linear part of the polynomial and
‘H ; overapproximates the nonlinear part and the remainder.
We split the Taylor model’s polynomial vector into the
linear part p; = Ax + b (for some A € R*"*" h € R™)
and the nonlinear part p,;. The zonotope Z; has the center
b corresponding to the constant term of p; and the genera-
tor matrix A corresponding to the linear coefficients. Recall
that the domain of p; is normalized to [—1,1]™, so it con-
forms with the zonotope’s definition. Then we compute the
interval approximation H’ of p,,; by evaluating the polyno-
mials over the domain using interval arithmetic. Finally we
define H,,; = H' ® A, where A is the remainder of 7.

Example Let the Taylor model 7 = (p,[0,0]?, [-1,1]?)
with polynomials p;(z) = 0.62% — 0.5z1 + 0.429 + 1.7
and po(z) = 0.623 + 0.3z1 + 0.8z2 + 1.2. We obtain the
zonotope Z from the previous example. Figure 2(b) shows
Z together with a multi-box cover of 7, for which we split
the domain into 10,000 uniform boxes and evaluate 7 using
interval arithmetic. Note that Z is tight at multiple edges.

From Structured Zonotope to Taylor Model

Reachability algorithms for nonlinear dynamical systems
based on Taylor models assume that the set of initial states
Xy itself is given as a Taylor model. Converting hyperrect-
angles to a Taylor model is easy. Hence the typical approach
is to first overapproximate &{ with a hyperrectangle. How-
ever, this way we lose all dependencies between variables. If
we were to apply this conversion in each control cycle, the
approximation error would quickly explode. We describe a
better approximation when X is a zonotope. Zonotopes of
order > 1 generally cannot be converted exactly to a Taylor
model (see (Kochdumper and Althoff 2021, Corollary 1) ap-
plied to zonotopes). Here we show that for structured zono-
topes (which have order 2) an exact conversion is possible.
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Say we are given a structured zonotope Z C R™ (the
new control inputs). We construct the Taylor model 7 =
(p, A, [—1,1]™) corresponding to Z, for which it remains
to describe how to construct each pj and A, j = 1,...,m.

First we explain the construction in the simpler case that
Z is a hyperrectangle H with center ¢ and radius r. Then
each p; is the constant polynomial ¢;, where c; is the j-th
component of ¢, with the remainder A; = [—r;,7;] (e, A
is the hyperrectangle H with the center shifted to the origin).

Now we explain the construction in the case that Z is a
structured zonotope with generator matrix Gz = [M  D].
Let A; ; denote the entry of matrix A at row ¢ and column
j. We define the polynomial p;(z) = ¢; + Y ;o) Mk xy,
(which is correct because we use the domain [—1, 1]") and
the remainder A; = [—d, d] where d = |D; ;.

Observe that this conversion is exact and compatible with
the other conversion algorithm. Let Z be a structured zono-
tope. Then converting to a Taylor model and back using our
algorithms yields Z again.

Example We continue with the structured zonotope Z
from the previous example. The corresponding Taylor model
is p1(x) = 2.0 — 0.521 + 0.4x5 and po(z) = 1.5+ 0.3z +
0.8x2 + [—0.3,0.3], with A; = Ay = [-0.3,0.3].

Reachability Algorithm Based on Taylor Models
and Zonotopes

Now we have all ingredients to formulate a reachability al-
gorithm. Initially we are given an NNCS (f, N, p2¢, ¢2p, T)
as defined before, a set of initial states Xy C R", and a
time horizon T € Ry . If &} is not already given as a Tay-
lor model, we need to convert (e.g., from a structured zono-
tope) or overapproximate it first. We assume two black-box
reachability algorithms pn and p . Algorithm px receives a
zonotope Z and produces another zonotope that covers the
image of Z under the controller IV, e.g., implementing the
algorithm in (Singh et al. 2018). Algorithm p; receives a
Taylor model and a time horizon and produces a TMRS cov-
ering the reachable states of the plant f, e.g., implementing
the algorithm in (Makino and Berz 2003).

Algorithm 1 consists of a loop of four main steps. We as-
sume that the time horizon 7" is a multiple K of the period 7.
(For other time horizons one can just execute the loop body
once more with a shortened time frame in line 7.) Say we are
in iteration k. The first step is to obtain the control inputs for
the next time period from the controller. According to (1),
we need to extract the current state information, which is
stored as part of a Taylor model 7. We obtain 7 by evalu-
ating the current TMRS at ¢ = k7 (lines 8 and 9). Then we
convert 7 to a structured zonotope Z’ using our algorithm
described above (line 3). Finally we apply the function p2c
and pass the set to the second step. In typical cases such as
affine maps (p2c(x) = Az +b), we can apply p2c directly to
Z’. In more complicated cases we could instead apply p2c
to the Taylor model before the conversion.

The second step is to propagate Z’ through the controller
via py (line 4). The output is a new zonotope Z. Then we
apply the function ¢2p to it; again this is easy for affine maps,
and otherwise we need to overapproximate.



Algorithm 1: Reachability algorithm for NNCS.
Input: (f, N,p2c, 2p,7): NNCS; Xj: initial states;
T = Kr: time horizon; py: reachability algo-
rithm for IV; py: reachability algorithm for f
Output: TMRS overapproximating the reachable states
until 7’

Tz < TaylorModel(Xy); // construct Taylor model from X,

for k <~ Oto K —1do

Z' + p2c(to_Zonotope(T,)); // convert to zonotope

Z + 2p(pn(Z')); I/ zonotope covering N’s output

To < to TM(Z); /1 convert to Taylor model

T' < merge(Tz, Tu);  // m + m-dimensional Taylor
model by merging Taylor models

7 Ry <= pg(T',T); Il TMRS covering reachable states for

one control cycle

8 T <« evaluate(Ry, kT);

sampling time point

9 T < project(T,[1,...,n]); // project Taylor model to

the state variables

A T A W N =

// Taylor model at next

10 end
11 return (Ro, ..., Rx_1)

The third step is to construct a Taylor model 7T, from Z,
using our algorithm from above (line 5), and then merge
with 7, the first n dimensions of 7, to obtain an n + m-
dimensional Taylor model. This works because 7, does not
depend on the inputs. To obtain a structured zonotope Z, we
use the order-reduction algorithm in (Girard 2005).

The fourth step is to propagate the TMRS through the
plant via ps for the next 7 time frame (lines 6 and 7).

Evaluation

We implemented the algorithm in JuliaReach, a toolbox for
reachability analysis (Bogomolov et al. 2019). Set repre-
sentation and set conversion is implemented in the library
LazySets (Forets and Schilling 2021). For the Taylor-model
analysis we use the implementation by Benet and Sanders
(2019); Benet et al. (2019). For the zonotope propagation
we implemented the algorithm by Singh et al. (2018). To
obtain simulations in the visualizations we use the ODE
solver by Rackauckas and Nie (2017). All results reported
here were obtained on a standard laptop with a quad-core
2.2 GHz CPU and 8 GB RAM running Linux.

We consider the benchmark problems used in the com-
petition on NNCS at ARCH-COMP 2021 (Johnson et al.
2021). In total there are seven problems with various fea-
tures. The problems have up to 12 continuous states, 5 hid-
den layers, and 500 hidden units. All problems use ReLU
activation functions. We exclude one problem from the
presentation because it differs in scope (linear discrete-
time behavior and multiple controllers). Next we study one
of the problems in detail. Then we report on the results
for the other problems. The experiments are available at
https://github.com/JuliaReach/AAAI22_RE/.

X
|
1 .
< o}
=]
P
St
<}
_2 L
_3 + i . . . .
0.0 2.5 5.0 7.5 10.0

t

Figure 3: Simulations for the unicycle model: projection in
state space (first plot) and control signals (second plot).

Case Study: Unicycle Model

We consider the model of a unicycle, which was originally
used in (Dutta, Chen, and Sankaranarayanan 2019). The
plant has four state variables (z,y, 8, v), where x and y rep-
resent the wheel coordinates in the plane, 6 is the yaw an-
gle of the wheel, and v is the velocity. There are two inputs
(uq,u2), where uy controls the acceleration and us controls
the wheel direction. Finally, there is a disturbance w. The
dynamics are given as the following system of ODE:s:

i=wvcos(d) y=wvsin(d) O=uy Ov=ui+w

A neural-network controller with one hidden layer (500
neurons) was trained with a model-predictive control
scheme as teacher. The function p2c is the identity, while
the controller output is post-processed with (uq,uz)? =
e2p((01,02)T) = (01 — 20,00 — 20)7. The controller is
sampled with a period 7 = 0.2 s. The uncertain set of initial
states Xy is given by z € [9.5,9.55], y € [—4.5, —4.45],
6 € [2.1,2.11], v € [1.5,1.51], and w € [~107%,1074].
The specification is to reach a target set X given by
x € [-0.6,0.6], y € [-0.2,0.2], § € [-0.06,0.06], v €
[—0.3,0.3] within a time horizon of 7' = 10 s.

In Figure 3 we show Xj, X', and ten random simulations
together with simulations from all 32 extremal points of A}
and the domain of w. We can see that X7 is reached only
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Figure 5: Results from Sherlock (left) and NNV (right; only
partial result) on the unicycle model (z/y projection).

in the last moment, so the analysis requires a high precision
to prove containment of the reachable states at ¢ = 10s.
Our implementation can prove containment for three state
variables, but the lower bound for y slightly exceeds —0.2.

We found that the zonotope approximation is suboptimal
for this controller. To improve precision, we reduce the de-
pendency uncertainty in the initial states by splitting Xj into
3 x 1 x 8 x 1 = 24 smaller hyperrectangles. Then we have
to solve 24 reachability problems, where the final reachable
states are the union of the individual results. Mathematically,
these sets are equivalent, but set-based analysis generally
gains precision from smaller initial states. We note that the
analysis is embarrassingly parallelizable, but our current im-
plementation does not make use of that.

Using an adaptive step size with absolute tolerance 10~ *°
and order-10 Taylor models, we can verify the property
within 93 seconds (i.e., four seconds for each sub-problem).
The reach sets of all 24 runs together with a random sim-
ulation are shown in Figure 4. The reach sets for different
sub-problems overlay each other soon after the beginning,
indicating that the controller quickly steers trajectories from
different sources to roughly the same states. We could have
evaluated the final TMRS at the time point ¢ = 10 for higher
precision, but this was not required.

We compare to the results of Sherlock (Dutta, Chen,
and Sankaranarayanan 2019), which originally proposed the
benchmark problem. (We are not aware of any tool that can
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Problem Dimensions Cyc. Sherlock JuliaReach
Unicycle 4;500; 2 50 526 93
TORA  4;100,100,100;1 20 30 2040
ACC  6;20,20,20,20,20;1 50 4 1
S. pend. 2;25,25;1 20 1 1
D. pend. 4:25,25; 2 20 61 4
Airplane 12;100,100,20;6 20 169f 29

Table 1: Benchmarks. The second column shows the number
of state variables n, neurons per hidden layer, and control
variables m. The other columns show the number of control
cycles and the the run time of Sherlock resp. JuliaReach in
seconds (averaged over five runs, rounded to integers). A “t”
marks measurement until the tool stopped working.

handle all benchmark problems.) As discussed in the related
work, that approach can be very precise because it does not
have to switch between set representations, and indeed there
is no splitting required here. However, controllers with mul-
tiple outputs need to be handled by repeating the analysis for
each output neuron individually, which is costly. In total the
analysis takes 525 seconds and produces the plot in Figure 5.

We also compare to the result of NNV (Tran et al. 2020b),
which uses a black-box reachability method for the plant and
hence loses many dependencies. In (Johnson et al. 2021) the
authors reported that their tool runs out of memory before
the analysis finishes. The plot in Figure 5 contains interme-
diate results, which show that the precision declines quickly.

Other Problems From ARCH-COMP

Here we shortly summarize the results on the remaining
benchmark problems from ARCH-COMP 2021: a transla-
tional oscillator with a rotational actuator (TORA), an adap-
tive cruise control (ACC), a single and a double pendulum,
and an airplane model. We summarize the core model prop-
erties in Table 1. Since NNV cannot solve many of the prob-
lems, we only discuss the results of our implementation and
Sherlock. The reachability results are plotted in Figure 6.

The TORA problem was also proposed by the Sherlock
authors. Here ¢2p(u) u — 10. Again the zonotope al-
gorithm produces relatively coarse results and our tool Ju-
liaReach has to split heavily to yield the required precision,
which makes it slow. For all other problems, JuliaReach is
precise enough without splitting and is faster than Sherlock.

The implementation of Sherlock requires ReLU activation
functions at every layer, including the output layer. This is
not common, but we modified the controllers of the last four
problems accordingly for a fair comparison. The original
specifications are not satisfied by the modified controllers
and hence we only compare reachability results and run time
here for these problems. Our implementation can solve all
benchmark problems with the original controllers, as shown
in the ARCH-COMP 2021 report (Johnson et al. 2021).

For the ACC problem, p2¢(x) = (30,1.4, 5,21 — x4,
29 — x5)7 (an affine map); the tools have similar precision
but ours is faster. For the single-pendulum problem, our im-
plementation is more precise. On the remaining two prob-
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Figure 6: Results from JuliaReach (left) and Sherlock
(right). We additionally plot simulations from the extreme
points of & and ten additional random points.

lems with multiple control variables (double pendulum and
airplane), Sherlock diverges. As discussed before, Sherlock
uses an approximate analysis in those cases. For the double-
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pendulum problem, it stops after the first control cycle and
returns with an error about divergence. Splitting X helps
for a while, but Sherlock diverges after seven control cycles
even when splitting each dimension into 30,000 pieces. For
the airplane problem, the trajectories obtained with the mod-
ified controller expand fast and hence we define a smaller
initial set. Sherlock is slow due to the large number of con-
trol variables and diverges after ten control cycles.

Discussion

To summarize, our approach generally produces precise re-
sults, as can be seen from the simulations in the plots cover-
ing most of the reachable states, and can additionally benefit
from splitting the initial set; for Sherlock, the effect of split-
ting is smaller and does not help solving the double pendu-
lum and airplane problems. Sherlock is typically precise and
sufficiently fast for controllers with a single output, although
not always more precise than our implementation. For mul-
tiple outputs, Sherlock is slower and often diverges.

Our algorithm relies on two reachability algorithms and
inherits their scalability. We shortly discuss the most rele-
vant parameters for NNCS reachability. 1) Plant dimension:
Reachability methods for high-dimensional nonlinear sys-
tems are generally not available. 2) Neural-network dimen-
sion: The algorithm from (Singh et al. 2018) scales to re-
alistic neural networks in control applications. 3) Number
of iterations: Each iteration incurs a conversion between set
representations, which makes the task more challenging.

Conclusion

In this paper we have addressed the reachability problem
for neural-network control systems. When combining suc-
cessful reachability tools for the ODE and neural-network
components, the main obstacle is the conversion of sets at
the tool interface. We have proposed a conversion scheme
when the ODE analyzer uses Taylor models and the neural-
network analyzer uses zonotopes. Our approach is able to
preserve most dependencies between the control cycles.
Our implementation is the first to successfully analyze all
benchmark problems of the verification competition ARCH-
COMP 2021. Compared to Sherlock, our approach works re-
liably for neural networks with multiple output dimensions.
For future work, we plan to investigate the interface
for other set representations. For example, CORA (Al-
thoff 2015) can use polynomial zonotopes (Althoff 2013;
Kochdumper and Althoff 2021), which are as expressive as
Taylor models and conversion to and from zonotopes works
well. Another direction is to combine different reachability
algorithms, e.g., the one in (Gehr et al. 2018) or the “poly-
nomialization” approach used in Sherlock (Dutta, Chen, and
Sankaranarayanan 2019); thus we could compute several
output sets and then choose one or even combine them.
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